
Meaningful Change Detection in Structured Data*

Sudarshan S. Chawathe Hector Garcia-Molina

Computer Science Department, Stanford University, Stanford, California 94305

{chaa,hector}Qcs.stanford.edu

Abstract

Detecting changes by comparing data snapshots is an im-
portant requirement for difference queries, active databases,
and version and configuration management. In this paper
we focus on detecting meaningful changes in hierarchically
structured data, such as nested-object data. This problem
is much more challenging than the corresponding one for re-
lational or flat-file data. In order to describe changes better,
we base our work not just on the traditional “atomic” insert,
delete, update operations, but also on operations that move
an entire sub-tree of nodes, and that copy an entire sub-tree.
These operations allows us to describe changes in a seman-
tically more meaningful way. Since this change detection
problem is N’P-hard, in this paper we present a heuristic
change detection algorithm that yields close to “minimal”
descriptions of the changes, and that has fewer restrictions
than previous algorithms. Our algorithm is based on trans-
forming the change detection problem to a problem of com-
puting a minimum-cost edge cover of a bipartite graph. We
study the quality of the solution produced by our algorithm,
as well as the running time, both analytically and experi-
mentally.

1 Introduction

Detection of changes between data structures is an impor-
tant function in many applications. For example, in the
World-Wide Web an analyst may be interested in knowing
how a competitor’s site has changed since the last time vis-
ited. This may be achieved by saving a snapshot of the previ-
ous HTML pages at the site (something that most browsers
do for efficiency anyway). In a CAD design environment,
an engineer may wish to understand the differences between
two related but concurrently developed chip designs. In a

*This work was supported by the Air Force Wright Laboratory
Aeronautical Systems Center under DARPA Contract F33615-93-1-
1339, by the Department of the Air Force Rome Laboratories under
DARPA Contract F30602-95-C-0119, and by equipment grants from
IBM Corporation, Digital Equipment Corporation, and Sun Microsys-
tems.

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGMOD ‘97 AZUSA

0 1997 ACM 0-89791~Sll-4/97/0005...$3.50

distributed file system, an administrator may need to de-
tect differences between two mirror file systems that became
partitioned and independently modified. In a warehousing
environment, the changes at a site need to be identified so
that a materialized view can be incrementally maintained.

In this paper we present an efficient algorithm, MH-DIFF,

for meaningful change detection between two hierarchically
structured data snapshots, or trees. The key word here is
meaningful (the “M” in the name). That is, our goal is to
portray the changes between two trees in a succinct and de-
scriptive way. As is commonly done, we portray the changes
as an edit script that gives the sequence of operationsneeded
to transform one tree into another. However, in this paper
we use a richer set of operations than has ever been used
before, and this leads, we believe, to much higher quality
edit scripts.

In particular, we use move and copy operations, in addi-
tion to the more traditional insert, delete, and update oper-
ations. Thus, if a substructure (e.g., a section of text, a shift
register) is moved to another location, our algorithm will re-
port it as a single operation. If the substructure is copied
(e.g., a second shift register is added which is identical to
one already in the circuit), then our algorithm will identify
it as such. Traditional change detection algorithms would
report such changes as sequences of inserts and deletes (or
simply inserts in the case of a copy), which do not convey
the true meaning of the change.

Note that detecting moves and copies becomes more im-
portant if the moved or copied subtree is large. For in-
stance, if we are comparing file systems, and a large direc-
tory with thousands of files is mounted elsewhere, we clearly
do not wish to report the change as thousands of file deletes
followed by thousands of file creations. Also note that to
detect moves and copies, it is essential that our algorithm
understand the structure as well as the content of the data.
Thus, our algorithm cannot treat the data as “flat” informa-
tion, e.g., as files with records or relations with tuples. This
means that techniques developed for flat change detection
[Mye86, LGM96] are not applicable here.

Algorithm MH-DIFF has two additional important fea-
tures:

l It does not rely on the existence of node (atomic ob-
ject) identifiers that can match nodes in one tree to
nodes in the other. In many applications such iden-
tifiers do not exist. For instance, sentences and para-
graphs in text documents do not come with unique

26

identifiers attached. Even when the nodes are stored in
a database system (e.g., circuit components), we may
be comparing copies with the same content but differ-
ent identifiers. Thus, for full generality, MH-DIFF does
not assume unique identifiers that span the two trees,
and instead compares the contents of nodes to deter-
mine if they are related. (If the trees have such iden-
tifiers, MH-DIFF could easily take advantage of them,
but we do not discuss that here.)

l Algorithm MH-DIFF is based on a fairly flexible cost
model. Each operation in the repertoire is given a user-
defined fixed cost, except for the update operation,
whose cost is determined by a user-provided function
that compares the values of two nodes. This gives end
users great latitude in saying what types of edit scripts
are preferable for an application.

There is a good reason why difference algorithms with
the features we have described here have not been devel-
oped earlier, even though they are clearly desirable. The
reason is the inherent complexity of the problem; one can
show that the problem is N’P-hard.’ Algorithm MH-DIFF

provides a heuristic solution, which is based on transforming
the problem to the “edge cover domain.” That is, instead
of working with edit scripts, the algorithm works with edge
covers that represent how one set of nodes match another
set. In this transformation, the costs of the edit operations
are translated into costs on the edges of the cover.

In an earlier paper [CRGMWBG] we studied a much sim-
pler version of the change detection problem. In that work
we did not consider copy operations, we assumed that the
number of duplicates of a node was very limited, we assumed
ordered trees, and we assumed that nodes had “tags” that
reflect the structural constraints on the input trees. (For
example, nodes were tagged as say “paragraphs” or “sec-
tions,” making it easier to match nodes.) All these restric-
tions made it much simpler to find a minimum-cost edit
script, and indeed we developed an efficient algorithm that
found a minimum-cost script. Here, on the other hand, here
we drop these restrictions, and introduce copy operations.
This leads to an algorithm that is very different from the
one in [CRGMW96], and that yields a heuristic solution in
worst-case O(n3) time, where n is the number of nodes, but
most often in roughly O(n’) time. In Section 7 we compare
in more detail MH-DIFF to our earlier work, as well as to
other work on change detection.

2 Model and Problem Definition

We use rooted, labeled trees as our model for structured
data. These are trees in which each node n has a label I(n)
that is chosen from an arbitrary domain C. The problem
of snapshot change detection in structured data is thus the
problem of finding a way to edit the tree representation of
one snapshot to that of the other. We denote a tree T by its
nodes N, the parent function p, and the labeling function 1,
and write T = (N,p, 2). The children of a node n E N are
denoted by C(n).

We begin by defining the tree edit operations that we
consider. Since there are many ways to transform one tree to
another using these edit operations, we define a cost model
for these edit operations, and then define the problem of

‘By reduction from the “exact cwer by three-sets” problem.

finding a minimum-cost edit script that transforms one tree
to another.

2.1 Edit Operations and Edit Scripts

In the following, we will assume that an edit operation e
is applied to TI = (Nl,pl, 11), and produces the tree Tz =

(Nz,pz, 12). We write this as TI 4 Tz. We consider the
following six edit operations:

Insertion: Intuitively, an insertion operation creates

a new tree node with a given label, and places it at
a given position in the tree. The position of the new
node n in the tree is specified by giving its parent node
p and a subset C of the children of p. The result of
this operation is that n is a child of p, and the nodes
C, that were originally children of p, are now children
of the newly inserted node n.

Formally, an insertion operation is denoted by
INS(n, v,p, C), where n is the (unique) identifier of the
new node, w is the label of the new node, p E N1 is
the node that is to be the parent of n, and C E C(p)
is the set of nodes that are to be the children of n.
When applied to Tl = (N~,pl, Zl), we get a tree T2 =

(Nz,Pz,~~), where NZ = N1 u {n}, m(n) = p, m(c) =
n,Vc E C, pz(c) = pl(c),Vc E Nl - C, Iz(n) = v, and
12(m) = 11 (m), Vm E Nl. Due to space constraints, we
describe the remaining edit operations only informally
below; the formal definitions are in [CGM97].

Deletion: This operation is the inverse of the inser-
tion operation. Intuitively, DEL(~) causes n to dis-
appear from the tree; the children of n are now the
children of the (old) parent of n. The root of the tree
cannot be deleted.

Update: The operation UPD(n, w) changes the label
of the node n to v.

Move: A move operation MOV(n, p) moves the subtree

rooted at n to another position in the tree. The new
position is specified by giving the new parent of the
node, p. The root cannot be moved.

Copy: A copy operation cPY(m,p) copies the subtree
rooted at n to a another position. The new position is
specified by giving the node p that is to be the parent
of the new copy. The root cannot be copied.

Glue: This operation is the inverse of a copy opera-
tion. Given two nodes nl and nz such that the sub-
trees rooted at nl and n2 are isomorphic, GLU(nl, n2)

causes the subtree rooted at ral to disappear. (It is
conceptually “united” with the subtree rooted at n2.)
The root cannot be glued. Although the GLU opera-
tion may seem unusual, note that it is a natural choice
for an edit operation given the existence of the CPY

operation. As we will see in Example 2.1, inverting an
edit script containing a CPY operations results in an
edit script with a GLU operation. This symmetry in
the structure of edit operations is useful in the design
of our algorithms.

In addition to the above tree edit operations, one may
wish to consider operations such as a s&tree delete oper-
ation that deletes all nodes in a given subtree. Similarly,
one could defme a subtree merge operation that merges two

31

or more subtrees. We do not consider such more complex
edit operations in this paper, but note that some of these
operations, (e.g., subtree deletes) may be detected by post-
processing the output of our algorithm.

We define an edit script to be a sequence of zero or more
edit operations that can be applied in the order in which
they occur in the sequence. That is, given a tree TO, a
sequence of edit operations E = er , ez, . . . , ek is an edit script

if there exist trees Ti, 1 5 i 5 k such that Ti-1 3 Ti, 1 s
i 5 k. We say that the edit script & transforms To to Tk,

and write TO -f; Tk.

ins(ll.g, 1. l9)k

Figure 1: Edit operations on labeled trees

Example 2.1 Consider the tree Tl depicted in Figure 1.
We represent the identifier of each node by the number in-
side the circle representing the node. The label of each
node is depicted to the right of the node. Thus, the root
of the tree TI has an identifier 1, and a label a. Figure 1
shows how Tl is transformed by applying the edit script to
Ei = (INS(ll,g, 1, {9}), MOV(~,~), CPY(~, 1)) TI. Similarly,
if we start with the tree T2 in the figure, the edit script
&s = (GLU(12,7), MOV(2, l),~~~(ll)) transforms it back to

TI . We write TI 3 T2, and T2 3 TI.

2.2 Cost Model

Given a pair of trees, there are, in general, several edit
scripts that transform one tree to the other. For example,
there is the trivial edit script that deletes all the nodes of
one tree and then inserts all the nodes of the second tree.
There are many other edit scripts that, informally, do more
work than seems necessary. Formally, we would like to find
an edit script that is “minimal” in the sense that it does no
more work that what is absolutely required. To this end, we
define a cost model for edit operations and edit scripts.

There are two major criteria for choosing a cost model.
Firstly, the cost model should accurately capture the domain
characteristics of the data being considered. For example,
if we are comparing the schematics for two printed-circuit
boards, we may prefer an edit script that has as few inserts

,as possible, and instead describes changes with moves and
copies of the old components. However, if we are comparing
text documents, we may prefer to see a paragraph as a new
insertion, rather than a description of how it was assembled
from bits and pieces of sentences from the old document.
Secondly, the cost model should be simple to specify, and

should require little effort from the user. For example, a
cost model that requires the user to specify dozens of pa-
rameters is not desirable by this criterion, even though it
may accurately model the domain.

Another issue is the trade-off between generality of the
cost model and difficulty in computing a minimum-cost edit
script. For example, a very general cost model would have
a user-specified function to determine the cost of each edit
operation, based on the type of the edit operation, as well
as the particular nodes on which it operates. However, such
a model is not amenable to the design of efficient algorithms
for computing the minimum-cost edit script, since it does
not permit us to reason about the relative costs of the pos-
sible edit operations.

With the above criteria in mind, we propose a simple
cost model in which the costs of insertion, deletion, move,
copy, and glue operations are given by constants, Ci, Cd, cm,
cc, and cg, respectively. Furthermore, given the symmetry
between INS and DEL, and CPY and GLU, it is reasonable to
use Ci = cd, and cc = cg. Since, intuitively, a MOV opera-
tion causes a smaller change than either CPY or GLU , it is
also reasonable to use cm < cc. Note, however, that our al-
gorithms do not depend on these relationships between the
cost parameters. The cost of an update operation depends
on the old and new values of the label being updated; that
is, c(UPD(n,u)) = ,,(c UO, u), where ws is the old label of n,
and cu is a domain-dependent function that returns a non-
negative real number.

Finally, the cost of an edit script E, denoted by c(E), is
defined as the sum of the costs of the edit operations in E.
That is, c(e) = c,,, c(d).

Problem Statement: Given two rooted, labeled trees TI
and T2, find an edit script E such that E transforms TI to
a tree that is isomorphic to T2, and such that for every edit
script E’ with this property, C(&‘) 2 C(E).

3 Method Overview

In this Section, we present an overview of algorithm MH-
DIFF for computing a minimum-cost edit script between two
trees. We present our algorithm informally using a running
example; the details are deferred to later sections.

d

Figure 2: The trees for the running example in Section 3.

Consider the two trees depicted in Figure 2. We would
like to find a minimum-cost edit script that transforms tree
Tl into tree T2. The reader may observe that these trees are
isomorphic to the initial and final trees from Example 2.1 in
Section 2. Note, however, that there is no correspondence
between the node identifiers of TI and T2 in Figure 2. This is
because in Example 2.1 we applied a known edit script to a

28

tree, transforming it to another tree in the process, whereas
in this section, we are trying to find an edit script, given
two trees with no information on the relationship between
their nodes. Therefore, our first step consists of finding a
correspondence between the nodes of the two given trees.

For example, consider the node 8 in Figure 2. We want
to find the node in T2 that corresponds to this node in TI.
The dashed lines in Figure 2 represent some of the possibil-
ities. Intuitively, we can see that matching the node 8 to
the node 51 does not seem like a good idea, since not only
do the labels of the two nodes differ, but the two nodes also
have very different locations in their respective trees; node
8 is a leaf node, while node 51 is the root node. Similarly,
we may intuitively argue that matching node 8 to node 62
seems promising, since they are both leaf nodes and their
labels match. However, note that matching a nodes based
simply on their labels ignores the structure of the trees, and
thus is not, in general, the best choice. We make this intu-
itive notion of a correspondence between nodes more precise
below.

3.1 The Induced Graph

Consider the complete bipartite graph B consisting of the
nodes of Tl on one side, and the nodes of T2 on the other,
plus the special nodes $ (on TI ‘s side) and 8 (on T2 ‘s side).
We call B the induced graph of TI and Tz. The dashed lines
in Figure 2 correspond to a few edges of the induced graph.
Intuitively, we would like to find a subset K of the edges of B
that tells us the correspondence between the nodes of TI and
T2. If an edge connects a node m E TI to a node n E T2,
it means that n was “derived” from m. (For example, n
may be a copy of m.) We say m is matched to n. A node
matched to the special node $ indicates that it was inserted,
and a node matched to 8 indicates that it was deleted. Note
that this matching between nodes need not be one-to-one; a
node may be matched to more than one other nodes. (For
example, referring to Figure 2 node 7 may be matched to
both node 52 and node 61.) The only restriction is that a
node be matched to at least one other node. Thus, finding
the correspondence between the nodes of two trees consists
essentially of Iinding an edge cover2 of their induced graph.

The induced graph has a large number of edge covers
(this number being exponential in the number of nodes).
However, we may intuitively observe that most of these pos-
sible edge covers of B are undesirable. For example, and
edge cover that maps all nodes in TI to 8, and all nodes
in T2 to $ seems like a bad choice, since it corresponds to
deleting all the nodes of Tl and then inserting all the nodes
of T2. We will define the correspondence between an edge
cover of an induced graph and an edit script for the under-
lying trees formally in Section 4, where we also describe how
to compute an edit script corresponding to an edge cover.
For now, we simply note that, given an edge cover of the in-
duced graph, we can compute a corresponding edit script for
the underlying trees. Hence, we would like to select an edge
cover of the induced graph that corresponds to a minimum-
cost edit script.

‘An edge cover of a graph is a subset K of the edges of the graph
such that any node in the graph is incident on at least one edge in K.

3.2 Pruning the Induced Graph

We noted earlier that many of the potential edge covers of
the induced graph are undesirable because they correspond
to expensive and undesirable edit scripts. Intuitively, we
may therefore expect a substantial number of the edges of
the induced graph to be extraneous. Our next step, there-
fore, consists of removing (pruning) as many of these extra-
neous edges as possible from the induced graph, by using
some pruning rules. The pnming rules that we use are con-
servative, meaning that they remove only those edges that
we can be sure are not needed by a minimum-cost edit script.
We discuss pruning rules in detail in Section 5.3, presenting
only a simple example here.

As an example of the action of a simple pruning rule,
consider the edge ei = [5,53], representing the correspon-
dence between nodes 5 and 53 in Figure 2. Suppose that the
cost CU(U, ac) of updating the label a of node 5 to the label
ac of node 53 is 3 units. Furthermore, let the cost of insert-
ing a node and deleting a node be 1 unit each. Then we can
safely prune the edge [5,53] because, intuitively, given any
edge cover Kr that includes the edge er, we can generate
another edge cover that excludes ei, and that corresponds
to an edit script that is at least as good as the one corre-
sponding to Ki . As an illustration of such pruning, consider
the edge cover I(z = Kr - {e} U {[5,e], [& 53]}.-This edge
cover corresnonds to an edit scrint that deletes the node 5.
and inserts the node 53. These Iwo operations cost a total
of 2 units, which is less than the cost of the update opera-
tion suggested by the edge e in edge cover Ki. We therefore
conclude that the edge [5,53] in our running example may
safely be pruned. In Section 5.3 we present Pruning Rule 2,
which is a generalization of this example.

Figure 3: The pruned induced graph for the trees in Figure 2

3.3 Finding an Edge Cover

By applying the pruning rules (Section 5.3) to the induced
graph of our running example, say we obtain the pruned
induced graph depicted in Figure 3 (ignore for the present
the difference between dotted and solid lines in the figure).
Although the pruned induced graph typically has far fewer
edges than the original induced graph does, it may still con-
tain more edges than needed to form an edge cover. In Sec-
tion 4.2 we will see that we need only consider edge covers
that are minimal; that is, edge covers that are not proper
supersets of any edge cover. In other words, we would like
to remove from the pruned induced graph those edges that
are not needed to cover nodes. For example, in the pruned
induced graph shown in Figure 3, having all four of the edges
[7,61], [7,63], [9,61], and [9,63] is unnecessary; we may re-
move either [7,63] and [9,61]; or [7,61] and [9,63]. However,
it is not possible to decide a priori which of these options is
the better one; that is, it is not obvious which choice would
lead to an edit script of lower cost. With pruning, on the
other hand, there was no doubt that certain edges could be

29

removed.

One way to decide among these options is to enumer-
ate all possible minimal edge covers of the pruned induced
graph, Iind the edit script corresponding to each one (using
the method described later in Section 5), and to pick the
one with the least cost. However, given the exponentially
large number of edge covers, this is obviously not an efficient
algorithm. To compute an optimal edge cover efficiently, we
need to be able to determine how much each edge in the
edge cover contributes to the total cost of an edit script cor-
responding to an edge cover containing it. That is, we need
to distribute the cost of the edit script corresponding to an
edge cover over the individual edges of the edge cover. Once
we have a cost defined for each edge in the pruned induced
graph, we can find a minimum-cost edge cover using stan-
dard techniques based on reducing the edge cover problem
to a weighted matching problem [PS82, Law76]. For exam-
ple, if the edges [7,61], [7,63], [9,61], and [9,63], have costs
0, 1.3, 0.2, and 2.4, respectively, then we generate an edge
cover that includes [7,61] and [9,61], and excludes [7,63]
and [9,61].

Note, however, that such a reduction of the edit script
problem to an edge cover (and thus, weighted matching)
problem cannot be exact, given the hardness of the edit
script problem.3 Indeed, our method of assigning costs to
edges of the induced graph (Section 5.1) is only approximate,
and thus the minimum-cost edge cover is not guaranteed to
produce the best solution for the edit script problem.

3.4 Generating the Edit Script

Returning to the pruned induced graph of our running ex-
ample, let us assume that we have gone through the process
of determining the cost of each edge, and have computed a
minimum-cost edge cover according to these costs, obtain-
ing the edge cover represented by the bold edges in Figure 3.
Our next step consists of using this edge cover to compute
an edit script that transforms the tree Ti to the tree Tz.
Our algorithm CtoS (Cover-to-Script) for this purpose is
described in Section 5. Here, we briefly illustrate some of
the ideas used by the algorithm by considering its action on
an edge in the edge cover for our running example.

Figure 4: Annotating edges in the edge cover of Figure 3

Consider the edge ei = [7,52] of the edge cover depicted
by the bold lines in Figure 3. In Figure 4, we depict this edge
in relation to the original trees. (We also depict two other
edges from the edge cover. The edge cover edges are shown
as dashed lines in Figure 4. We observe that there is one
other edge in the edge cover that is incident on node 7, viz.

3unless ‘P = NP, since we are considering a polynomial-time
reduction.

[7,61], suggesting that the node 7 was copied either directly,
or indirectly (due to one of its ancestors being copied). Fur-
thermore, we note that the parent (node 4) of node 7 is
matched to the parent (node 55) of node 61 (i.e., the edge
[4,55] exists in the edge cover), while the parent of node 52
is not matched to the parent of node 7. This matching of
the parents suggests that node 61 is the original instance of
node 7, while node 52 is the copy. We therefore generate
a copy operation that copies the subtree rooted at node 7

to the location of node 52. A convenient way of depicting
this copy operation is by annotating the corresponding edge
([7,52] in our example) with a CPY mark; this scheme allows
us to talk about edit operations without having to refer to
explicit node identifiers. Edges that do not correspond to
any edit operation (e.g., [6,57] in our example) are anno-
tated with a NIL mark. In the sequel, we will use such edge
annotations interchangeably with the actual edit operations
that they represent.

Consider next the edges [8,53] and [8,62]. Although both
these edge cover edges are incident on node 8, neither of
them corresponds to a CPY operation, since the copy 52 of
node 8 is generated “for free” when node 7 is copied. There-
fore, both these edges are annotated NL. Proceeding thusly,
we annotate all the edges in the edge cover of our running
example, to obtain the annotated edge cover depicted in Fig-
ure 5, which shows only the edges with non-nil annotations,
for clarity. These annotations correspond to the edit script
(INS(g, 1, {9}), MOV(2,6), cpy(7,l)). We see that this edit
script is identical to the one in Example 2.1, which happens
to be a minimum cost edit script for our example. Of course,
the above edit operations may also be listed in the order
(MOV(2,6), CPY(~, l), INS(g, 1, (9))). Both edit scripts have
the same final effect, and have the same cost. In general, all
edit scripts corresponding to a set of annotated edges have
the same overall effect and the same cost.

d

Figure 5: Annotated edges of the edge cover of Figure 3

For the above example MH-DIFF produces a minimum-
cost edit script, but it may sometimes not find one with
globally minimum cost. In Section 6 we evaluate how often
this happens and we briefly discuss how one could perform
additional searching in the neighborhood of the script found
by MH-DIFF .

This concludes the overview of MH-DIFF. To summa-
rize, the process consists of constructing an induced graph
from the input trees, pruning the induced graph, finding a
minimum-cost edge cover of the pruned induced graph, and
finally, using this edge cover to obtain an edit script. In
the following sections, we describe these phases in detail.
For ease of presentation, we present these phases in a dif-
ferent order than the order in which they are performed. In
particular, in Section 4, we begin by formally defining the
correspondence between and edit script and an edge cover
of the induced graph. In that section, we also describe the

30

method for generating an edit script from an edge cover of
the induced graph. In Section 5, we describe how the cost
of an edit script is distributed over the edges of the corre-
sponding edge cover of the induced graph. In that section,
we also describe how this cost function is approximated by
deriving upper and lower bounds on the cost of an edge of
the induced graph, and how these bounds are used to prune
the induced graph. Since finding a minimum-cost edge cover
for a bipartite graph with fixed edge costs is a problem that
has been previously studied in the literature [PS82, Law76],
we do not present the details in this paper.

4 Edge Covers and Edit Scripts

In this section, we describe algorithm CtoS, which generates
an edit script between two trees, given an edge cover of their
induced graph. Before we can describe this algorithm, we
need to understand the relationship between an edit scripts
between two trees and edge covers of their induced graph.
Therefore, we first define the edge cover induced by an edit
script. That is, we describe how, given an edit script be-
tween two trees, we generate an edge cover of the induced
graph. (Note that this process is the reverse of the pro-
cess the algorithm CtoS performs. However, a definition
of this reverse process is needed for the description of the
algorithm.)

4.1 Edge Cover Induced by an Edit Script

In Section 3, we introduced the graph induced by two trees
Ti and Tz as the complete bipartite graph B = (U, V, U x V),
with U = Ni U {@} and V = NZ U (0) (where Ni and Nz
are the nodes of TI and Tz, respectively). Let E be an edit

script that transforms TI to Tz; that is, Tl f Tz. We now
define the edge cover K(E) induced by E. Intuitively, we ob-
tain K(E) as follows. Create a copy T3 of Tl, and introduce
an edge between each node in TI and its copy in T3. Apply
the edit script to T3, moving, copying, etc. the end-points of
the edges with the nodes they are attached to as nodes are
moved, copied, etc. Thus, when an a node n E TX is copied,
producing node n’, any edge [m, n] is split to produce an new
edge [m,n’]. The other edit operations are handled analo-
gously. Furthermore, an edge between the special nodes $
and 0 is added initially, and removed when it is no longer
needed to cover either $ or 8. Due to space limitations, we
illustrate the definition of the edge cover induced by an edit
script informally using an example; the formal definition is
in [CGM97].

B * CAll edges In, n+30] exist implicitly 3* ’
b

Figure 6: Example 4.1: the initial edge cover

Example 4.1 Consider the edit script from Example 2.1,
and the initial tree Tl from Figure 1. As described above,

our first step consists of creating a copy T3 of TI , and adding
an edge between each node of Tl and its counterpart in
T3. We also add the special nodes $ and 8, along with an
edge connecting them. The result of this step is depicted
in Figure 6. For clarity in presentation, the edges between
the nodes of TI and their counterparts in T3 are not shown
in Figure 6; instead, we encode these edges using the node
identifiers of TI and Tz. That is, as indicated in the figure,
imagine an edge [n, n + 301, Vn = 1.. . 10.

All edges [n, n+30] exist implicitly
6 33d

Figure 7: Example 4.1: the final edge cover

Our next step consists of applying the edit script from
Example 2.1 to the tree T3. To enable this application
of the edit script for Tl to T3, we change the node iden-
tifiers in the edit script from the identifiers of the nodes
of TI to those of T3, obtaining &i = (INS(41, g, 31, {39}),
MOV(~~, 36), CPY(~~, 31)). As a result of the INS operation,
a node with identifier 41 and label g is inserted as a child of
node 31, and node 37 is made its child. In addition, we add
an edge [$,41] to the induced edge cover. Next, consider
the action of the MOV operation, which moves node 32 to
become a child of node 37. This operation does not add any
new edges to the edge cover. (The existing edges [2,32] and
[3,33] continue to exist.) Finally, the CPY operation creates
a copy of the subtree rooted at node 36, and inserts this
copy as a child of node 31. In addition, the edges 17,421 and
[8,43] are added to the edge cover. The result is depicted in
Figure 7, (which also omits edges [n, n + 301, Vn = 1.. . 10
for clarity). Note that the transformed tree T3 is now iso-
morphic to the tree Tz in Example 2.1, so that essentially,
we now have an edge cover of the induced graph of TI and

Tz.

4.2 Using Edge Covers to Generate Edit Scripts

The goal of using an edge cover is that it should capture
the essential aspects of an edit script; that is, no important
information should be lost in going from an edit script to
the edge cover induced by it. However, there are certain edit
scripts for which this property does not hold. For example,
consider an edit script &s that inserts a node p as the parent
of ten siblings (children of the same parent) ral , . , . , nio , then
moves p to another location in the tree, and finally deletes
p. The node p is absent from both the initial tree and the
final tree. Therefore, an edge cover of the initial and final
trees contains no record of the temporary insertion of node
p. Thus, we have lost some information in going from & to
the edge cover.

Is the fact that our edge covers cannot capture edit scripts
like Ez a problem? On the one hand, &2 could be the mini-
mum cost edit script MH-DIFF is trying to find. For example,
say that insert, delete, and move operations all cost one unit.
The cost of & would then be the cost of one insert, plus the

31

cost of one move, plus the cost of one delete, for a total cost
of 3. If we do not use the “bulk move trick” that E2 uses,
we need to move each of ni, , ~10 individually, for a cost
of 10. Thus, &2 could be the mnumum cost edit script, and
if we rule it out, then MH-DIPF would miss it.

On the other hand, scripts like &2 do not represent trans-
formations that are meaningful or intuitive to an end user.
In other words, if a user saw Es, he would not understand
why node p was inserted, since it really has no function in
his application. True, the costs provided by the user are in-
tended to describe the desirability of edit operations, but if
we abuse these numbers we can end up with “tricky” scripts
like Es that are more confusing than helpful.

Another example of a potentially unintuitive edit script
is the following: Consider an edit script Es that moves a node
nl to become a child of another node n2, then makes several
copies of the subtree rooted at n2 (thus making copies of ni
as well), and finally deletes the original copy of ni. This
edit script moves ni to a place where it does not need to be
(under n2) only to generate free copies of ni.

The cause of the unintuitive nature of the edit scripts de-
scribed above is an interaction between different edit opera-
tions, which gives rise to a “compound” effect. For example,
in the edit script &s above, the effect of the move operation
is compounded because it acts on a node that was previously
inserted. Similarly, in edit script Es above, the effects of the
copy operations are compounded because they act on a sub-
tree into which a node was previously moved. Our approach
is to disallow such unintuitive compound effects.

A simple way of characterizing edit scripts that disallow
undesirable compound effects is to require edit operations to
occur in phases, and to order the phases appropriately. In
the following discussion, we use the names INS, DEL, etc. to
denote phases consisting of, respectively, INS operations, DEL
operations, etc. First, we require that the INS phase occur
after the DEL phase, so that an edit script cannot first insert
a node and then delete it. Next, we require the other edit
phases (UPD, MOV, CPY, and GLU) to occur after the DEL
phase (so that nodes operated on by these phases cannot
be later deleted), and before the INS phase (so that inserted
nodes cannot be operated on by these phases). Furthermore,
we require that the UPD (respectively, MOV) phase occur af-
ter the CPY phase and before the GLU phase, so that an edit
script cannot compound the effect of an UPD (respectively,
MOV) operation by copying the updated node (and similarly
for glues). These ordering constraints yield the following or-
der of edit phases: DEL, CPY, UPD, MOV, GLU, INS. (We chose
the relative order of the UPD and MOV phases arbitrarily.)
One additional restriction, not covered by the above order-
ing constraint, is the following: A node in a subtree operated
on by a CPY operation cannot be operated on by a GLU op-
eration. We call edit scripts that satisfy these restrictions
structured edit scripts. In the sequel, we consider only struc-
tured edit scripts. Structured edit scripts have the following
important property that allows us to consider only minimal
edge covers in the sequel. (A minimal edge cover is an edge
cover that is not a proper superset of any edge cover.)

Lemma 4.1 The edge cover induced by a structured edit
script is minimal.

The reader may observe that, in addition to disallowing
unintuitive compound effects, the above restrictions also dis-
allow some intuitive sequences of operations. For example,
a structured edit script cannot delete a node produced as a

result of a CPY operation. Therefore, a structured edit script
cannot copy a subtree containing 100 nodes if 99 of them are
needed, because it would be unable to delete the unwanted
copy of the 100th node. An analogous situation exists for
INS and GLU operations. Our algorithms [CGM97] actu-
ally do permit such deletions (called ghost deletions) after
copies, and insertions (called ghost insertions) before glues.
For similar reasons, we also permit certain move operations
to occur before the CPY phase. Furthermore, we allow a
move or copy operation to a destination that is currently
unavailable (e.g., because it is produced by a copy opera--
tion) to be “paused” until the destination becomes available.
Lemma 4.1 remains true under these weaker restrictions.

We now describe how, given a minimal edge cover I<
of the graph induced by trees TI and T2, we compute a
minimum-cost edit script corresponding to this edge cover.
As explained in Section 3, we also represent the edit oper-
ations of such an edit script as annotations on the affected
edges. Due to space constraints, we do not present the full
details of our algorithm CtoS (cover-to-script) in this paper,
and present instead a brief explanation of the basic ideas
behind the algorithm. The detailed algorithm is presented
in [CGM97].

The algorithm proceeds in phases that roughly reflect the
phases of a structured edit script described above. We refer
to edges belonging to the given edge cover I< as K-edges. We
say two nodes are matched to each other if there is a K-edge
connecting them. The first phase of the algorithms is the
delete phase, in which we generate an edit operation DEL(m)
for each node m that is matched to the special node 6. We
claim that any edit script that matches m to 8 must con-
tain this DEL operation, due to the following observations:
Firstly, any node matched to 8 is absent from the final tree.
Furthermore, there are only two ways in which a node can
be made to disappear: either it is deleted explicitly, or it is
glued to some other node. (We use here the fact that struc-
tured edit scripts cannot first glue a node to another and
then delete the second node.) However, the second method
will not result in m matching 8 in the edge cover induced by
the script; instead, m will match the node to which it was
glued. Therefore we can safely produce a DEL(~) operation
for all such nodes m.

The next phase of the algorithm handles copy operations.
In particular, it looks for sets two or more of K-edges inci-
dent on a common node m E TI . Note that from Lemma 4.1,
and the observation that minimal edge covers cannot con-
tain any path of length three, it follows that if e = [m,n]
is such an edge, there can be no other K-edge incident on
n. We call such a set of edges a flower with base m. This
set of edges represents copies of the node m. However, as
we have seen in Section 3, some of the copies of m could
be produced as a result of some ancestor of m being copied.
We call such copies free copies of m. Our algorithm con-
siders flowers in preorder of the base nodes. As copy oper-
ations are generated for some node m, we also keep track
of the number of free copies of nodes in the copied subtree.
Knowing the number of available free copies allows us to
determine exactly which flowers correspond to explicit copy
operations and which correspond to implicit (free) copies.
Furthermore, any unused free copies are nodes that need to
be deleted after the copy operation is performed. These are
the ghost deletions we introduced above. Finally, note that
a free copy may need to be moved to its final location; this
situation is easily detected by checking whether the parents
of the affected nodes match.

32

The update phase of the algorithm is straightforward,
and produces an update operation for each edge [m, n] such
that the labels of m and n differ. Since we are considering
only structured edit scripts, there is no way to avoid such
an update; in particular, “tricks” like updating a node and
then copying it are disallowed. The glue and delete phases of
the algorithm are analogous to the copy and insert phases,
respectively. The details are in [CGM97].

5 Finding the Edge Cover

In this section we describe how MH-DIFF finds a minimal edge
cover of the induced graph. The resulting cover will serve
as input to algorithm CtoS (Section 4). Our goal is to find
not just any minimal edge cover, but one that corresponds
to a minimum-cost edit script. Let us call such an minimal
edge cover the target cover.

Consider an edge e in our pruned induced graph. To get
to the target cover, MH-DIFF must decide whether e should
be included in the cover. To reach this decision, it would be
nice if MH-DIFF knew the “cost” of e. That is, if e remains in
the target cover, then it would be annotated (by algorithm
CtoS) with some operation, and we could say that the cost
of this operation is the cost of e. Unfortunately, we have a
“chicken and the egg problem” here: CtoS cannot run until
we have the target cover, and we cannot get the target cover
until we know the costs it will imply. To break the impasse,
our approach uses the following idea:

Instead of trying to compute the actual cost of e, we
compute an upper and lower bound to this cost. These
bounds can be computed without the knowledge of which
other edges are included in the target cover, and serve two
purposes: Firstly, they allow us to design pruning rules that
are used to conservatively eliminate unnecessary edges from
the induced graph. Secondly, after pruning, the bounds can
guide our search for the target cover.

As an enhancement, we actually use a variation on the
edge cost suggested above. The following example shows
that simply “charging” each annotation to the edge it is on
is not entirely “fair.” We are given a tree TI containing two
nodes, ni and n2 with the same label 2. Furthermore ni has
children tail and ni2 with labels a and b, respectively, and ns
has children n2i and n22 with labels c and d, respectively.
Suppose T2 is a logical copy of Tl. (That is, TI and TZ
are isomorphic.) Consider an edge cover that matches each
node in TI to its copy in T2 except that it “cross matches”
ni and n2 across the trees, as shown in Figure 8. Given this
edge cover, algorithm CtoS will produce a move operation
for each of the nodes nil, nis, nzi, and nss. However, these
move operations were caused not by any mismatching of the
nodes rail, ram, n21, or n22, but instead, by the mismatching
of ni and n2. Therefore it would be intuitively more fair to
charge these move operations to the edges responsible for
the mismatch, viz. [nl, ni] and [nz,ni]. To achieve this,
we use the following scheme: If e is annotated with INS,

DEL, or UPD in the target cover, we do charge e for this
operation. However, if e is annotated by MOV, CPY, or GLU,
then the parent of e, and not e is charged. We call the edge
costs computed in such a fashion fair costs, and define them
below:

~~~~~ 

’ : ------______-----___ I J ’ mo” ____ 
InO” % ____________________---- lmov 

Figure 8: Distributing edge costs fairly 

$1 An Edge-wise Cost Function 

Let K be an annotated minimal edge cover. For an edge 
e E K,ifthe annotation on e is MOV, WY, or GLU, let c=(e) 

denote the cost of that operation. If e is annotated with INS, 

DEL, or UPD, then let es(e) denote the cost of the operation. 
Furthermore, let E(m) be the set of edges in K that are 
incident on m, that is, E(m) = {[m,n] E I<}. Let C(m) be 
the set of the children of m. We then define the fair cost of 
each edge [m, n] E K as follows: 

clr([m, n]) = c,(m, n) 

+ q&q C C c4[m’74) 
rn’EC(rn) [m’,n’]ar 

+ q&J c c 4W~4) (1) 
dEC(72) [m’,n’]~Ir 

Note that this cost depends on I<, and thus is not a func- 
tion of e alone. The following lemma, proved in [CGM97], 
states that the above scheme of distributing the cost of an 
edge cover over its component edges is a sound one; that is, 
adding up the cost edge-wise yields the overall cost of the 
edge cover (i.e., the cost of the corresponding edit script). 

Lemma 5.1 If I< is an annotated, minimal edge cover of 
the graph induced by two trees, then c(K) = ceEIcc~(e). 

5.2 Bounds on Edge Costs 

Although Lemma 5.1 suggests a method of distributing the 
cost of an annotated edge cover (and thus an edit script) 
over the component edges, the cost of each edge depends on 
the other edges present in the edge cover, and is thus not 
directly useful for computing a minimum-cost edge cover. 
However, we use that distribution scheme to derive upper 
and lower bounds on the fair cost cK(e) of an edge e over 
all minimal edge covers I<. 

Intuitively, given that the cost of any UPD annotation on 
an edge is charged to that edge (by Equation l), a simple 
choice for the lower bound on the cost of an edge [m,n] is 
simply the cost c,(m, n) of updating the label m to that of n. 
However, we can do a little better. In some cases, selecting 
an edge [m, n] (as part of the edge cover being constructed) 
may force some of the children m’ of m to be moved to n. In 
particular, this happens for those children of m’ for which 
there is no edge that could possibly match m’ to a child of 
n. We call such moves forced moves. In cases where we can 
determine a forced move exists, the cost of a MOV is added to 
the lower bound cost. However, according to Equation 1 not 
all the cost of a forced move goes to edge [m, n]. In the worst 

33 



case, the number of edges incident on m, [E(m)], is large, 
leaving [m, n] with an insignificant contribution. However, 
if ]E(m)] is greater than 1, we know by Lemma 4.1 that 
II?(n)] = 1, so forced moves on the n side would contribute 
to [m, n]. Thus, we may add the minimum of the second and 
the third terms in Equation 1 to the lower bound function. 

Formally, let E be the set of edges in the induced graph of 
TI and Ts.~ We define the forced move cost, cmr(m’, n) of a 
node m’ E Tl with respect to another node n E Tz as follows: 
hf(m’, n) = cm, if $x’ E C(n) such that [m’,n’] E E, and 
0 otherwise. The cost cm~(m, n’) is defined analogously. 
We then define the lower bound fair cost, clb, of an edge as 
follows: 

Clb([m, n]) = Cu(m, n)+ 

+min 

1 

C cmf(m’, n), C cmr(m, n’) 

m’EC(m) n’G(n) 1 

To help us compute the upper bound, let us now define 
a conditional moue cost, c,,,~. Intuitively, cmc(m’, n) costs 
one MOV cost unless there is a partner of m’ that is a child 
of n. Formally, c,,,Jm’,n) = 0, if 3n’ E C(n) such that 
[m’,n’] E E, and cm otherwise. The cost c,,(n’,m) is de- 
fined analogously. Furthermore, define cw(m, rz) = c,(m, ra) 
if m and n are regular nodes, 0 if (m = @) A (n = e), ci 
if(m = $) A (n # e), and cd if (m # @) A (n = 0). 

Using reasoning similar to that used for deriving the 
lower bound cost above, we arrive at the following dehni- 
tion for the upper bound fair cost, cub, of an edge: 

hb([m, n]) = cw(m, n) 

+ f c (c=(lE(m’)l - 1) + c,,(m’, n)) 
m’G(m) 

+ 5 c (cg(lE(n’)l - 1) + c,,,?(n’, m)) 

n’G(n) 

Note that both c&(e) and c(b(e) can be computed by 
MH-DIFF without knowing the target cover. Furthermore, 
the following lemma, proved in [CGM97], states that the 
above definitions of c&(e) and clb(e), are upper and lower 
bounds, respectively, on the fair cost contribution cK(e) of 
edge e to any minimal edge cover I< that contains e. 

Lemma 5.2 Let B = (U, V, E) be the bipartite graph in- 
duced by trees TI and Tz. Let B’ = (U, V, E’), where 
E’ c E. Let K denote the collection of all minimal edge 
covers of B’. We then have the following inequalities: 

Clb(e) 5 g$cK(e) and Cub(e) 2 m;cK(e) 

5.3 Pruning Rules 

We now use the upper and lower bound functions for the 
cost of an edge as defined above to introduce the pruning 
rules we use to reduce the size of the induced graph of the 
two trees being compared. Let er = [m, n] be any edge in 

4As we will see later, although E initially includes all edges in the 
complete bipartite graph, the pruning of edges results in successive 
reduction of the size of E. 

the induced graph. Let e2 be any edge incident on m, and let 
es be any edge incident on n. Intuitively, our first pruning 
rules removes an edge with a lower bound cost that is so 
high that it is preferable to match each of its nodes using 
some other edge that has a suitably low upper bound cost. 

Pruning Rule 1 Let Ct = max{c,,c,,c,}. If clb(er) 2 
hb(e2) + hb(e3) + 2Ct then prune el. 

Example 5.1 To illustrate this rule, consider a tree Tl con- 
taining, among others, two childless nodes 1 (label f) and 2 
(label g). Similarly, T2 contains childless nodes 3 (label g) 
and 4 (label f), among others. Say the costs cm, cc, and cg 
are one unit each, while the update costs are cu(f,g) = 3, 
and c,,(f, f) = cu(g, g) = 0. Let us now consider if edge 
el = [1,3] can be pruned because edges es = [1,4] and 
es = [2,3] exist. Since the nodes have no children, it is easy 
to compute Clb(e1) = Cu(f7S) = 3, C”b(e2) = C”(f,f) = 0, 

and Cub(e3) = c,,(g,g) = 0. Since Ct = 1, we see that Prun- 
ing Rule 1 holds and el can be safely removed. The intuition 
is that in the worst case we can replace el by edges es and 
es. Using the latter edges could introduce at most the costs 
Cub(e2) and c&(es), plus the cost of two MOV, CPY, or GLU 

operations. The last factor can arise, for instance, if node 2 
ends up being matched not only to node 3 but to another 
node in T2. This means that node 2 needs to be copied, 
which would not have been necessary if we had kept edge 
el and not used es. Similarly, the removal of edge er may 
cause an extra glue operation for node 4. However, even in 
this worst case scenario, the costs would be less than the 
cost of updating the label of node 1 to that of node 2, so we 
can safely remove the [l, 21 edge. 

Our second pruning rule (already illustrated in Section 3) 
states that if it is less expensive to delete a node and insert 
another, we do not need to consider matching the two nodes 
to each other. More precisely, we state the following: 

PrUning Rule 2 If clb(er) > cd(m) + ci(fZ) then prune el. 

Note that the above pruning rules are simpler to apply if 
we let es and es be the minimum-cost edge incident on m and 
n, respectively. The following lemma, proved in [CGM97], 
tells us that the pruning rules are conservative: 

Lemma 5.3 Let Ep be the set of edges pruned by repeated 
application of Pruning Rules 1 and 2. Let Kr be any mini- 
mal edge cover of the graph B. There exists a minimal edge 
cover I(z such that (1) K2nEp = 0, and (2) C(I(2) < C(Kr). 

The pruning phase of our algorithm consists of repeat- 
edly applying Pruning Rules 1 and 2. Note that the absence 
of edges raises the lower bound function, and lowers the 
upper bound function, thus possibly causing more edges to 
get pruned. Our algorithm updates the cost bounds for the 
edges affected by the pruning of an edge whenever the edge 
is pruned. By maintaining the appropriate data structures, 
such a cost-update step after an edge is pruned can be per- 
formed in O(Zogn) time, where n is the number of nodes in 
the induced graph. 

5.4 Computing a Min-Cost Edge Cover 

After application of the pruning rules described above, we 
obtain a pruned induced graph, containing a (typically small) 

34 



subset of the edges in the original induced graph. In favor- 
able cases, the remaining edges contain only one minimal 
edge cover. However, typically, there may be several mini- 
mal edge covers possible for the pruned induced graph. We 
now describe how we select one of these minimal edge covers. 

We first approximate the fair cost of every edge e that 
remains after pruning by its lower bound e&,(e). (We could 
have also use the upper bound, or an average of both bounds, 
since this is only an estimate.) Then, given these con- 
stant estimated costs, we compute a minimum-cost edge 
cover by reducing the edge cover problem to a bipartite 
weighted matching problem, as suggested in [PS82]. Since 
the weighted matching problem can be solved using stan- 
dard techniques, we do not present the details in this paper, 
noting only that given a bipartite graph with n nodes and e 
edges, the weighted matching problem can be solved in time 
O(ne). For our application, e is the number of edges that 
remain in the induced graph after pruning. 

6 Implementation and Performance 

In this section, we describe our implementation of MH-DIFF, 

and discuss its analytical and empirical performance. Fig- 
ure 9 depicts the overall architecture of our implementa- 
tion, with rectangles representing the modules (numbered, 
for reference) of the program, and other shapes represent- 
ing data. Given two trees TI and T2 as input, Module 1 
constructs the induced graph (Section 3.1). This induced 
graph is next pruned (Module 2) using the pruning rules 
of Section 5.3 to give the pruned induced graph. In Mod- 
ule 2, the update cost for each edge in the induced graph 
is computed using the domain-dependent comparison func- 
tion for node labels (Section 2.2). The next three modules 
together compute a minimum-cost edge cover of the pruned 
induced graph using the reduction of the edge cover prob- 
lem to a weighted matching problem [PS82]. That is, the 
pruned induced graph is first translated (by Module 3) into 
an instance of a weighted matching problem. This weighted 
matching problem is solved using a package (Module 4) 
[Rot] based on standard techniques [PS82]. The output of 
the weighted matching solver is a minimum-cost matching, 
which is translated by Module 5 into I(o, a minimum-cost 
edge cover of the pruned induced graph. Next, Module 6 
uses the minimum-cost edge cover computed, to produce 
the desired edit script, using the method described in Sec- 
tion 4.2). 

(6) 
Cover to 

Script 
I 

Figure 9: System Architecture 

Recall that since we use a heuristic cost function to com- 
pute a minimum-cost edge cover, the edge cover produced 
by our program, and hence the edit script may not be the 
optimal one. We have also implemented a simple search 
module that starts with minimum-cost edge cover I{0 (see 
Figure 9) computed by our program and explores its neigh- 
borhood of minimal edge covers in an effort to find a better 
solution. The search proceeds by first exploring minimal 
edge covers that contain only one edge not in I<*. Next, 
we explore minimal edge covers containing two edges not in 
I(o, and so on. The intuition is that we expect the optimal 
solution to be “close” to the initial solution I(o. Although, 
in the worst case, such an exploration may be extremely 
time-consuming, note that as a result of pruning edges, the 
search space is typically much smaller than the worst case. 
Due to space constraints, we do not describe the details of 
this search phase in this paper. 

We have used our implementation to compute the differ- 
ences between query results as part of the Tsimmis and C3 
projects at Stanford [CGMH+94, WU95]. These projects 
use the OEM data model, which is a simple labeled-object 
model to represent tree-structured query results. In par- 
ticular, we have run our system on the output of Tsimmis 
queries over a bibliographic information source that con- 
tains information about database-related publications in a 
format similar to BibTeX. Since the data in this information 
source is mainly textual, we treat all labels as strings. For 
the domain-dependent label-update cost function, we use 
a weighted character-frequency histogram difference scheme 
that compares strings based on the number of occurrences of 
each character of the alphabet in them. For example, con- 
sider comparing the labels “foobar” and “crowbar.” The 
character-frequency histograms are, respectively, (Q : 1, b : 
l,f:l,o:2,r:l) and (a:l,b:l,c:l,o:l,r:2,zu:l). The dif- 
ferencehistogram is (c:-l,f:l,o:l,r:-l,w:-1). Adding 
up the magnitudes of the differences gives us 5, which we 
then normalize by the total number of characters in the 
strings (13), and scale by a parameter (currently 5), to get 
the update cost (5/13) * 5 = 1.9. 

Let us now analyze the running time of our program. Let 
n be the total number of nodes in both input trees TI and T2. 
Constructing the induced graph (Module 1, in Figure 9) in- 
volves building a complete bipartite graph with O(n) nodes 
on each side. We also evaluate the domain-dependent label- 
comparison function for each pair of nodes, and store this 
cost on the corresponding edge. Thus, building the in- 
duced graph requires time O(kn’), where k is the cost of 
the domain-dependent comparison function. Next, consider 
the pruning phase (Module 2). By maintaining a priority 
queue (based on edge costs) of edges incident on each node 
of the induced graph, the test to determine whether an edge 
may be pruned can be performed in constant time. If the 
edge is pruned, removing it from the induced graph requires 
constant time, while removing it from the priority queues 
at each of its nodes requires O(Zogn) time. When an edge 
[m, ra] is pruned, we also record the changes to the costs 

Am,p(n)), kc (n,p(m)), cmf(m,dn)), =dcmf(n,p(m)), 
which can be done in constant time. Thus, pruning an edge 
requires O(Zogn) time. Since at most O(n2) are pruned, the 
total worst case cost of the pruning phase is O(n210gn). Let 
e be the number of edges that remain in the induced graph 
after pruning. The minimum-cost edge cover is computed in 
time O(ne) by Modules 3, 4, and 5. The computation of the 
edit script from the minimum-cost edge cover can be done 
in O(n) time by Module 6. (Note that the number of edges 

35 



in a minimal edge cover is always O(n).) 

The number of edges that remain in the induced graph 
after pruning (denoted by e above) is an important metric 
for three main reasons. Firstly, as seen above, a lower num- 
ber of edges results in faster execution of the minimum-cost 
edge cover algorithm. Secondly, a smaller number of edges 
decreases the possibility of linding a suboptimal edge cover, 
since there are fewer choices that need to be made by the 
algorithm. Thirdly, having a smaller number of edges in the 
induced graph reduces exponentially the size of the space of 
candidate minimal edge covers that the search module needs 
to explore. 

:” [+ . . . . . . ;.+..; . . . . . . ;“..I 
0 50 100 150 200 

Number of nodes (n) 
250 

Figure 10: Effectiveness of pruning 

Given the importance of the metric e, we have conducted 
a number of experiments to study the relationship between e 
and n. We start with four “input” trees representing actual 
results of varying sizes from our Tsimmis system. For each 
input tree, we generate a batch of “output” trees by applying 
a number of random edits. The number of random edits is 
either 10% or 20% of the number of nodes in the input tree. 
Then for each output tree, we run MH-DIFF on it and its 
original input tree. The results are summarized by the graph 
in Figure 10. The horizontal axis indicates the total number 
of nodes in the two trees being compared (and hence, in the 
induced graph). The vertical axis indicates the number of 
edges that remain after pruning the induced graph. Note 
that the ideal case (best possible pruning) corresponds to 
e = [n/2], since we need at least [n 2] edges to cover n 
nodes, whereas the worst case is e = n (I (no pruning at all). 
For comparison, we have also plotted e = n/2 and e = n2 
on the graph in Figure 10. We observe that the relationship 
between e and n is close to linear, and that the observed 
values of e are much closer to n/2 than to n2. 

Note that in Figure 10 we have plotted the results for 
two different values of d, the percentage of random edit op 
erations applied to the input tree. We see that, for a given 
value of n, a higher value of d results in a higher value of e, 
in general. We note that some points with a higher d value 
seem to have a lower value of e than the general trend. This 
is because applying d random edits is not the same as hav- 
ing the input and output trees separated by d edits, due 
to the possibility of redundant edit operations. Thus, some 
data points, even though they were obtained by applying d 
random edits, actually correspond to fewer changes in the 
tree. 

We have also studied the quality of the initial solution 
produced by MH-DIFF. In particular, we are interested in 
finding out in what fraction of cases our method produces 
suboptimal initial solutions, and by how much the cost of 
the suboptimal solution exceeds that of the optimal. Given 
the exponential (in e) size of the search space of minimal 
edge covers of the induced graph, it is not feasible to try 
exhaustive searches on large datasets. However, we have 
exhaustively searched the space of minimal edge covers, and 
corresponding edit scripts, for smaller datasets. We ran 50 
experiments, starting with an input tree Ti derived as in 
the experiments for e above, and using 6 randomly generated 
edit operations to generate an output tree.5 We searched the 
space of minimal edge covers of the pruned induced graph 
exhaustively for these cases, and found that the MH-DIFF 

initial solution differed from the minimum-cost one in only 
2 cases out of 50. That is, in 96% of the cases MH-DIFF 

found the minimum cost edit script, and of course it did 
this in much less time than the exhaustive method. In the 
two cases where MH-DIFF missed, the resulting script cost 
about 15% more that the minimum cost possible. 

7 Related Work 

The general problem of detecting changes from snapshots of 
data has been studied before from different angles. For ex- 
ample, [WF74] defines a string-to-string correction problem 
as the problem of finding the best sequence of insert, delete, 
and update operations that transform one string to another. 
The problem is developed further in [Wag75], which adds 
the “swap” operation to the list of edit operations. These 
papers also introduce the structure of a “trace” or a match- 
ing between the characters of the strings being compared 
as a useful tool for computing an edit script. A simpler 
change detection problem for strings, using only insertions 
and deletions as edit operations has been studied extensively 
[Mye86, WMGSO]. The idea of a longest common subse- 
quence replaces the idea of a trace in this simpler problem. 
A variant of the algorithm presented in [Mye86] for comput- 
ing the longest common subsequence is implemented in the 
gnudig [HHS+] program. All these algorithms work with 
strings, that is, with flat-file, or relational data, and are not 
suitable for computing changes in structured data. 

In [ZS89, SZ90], the authors define a change detection 
problem for ordered trees, using insertion, deletion, and label- 
update as the edit operations, observing its added difficulty 
compared to the equivalent problem for strings; they also 
present an efficient dynamic-programming based algorithm 
to solve that problem. A proof of the n/P-hardness of a simi- 
lar change detection problem (using insertion, deletion, and 
label-update) for unordered trees is presented in [ZWS95], 
which also presents an algorithm for a restricted version of 
the change detection problem. In [SWZS94], the authors 
present an enumerative (exponential time) algorithm for 
the change detection problem for unordered trees, as well 
as heuristic algorithms based on search techniques such as 
simulated annealing. An important assumption made by 
the algorithms in [ZS89, SZ9O,ZWS95, SWZS94] is that the 
cost of updating any label to any other label is always less 
than the cost of deleting a node with the old label and in- 
serting a node with the new label. While this restriction 
is reasonable for some domains, it does not always lead to 

51n these preliminary experiments, we used a slightly different VW- 
sion of the algorithm described in Section 4.1; we believe that the 
differences do not impact the results significantly. 

36 



intuitive results. For example, consider two trees with the 
same structure, but completely different labels on the nodes 
(e.g., two trees representing different query results, but with 
a similar structure). Assuming the cost of label update is al- 
ways lower than the cost of the corresponding insertion and 
deletion wiII result in an edit script that simply updates all 
the labels in the trees. While this is technically sound, it is 
not the semantically desirable result for this example. 

In [CRGMW96] we defined a variant of the change de- 
tection problem for ordered trees, using subtree moues as 
an edit operation in addition to insertions, deletions, and 
updates, and presented an efficient algorithm for solving 
it. That algorithm uses domain characteristics to find a 
solution efficiently. A major drawback of the algorithm in 
[CRGMW96] is that it assumes that the number of dupli- 
cates (or near duplicates) in the labels found in the input 
trees is very small. Another drawback of of the algorithm 
in [CRGMW96] is that it assumes each node of the input 
trees has a special tag that describes its semantics. (For ex- 
ample, an ordered tree representing a document may have 
tags “paragraph,” “section,” etc.) Furthermore, that algo- 
rithm assumes the existence of a total order <t over these 
tags such that a node with tag tl cannot be the child of a 
node with tag t2 unless tl 5 t2. While these assumptions 
are reasonable in a text comparison scenario, there are many 
domains in which they do not hold. 

The work presented in this paper differs from previous 
work in several important ways. Firstly, we detect the change 
detection problem for unordered trees, which is inherently 
harder than the similar problem for ordered trees. Secondly, 
we consider a rich set of edit operations, including copy and 
move operations, that make the edit script computed more 
meaningful and intuitively usable. Furthermore, we do not 
assume that the nodes of the input trees are “tagged” in a 
manner required by the algorithm in [CRGMW96], nor do 
we assume the absence of duplicates (or near duplicates) in 
the labels of the nodes in the input trees. Finally, we do 
not assume that the cost of updating any label to any other 
label is always less than the cost of deletion and insertion. 

8 Conclusion 

We have described the need for computing semantically mean- 
ingful changes in structured data. We have introduced op- 
erations such as subtree copy and subtree move that allow 
us to describe changes to structured data more meaningfully 
than is possible by using only the traditional insert, delete, 
and update operations. We have formally defined the prob- 
lem of computing a minimum-cost edit script, consisting of 
these operations, between two trees. To solve this problem, 
we have presented an algorithm that is based on represent- 
ing an edit script between two trees as an edge cover of a 
bipartite graph induced by the trees. We have also studied 
the the performance of our algorithm both analytically and 
empirically. The experimental results, although preliminary, 
are very encouraging. 

References 

[CGM97] S. Chawathe and H. Garcia-Molina. Meaningful 
change detection in structured data. Available at URL 

http: //www-db. stanf ord. edu, 1997. Extended version. 

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Ham- 
mer, K. Ireland, Y. Papakonstantinou, J. Ullman, and 
J. Widom. The Tsimmis project: Integration of het- 
erogeneous information sources. In Proceedings of 100th 
Anniversary Meeting of the Information Processing So- 
ciety of Japan, pages 7-18, Tokyo, Japan, October 1994. 

[CRGMW96] S. Chawathe, A. Rajaraman, H. Garcia- 
Molina, and J. Widom. Change detection in hierarchi- 
cally structured information. In Proceedings of the A CM 
SIGMOD International Conference on Management of 

Data, pages 493-504, Mont&al, QuCbec, June 1996. 

[HHS+] M. Haertel, D. Hayes, R. Stallman, L. Tower, P. Eg- 
gert., and W. Davison. The GNU diff program. Texinfo 
system documentation. Available by anonymous FTP 

from prep.ai.mit.edu. 

[Law761 E. Lawler. Combinatorial Optimization: Networks 
and Matroids. Holt, Rinehart and Winston, 1976. 

[LGM96] W. Labio and H. Garcia-MoIina. Efficient snap- 
shot differential algorithms for data warehousing. In 
Proceedings of the International Conference on Very 
Large Data Bases, Bombay, India, September 1996. 

[MyegG] E. Myers. An O(ND) difference algorithm and its 
variations. Algoritlamica, 1(2):251-266, 1986. 

[PS82] C. Papadimitriou and K. Steiglitz. Combinatorial 
Optimization. Prentice-Hall, 1982. 

[Rot] E. Rothberg. The wmatch program for find- 
ing a maximum-weight matching for undirected 
graphs. Live OR collection. Available at URL 

http://www.orsoc.org.uk. 

[SWZS94] D. Shasha, J. Wang, K. Zhang, and F. Shih. 
Exact and approximate algorithms for unordered tree 
matching. IEEE Transactions on Systems, Man, and 
Cybernetics, 24(4):668-678, April 1994. 

[SZ90] D. Shasha and K. Zhang. Fast algorithms for the 
unit cost editing distance between trees. Journal of Al- 
gorithms, 11:581-621, 1990. 

[Wag751 R. Wagner. On the complexity of the extended 
string-to-string correction problem. In Seventh ACM 
Symposium on the Theory of Computation, 1975. 

[WF74] R. Wagner and M. Fischer. The string-to-string 
correction problem. Journal of the Association of Com- 
puting Machinery, 21(1):168-173, January 1974. 

[WMGSO] S. Wu, U. Manber, and G.Myers. An O(NP) 
sequence comparison algorithm. Information Processing 
Letters, 35:317-323, September 1990. 

[WU95] J. Widom and J. Ullman. The C3 project: Changes, 
consistency, and configurations in heterogeneous dis- 
tributed information systems. Unpublished manuscript; 
available at UFU http: //www-db. stanf ord.edu, 1995. 

[ZS89] K. Zhang and D. Shasha. Simple fast algorithms for 
the editing distance between trees and related problems. 
SIAM Journal of Computing, 18(6):1245-1262, 1989. 

[ZWS95] K. Zhang, J. Wang, and D. Shasha. On the edit- 
ing distance between undirected acyclic graphs. Inter- 

national Journal of Foundations of Computer Science, 
1995. 

37 


