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a b s t r a c t 

The Adolescent Brain Cognitive Development (ABCD) Study is the largest single-cohort prospective longitudinal 
study of neurodevelopment and children’s health in the United States. A cohort of n = 11,880 children aged 9–10 
years (and their parents/guardians) were recruited across 22 sites and are being followed with in-person visits on 
an annual basis for at least 10 years. The study approximates the US population on several key sociodemographic 
variables, including sex, race, ethnicity, household income, and parental education. Data collected include assess- 
ments of health, mental health, substance use, culture and environment and neurocognition, as well as geocoded 
exposures, structural and functional magnetic resonance imaging (MRI), and whole-genome genotyping. Here, we 
describe the ABCD Study aims and design, as well as issues surrounding estimation of meaningful associations 
using its data, including population inferences, hypothesis testing, power and precision, control of covariates, 
interpretation of associations, and recommended best practices for reproducible research, analytical procedures 
and reporting of results. 

1. Introduction 

The Adolescent Brain Cognitive Development SM (ABCD) Study is 
the largest single-cohort long-term longitudinal study of neurodevelop- 
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ment and child and adolescent health in the United States. The study 
was conceived and initiated by the United States’ National Institutes 
of Health (NIH), with funding beginning on September 30, 2015. The 
ABCD Study® collects observational data to characterize US population 
trait distributions and to assess how biological, psychological, and en- 
vironmental factors (including interpersonal, institutional, cultural, and 
physical environments) can relate to how individuals live and develop 
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in today’s society. From the outset, the NIH and ABCD scientific inves- 
tigators were motivated to develop a baseline sample that reflected the 
sociodemographic variation present in the US population of 9–10 year- 
old children, and to follow them longitudinally through adolescence and 
into early adulthood. 

The ABCD Study was designed to address some of the most im- 
portant public health questions facing today’s children and adolescents 
( Volkow et al., 2018 ). These questions include identifying factors lead- 
ing to the initiation and consumption patterns of psychoactive sub- 
stances, substance-related problems, and substance use disorders as well 
as their subsequent impact on the brain, neurocognition, health, and 
mental health over the course of adolescence and into early adulthood. 
More broadly, a large epidemiologically informed longitudinal study be- 
ginning in childhood and continuing on through early adulthood will 
provide a wealth of unique data on normative development, as well as 
environmental and biological factors associated with variation in devel- 
opmental trajectories. This broader perspective has led to the involve- 
ment of multiple NIH Institutes that are stakeholders in the range of 
health outcomes targeted in the ABCD design. (Information regarding 
funding agencies, recruitment sites, investigators, and project organiza- 
tion can be obtained at https://abcdstudy.org ). 

Population representativeness, or more precisely, absence of uncor- 
rected selection bias in the subject pool, is important in achieving exter- 
nal validity, i.e., the ability to generalize specific results of the study to 
US society at large. As described below, the ABCD Study attempted to 
match the diverse US population of 9–10 year-old children on key de- 
mographic characteristics. However, even with a largely representative 
sample, failure to account for key confounders can affect internal valid- 
ity, i.e., the degree to which observed associations accurately reflect the 
effects of underlying causal mechanisms. Moreover, it is crucial that the 
study collects a rich array of variables that may act as moderators or 
mediators, including biological and environmental variables, in order 
to aid in identifying potentially causal pathways of interest, to quan- 
tify individualized risk for (or resilience to) poor outcomes, and to in- 
form public policy decisions. External and internal validity also depend 
on assessing the impact of random and systematic measurement error, 
implementing analytical methods that incorporate relevant aspects of 
study design, and emphasizing robust and replicable estimation of asso- 
ciations. 

The ABCD Study primary aims are given in the Supplementary Ma- 
terials (SM) Section S.1. We describe the study design and outline an- 
alytic strategies to address the primary study aims, including worked 
examples, with emphasis on approaches that incorporate relevant as- 
pects of study design ( Section 2 : Study Design; Section 3 : Population 
Weighting). We emphasize the impact of sample size on the precision of 
association estimates and thoughtful control of covariates in the context 
of the large-scale population neuroscience data produced by the ABCD 
Study ( Section 4 : Hypothesis Testing and Power; Section 5 : Effect Sizes; 
Section 6 : Control and Confounding Variables), and we briefly outline 
state-of-the-field recommendations for promoting reproducible science 
(Section SM.5) and best practices for statistical analyses and reporting 
of results using the ABCD Study data (Section SM.6). For readability, 
more technical subject matter is also largely left to SM sections. 

2. Study design 

The ABCD Study is a prospective longitudinal cohort study of US chil- 
dren born between 2006 and 2008. A total cohort of 𝑛 = 11 , 880 children 
aged 9–10 years at baseline (and their parents/guardians) was recruited 
from 22 sites (with one site no longer active) and are being followed for 
at least ten years. Eligible children were recruited from the household 
populations in defined catchment areas for each of the study sites dur- 
ing the roughly two-year period beginning September 2016 and ending 
in October 2018. 

2.1. Recruitment 

Within study sites, consenting parents and assenting children were 
primarily recruited through a probability sample of public and private 
schools augmented to a smaller extent by special recruitment through 
summer camp programs and community volunteers. ABCD employed 
a probability sampling strategy to identify schools within the catch- 
ment areas as the primary method for contacting and recruiting eligible 
children and their parents. This method has been used in other large 
national studies (e.g., Monitoring the Future ( Bachman et al., 2011 ); 
the Add Health Study ( Chantala and Tabor, 1999 ); the National Co- 
morbidity Replication-Adolescent Supplement ( Conway et al., 2016 ); 
and the National Education Longitudinal Studies ( Ingels et al., 1990 )). 
Twins at four “twin-hub ” sites were recruited from birth registries (see 
( Garavan et al., 2018 ; Iacono et al., 2017 ) for participant recruitment 
details). A minority of participants were recruited through non-school- 
based community outreach and word-of-mouth referrals. 

2.2. Inclusion criteria 

Across recruitment sites, inclusion criteria consisted of being in the 
required age range and able to provide informed consent (parents) and 
assent (child). Exclusions were minimal and were limited to lack of En- 
glish language proficiency in the children, the presence of severe sen- 
sory, intellectual, medical or neurological issues that would impact the 
validity of collected data or the child’s ability to comply with the pro- 
tocol, and contraindications to MRI scanning ( Garavan et al., 2018 ). 
Parents must be fluent in either English or Spanish. 

2.3. Measures 

Measures collected in the ABCD Study include a neurocognitive bat- 
tery ( Luciana et al., 2018 ; Thompson et al., 2019 ), mental and physical 
health assessments ( Barch et al., 2018 ), measures of culture and envi- 
ronment ( Zucker et al., 2018 ), biospecimens ( Uban et al., 2018 ), struc- 
tural and functional brain imaging ( Casey et al., 2018 ; Hagler et al., 
2018 ), geolocation-based environmental exposure data, wearables and 
mobile technology ( Bagot et al., 2018 ), and whole genome genotyping 
( Loughnan et al., 2020 ). Many of these measures are collected at in- 
person annual visits, with brain imaging collected at baseline and at 
every other year going forward. A limited number of assessments are 
collected in semi-annual telephone interviews between in-person visits. 
Data are publicly released on an annual basis through the NIMH Data 
Archive (NDA, https://nda.nih.gov/abcd ). Fig. 1 graphically displays 
the measures that have been collected as part of the ABCD NDA 3.0. 
Release. Fig. 2 depicts the planned data collection and release schedule 
over the initial 10 years of the study. 

2.4. Sociodemographics 

ABCD sample baseline demographics (from NDA Release 2.0.1, 
which contains data from 𝑛 = 11 , 879 subjects) are presented in Table 1 , 
along with a comparison to the corresponding statistics from the Amer- 
ican Community Survey (ACS). The ACS is a large probability sample 
survey of US households conducted annually by the US Bureau of Census 
and provides a benchmark for selected demographic and socioeconomic 
characteristics of US children aged 9–10 years. The 2011–2015 ACS Pub- 
lic Use Microsample (PUMS) file provides data on over 8000,000 sample 
US households. Included in this five-year national sample of households 
are 376,370 individual observations for children aged 9–10 and their 
households. 

With some minor differences, the unweighted distributions for the 
ABCD baseline sample closely match the ACS-based national estimates 
for demographic characteristics including age, sex, and household size. 
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Fig. 1. ABCD Study Assessments for NDA 2.0.1 
Release Data. 

The general concordance of the samples can be attributed in large part 
to three factors: 1) the inherent demographic diversity across the ABCD 
study sites; 2) stratification (by race/ethnicity) in the probability sam- 
pling of schools within sites; and 3) demographic controls employed 
in the recruitment by site teams. Likewise, the unweighted percent- 
ages of ABCD children for the most prevalent race/ethnicity categories 
are an approximate match to the ACS estimates for US children age 
9 and 10. Collectively, children of Asian, American Indian/Alaska Na- 
tive (AIAN) and Native Hawaiian/Pacific Islander (NHPI) ancestry are 
under-represented in the unweighted ABCD data (3.2%) compared with 
ACS national estimates (5.9%). This outcome, which primarily affects 
ABCD’s sample of Asian children, may be due in part to differences in 
how the parent/caregiver of the child reports multiple race/ethnicity 
ancestry in ABCD and the ACS. 

3. Population inferences 

The ABCD recruitment effort worked very hard to maintain similar- 
ity of the ABCD sample and the US population with respect to sex and 
race/ethnicity of the children in the study. The predominantly proba- 
bility sampling methodology for recruiting children within each study 
site was intended to randomize over confounding factors that were not 
explicitly controlled (or subsequently reflected in the population weight- 
ing). Nevertheless, school consent and parental consent were strong 
forces that certainly may have altered the effectiveness of the random- 
ization over these uncontrolled confounders. 

3.1. Population weighting 

The purpose of population weighting is to control for specific 
sources of selection bias and restore unbiasedness to descriptive and 

analytical estimates of the population characteristics and relationships 
( Heeringa et al., 2017 ). Briefly, construction of the population weights 
required identification of a key set of demographic and socioeconomic 
variables for the children and their households that are measured in 
both the ABCD Study and in the ACS household interviews. For the 
ABCD eligible children, the common variables include 1) age; 2) sex; 
and 3) race/ethnicity. For the child’s household, additional variables 
include: 4) family income; 5) family type (married parents, single par- 
ent); 6) household size 7) parents’ work force status (family type by 
parent employment status); 8) Census Region. A multiple logistic re- 
gression model using these variables was then fit to the concatenated 
ACS and ABCD data to predict study membership. The construction 
of the population weights for the ABCD Study is described in detail 
in Heeringa and Berglund (2020) ( Heeringa and Berglund, 2020 ). R 
scripts for computing the ABCD population weights and for applying 
them in analyses are available at https://github.com/ABCD-STUDY/ 
abcd _ acs _ raked _ propensity . The population weights are available in the 
NDA data releases 2.0.1 and 3.0. 

3.2. Recommendations 

Heeringa and Berglund (2020) ( Heeringa and Berglund, 2020 ) 
present regression analyses with and without using the population 
weights. Although it is important not to over-generalize from a small 
set of comparisons to all possible analyses of the ABCD data, the re- 
sults described therein lead to recommendations for researchers who 
are analyzing the ABCD baseline data. First, unweighted analysis may 
result in biased estimates of descriptive population statistics. The po- 
tential for bias in unweighted estimates from the ABCD data is strongest 
when the variable of interest is highly correlated with socioeconomic 
variables including family income, family type and parental work force 
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Fig. 2. ABCD Data Collection and NDA Release Schedule. 

participation. Second, for regression models of the ABCD baseline data, 
an unweighted analysis using mixed-effects models (e.g., site, family, 
individual) is the preferred choice. Presently, there is no empirical ev- 
idence from comparative analyses that methods for multi-level weight- 
ing ( Rabe-Hesketh and Skrondal, 2006 ) will improve the accuracy or 
precision of the model fit, although additional research on this topic is 
ongoing. 

3.3. Example: Application to baseline brain volumes 

As a demonstration of the implications of the weighting strategy em- 
ployed in the ABCD Study, weighted and unweighted means and stan- 
dard errors for ABCD baseline brain morphometry - volumes of cortical 
Desikan parcels ( Desikan et al., 2006 ) - are presented in Table 2 . Missing 
observations were first imputed using the R package mice ( van Buuren 
and Groothuis-Oudshoorn, 2011 ) before applying weights to the com- 
pleted sample. Differences between unweighted and weighted means are 
quite small in the baseline sample in this case. As longitudinal MRI data 
become available in ABCD (starting with the second post-baseline an- 
nual follow-up visit), population-valid mean trajectories of brain-related 
outcomes will also be computable using a similar population weighting 
scheme, also allowing for characterization of variation of trajectories 
from the population mean. 

4. Hypothesis testing and power 

Developing an operational approach to evaluate the meaningfulness 
of research findings has been a subject of consistent debate throughout 

the history of statistics ( Stigler, 1986 ). Even with the continued efforts 
to synthesize systems of statistical inference ( Efron and Hastie, 2016 ), 
the resolution of this issue is unlikely to occur any time soon. Most neu- 
roscientists continue to work within the context of the classical frequen- 
tist null-hypothesis significance testing (NHST) paradigm ( Efron, 1998 ; 
Lehmann, 1993 ), although non-frequentist approaches (e.g. Bayesian, 
machine learning prediction ( Efron, 2013 ; Efron, 2020 )) are increas- 
ingly common and may be more appropriate for large datasets like the 
ABCD Study. 

Despite growing enthusiasm for these alternatives, p-values continue 
to be important data points in the presentation of results in the be- 
havioral and neurosciences. The NHST p-value “…is the probability 
under a specified statistical model that a statistical summary of the 
data…would be equal to or more extreme than its observed value ”
( Wasserstein and Lazar, 2016 ). The utility of NHST and the arbitrariness 
of the 0 . 05 significance threshold has been debated extensively ( Gelman, 
2018 ; Wasserstein and Lazar, 2016 ; Nickerson, 2000 ; Harlow et al., 
2013 ). While we will not relitigate these issues here, we will at- 
tempt to address how best to present statistical evidence that lever- 
ages the ABCD Study’s large sample size (affecting statistical power), 
population sampling frame, and rich longitudinal assessment proto- 
col to enable meaningful and valid insights into child and adolescent 
neurodevelopment. 

4.1. Power 

Statistical power in the NHST framework is defined as the probabil- 
ity of rejecting a false null hypothesis. Power is determined by three 
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Table 1 
ABCD Baseline and ACS 2011–2015 Demographic Characteristics. 

Characteristic Category ABCD ( n = 11,879) ACS 2011–2015 

% N % 

Population Total 100 8211,605 100 

Age 9 52.3 4074,807 49.6 

10 47.8 4136,798 50.4 

Sex Male 52.2 4205,925 51.2 

Female 47.8 4005,860 48.8 

Race/Ethnicity NH White 52.2 4305,552 52.4 

NH Black 15.1 1101,297 13.4 

Hispanic 20.4 1973,827 24.0 

Asian, AIAN, NHPI 3.2 487,673 5.9 

Multiple 9.2 343,256 4.2 

Family Income < $25k 16.1 1762,415 21.5 

$25k - $49k 15.1 1784,747 21.7 

$50k - $74k 14.0 1397,641 17.0 

$75k - $99k 14.1 1023,127 12.5 

$100k - $199k 29.5 1685,036 20.5 

$200k + 11.2 558,639 6.8 

Family Type Married Parents 73.4 5426,131 66.1 

Other Family Type 26.6 2785,474 33.9 

Parent Employment Married, 2 in LF 50.2 3353,572 40.8 

Married, 1 in LF 21.9 1949,288 23.7 

Married, 0 in LF 1.3 156,807 1.9 

Single, in LF 21.1 2174,365 26.5 

Single, Not in LF 5.4 577,573 7.0 

Region Northeast 16.9 1336,183 16.3 

Midwest 20.4 1775,723 21.6 

South 28.3 3117,158 38.0 

West 34.4 1982,541 24.1 

Household Size 2 to 3 17.3 1522,216 18.5 

4 33.5 2751,942 33.5 

5 24.9 2085,666 25.4 

6 14.0 1025,285 12.5 

7 + 10.3 826,496 10.1 

LF = labor force. 
ACS = American Community Survey. 

factors: 1) the significance level 𝛼; 2) the magnitude of the population 
parameter; and 3) the accuracy (precision and bias) of the model es- 
timates. Increasing power while maintaining a specified Type I error 
rate depends largely on obtaining more precise association parameter 
estimates from improved study designs, more efficient statistical meth- 
ods, and, importantly, increasing sample size ( Rothman et al., 2008 ; 
Button et al., 2013 ; Hong and Park, 2012 ). 

The ABCD Study has a large sample compared to typical neurode- 
velopmental studies, so much so that one might expect even very small 
associations to be statistically significant. In our experience, not all as- 
sociations in the ABCD Study are guaranteed to have small p-values. For 
example, a recent study attempting to replicate the often-cited bilingual 
executive function advantage failed to find evidence for the advantage in 
the first data release (NDA 1.0) of the ABCD Study ( 𝑛 = 4524 ) ( Dick et al., 
2019 ). 

Nevertheless, even very small associations are well-powered in the 
ABCD Study. Fig. 3 displays power curves as a function of sample size 
for different values of absolute Pearson correlations |𝑟 |. The dashed line 
in Fig. 3 indicates the full ABCD baseline sample size of 𝑛 = 11 , 880 . 
As can be seen, Pearson correlations |r| = 0.04 and above have power 
> 0 . 99 at 𝛼 = 0 . 05 . Simply rejecting a null hypothesis without reporting 
on other aspects of the study design and statistical analyses (includ- 
ing discussion of plausible alternative explanatory models and threats 
to validity), as well as the observed magnitude of associations, is unin- 
formative, perhaps particularly so in the context of very well-powered 
studies ( Abadie, 2020 ). 

5. Effect sizes 

Because p-values may be less informative in the context of very well- 
powered studies like ABCD, effect sizes become important data points 

in determining the importance of the findings. Effect sizes quantify 
relationships between two or more variables, e.g., correlation coeffi- 
cients, proportion of variance explained ( 𝑅 2 ), Cohen’s 𝑑, relative risk, 
number needed to treat, and so forth ( Cohen, 1988 ; Kraemer, 1992 ; 
Rosenthal et al., 2000 ), with one variable often thought of as indepen- 
dent (exposure) and the other dependent (outcome) ( Rothman et al., 
2008 ). Effect sizes are independent of sample size, e.g., t-tests and p- 
values are not effect sizes; however, the precision of effect size estima- 
tors depend on sample size as described earlier. Consensus best practice 
recommendations are that effect size point estimates be accompanied 
by intervals to illustrate the precision of the estimate and the conse- 
quent range of plausible values indicated by the data ( Wasserstein and 
Lazar, 2016 ). Table 3 presents a number of commonly used effect size 
metrics ( Kirk, 1996 ; Fidler et al., 2004 ). We wish to avoid being overly 
prescriptive for which of these effect sizes to employ in ABCD applica- 
tions, as researchers should think carefully about the intended use of 
their analyses and pick an effect size metric that addresses their partic- 
ular research question. 

5.1. Small effects 

As much as the choice of which effect size statistic to report is driven 
by context, the interpretation of the practical utility of the observed ef- 
fect size is even more so. While small p-values do not imply that reported 
effects are inherently substantive, “small ” effect sizes might have prac- 
tical or even clinical significance in the right context ( Rosenthal et al., 
2000 ). 

As described in SM Section S.2, known problems of publication 
bias and incentives for researchers to find significant associations 
( Button et al., 2013 ; Simonsohn et al., 2014 ) combined with the pre- 
dominantly small sample sizes of most prior neurodevelopmental stud- 
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Table 2 
Unweighted and Weighted Means of Desikan Cortical Volumes. 

Mean SE Weighted Mean SE 

bankssts 3238.48 473.95 3227.7 472.83 

caudalanteriorcingulate 2571.23 476.91 2559.34 478.06 

caudalmiddlefrontal 8326.7 1408.47 8277.25 1398.77 

cuneus 3645.25 582.41 3626.44 582.07 

entorhinal 1843.15 339.44 1835.95 339.1 

fusiform 12,050.11 1552.79 12,009.48 1558.06 

inferiorparietal 18,387.31 2432.67 18,325.23 2428.86 

inferiortemporal 13,182.85 1879.13 13,133.08 1870.21 

isthmuscingulate 3252.16 534.48 3239.51 538.27 

lateraloccipital 13,334.05 1870.71 13,283.9 1848.41 

lateralorbitofrontal 9295.28 1036.65 9258.68 1035.6 

lingual 8031.18 1132.35 7998.54 1132.13 

medialorbitofrontal 5976.38 731.09 5954.65 725.41 

middletemporal 14,275.5 1796.11 14,230.8 1786.83 

parahippocampal 2586.48 378.94 2576.7 378.86 

paracentral 4674.33 672.68 4660.61 674.3 

parsopercularis 5701.08 849.03 5683.61 846.91 

parsorbitalis 3097.73 371.12 3084.29 371.66 

parstriangularis 5178.54 733.71 5159.42 732.41 

pericalcarine 2505.86 425.52 2489.51 424.71 

postcentral 11,822.49 1599.97 11,788.14 1593.43 

posteriorcingulate 4196.07 603.72 4181.46 606.51 

precentral 15,990.94 1796.68 15,929.85 1791.05 

precuneus 12,865.56 1618.69 12,819.36 1616.69 

rostralanteriorcingulate 2963.47 479.55 2949.78 479.97 

rostralmiddlefrontal 21,292.13 2684.14 21,165.5 2669.35 

superiorfrontal 28,758 3204.7 28,616.28 3197.22 

superiorparietal 17,020.9 2172.8 16,961.33 2161.06 

superiortemporal 14,575.38 1645.94 14,519.78 1652.24 

supramarginal 13,827.92 1891.34 13,772.95 1894.8 

frontalpole 1153.78 185.07 1150.68 186.2 

temporalpole 2478.08 309.09 2472.2 308.04 

transversetemporal 1339.14 216.87 1333.57 217.62 

insula 7586.56 857.66 7556.2 856.7 

total 297,024.1 28,733.9 295,831.8 28,686.9 

Fig. 3. Power vs. Sample Size for Pearson |𝑟 |. 

ies lead us to expect that true brain-behavior effect sizes are smaller 
than have been described in the past ( Paulus and Thompson, 2019 ; 
Kendler, 2019 ). Indeed, Ioannidis (2005) ( Ioannidis, 2005 ) has argued 
that most claimed research findings in the scientific literature are actu- 
ally false. Although details of the concerns are disputed ( Ashton, 2018 ), 

some analyses of existing literature provide support for the possibility 
( Bakker et al., 2012 ). It is possible, then, that many published neu- 
rodevelopmental associations represent severely inflated effect sizes 
( Button et al., 2013 ; Ioannidis, 2008 ) and may be severely attenuated 
in investigations of ABCD data. 
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Table 3 
Measures of Effect Size Relevant for ABCD. 

Measures of Strength of Association 

r, r pb , r 
2 , R, R 2 , adjusted R 2 , 𝜙, 𝜂, 𝜂2 

Cohen’s f 2 

Cramér’s V 

Fisher’s Z 

Measures of Strength of Association Relevant for Multiple Regression 

Standardized regression slope or path coefficient 𝛽

Semi-partial correlation r y(x,z) 
Measures of Effect Size 

Cohen’s d, f, g, h, q, w 

Glass’ g’ 

Hedges’ g 

Other Measures 

Odds ratio ( 𝜔 2 ) 

Relative risk 

It is also possible that actual (causal) associations found in nature 
are in reality small for many outcomes. There is already strong evi- 
dence for this possibility: Myer and colleagues (2001) ( Meyer et al., 
2001 ) reviewed 125 meta-analyses in psychology and psychiatry and 
found that most relationships between clinically important variables are 
in the r = 0.15 to 0.3 range, with many clinically important effects even 
smaller. Miller et al. (2016) ( Miller et al., 2016 ) analyzed associations 
between multimodal imaging and health-related outcomes in the UK- 
Biobank data. Even the most significant of these explained only around 
1% of the variance in the outcomes. 

5.2. Pre-Registration 

While not of course completely immune to these problems (espe- 
cially in subgroup and/or high-dimensional analyses), because its large 
sample size reduces random fluctuations in effect size estimates that 
occur within small 𝑛 studies, the ABCD Study is much more resistant 
than is typical. However, with the large number of reseachers analyz- 
ing the data, high-dimensional space of covariates and outcomes and an 
essentially infinite number of possible modeling strategies, p-hacking 
and exploitation of random chance remains a possible source of ir- 
reproducible results. Pre-registration may mitigate exposure to some 
of these sources of irreproducibility. Indeed, a recent meta-analysis 
( Schäfer and Schwarz, 2019 ) found that effects from publications with- 
out pre-registration (median 𝑟 = 0 . 36 ) skewed larger than effects from 

publications with pre-registration (median 𝑟 = 0 . 16 ), suggesting that 
pre-registration is a practical step toward reporting research results that 
reflect the actual effects under investigation. 

For ABCD Study data, we recommend that researchers consider 
hypothesis pre-registration (e.g., using the Open Science Foundation 
framework: https://osf.io/prereg/ ) and using a registered reports op- 
tion for publishing results ( Chambers et al., 2015 ). A template for hy- 
pothesis pre-registration for the ABCD Study data can be found in the 
NDA-hosted ABCD Data Exploration and Analysis Portal (ABCD DEAP, 
https://deap.nimhda.org/index.php ), which is freely accessible to all 
users with a valid NDA ABCD user ID and password. Over 200 peer- 
review journals now offer registered reports as a publication format; two 
of these ( Cerebral Cortex and Developmental Cognitive Neuroscience ) have 
created registered reports options specifically geared for publishing re- 
sults from the ABCD Study. Recommended best practices for promoting 
reproducible science are given in Section SM.5 and for statistical analy- 
ses and reporting of results using the ABCD Study data in Section SM.6. 
In the next section, we provide a brief example to illustrate the issues 
we have just discussed as they relate to ABCD. 

5.3. Example: Effect size estimates 

In examining the ABCD data, we advocate for a focus on effect sizes 
over p-values, but this is not as simple as it appears, and researchers of- 

ten require some guidance on how to choose and interpret effect sizes. 
Here, we illustrate how the choice of effect size, and the interpretation of 
its substantive effect, must be made in the context of the research ques- 
tion. For example, Cohen’s 𝑑 and related metrics (see Table 3 ) assess 
the magnitude of mean differences between two conditions or groups. 
But what is not often appreciated is that Cohen’s 𝑑 is insensitive to the 
proportion of subjects in each group ( McGrath and Meyer, 2006 ). Con- 
versely, base-rate-sensitive effect size metrics take into account the diffi- 
culty of differentiating phenomena in rare events. If the goal is to assess 
the impact of an exposure on a population, it is arguable that researchers 
should opt for an effect size metric that takes the sample base rate into 
account. For example, the point-biserial correlation 𝑟 𝑏𝑠 ( McGrath and 
Meyer, 2006 ) ( Table 3 ) is a similar metric that, unlike 𝑑, is sensitive to 
variation in sample base rates. 

To illustrate this, we used Cohen’s 𝑑 and point-biserial 𝑟 𝑏𝑠 to es- 
timate the effect size of a dichotomous “exposure ” index: very obese 
(here defined as a body mass index (BMI) ≥ 30 ) and a continuous brain 
“outcome ”: restriction spectrum imaging component (N0), a measure 
sometimes related to cellularity, in the Nucleus Accumbens (NAcc). Re- 
cent work has highlighted a potential role of neuroinflammation in the 
NAcc in animal models of diet-induced obesity ( Décarie-Spain et al., 
2018 ). We included baseline data from subjects without missing BMI 
and NAcc N0 data, also excluding 5 subjects with NAcc N0 values < 0 

(leaving n = 10,659 subjects, of which 184 subjects had BMI ≥ 30, or 
1.7%). As can be seen in Fig. 4 (upper panels), NAcc N0 values are heavy 
tailed. We thus use a bootstrap hypothesis testing procedure to obtain 
quantiles of 𝑑 and 𝑟 𝑏𝑠 ( Martin, 2007 ). To account for nesting of subjects 
within families, at each iteration of the bootstrap one member of each 
family was first selected at random, and these subjects (along with all 
singletons) were sampled with replacement 10,000 times. Fig. 4 (lower 
panels) presents the bootstrap p-value plots for different null hypothe- 
ses ( Rothman et al., 2008 ). The bootstrap median 𝑑 = 0 . 801 ( 95% CI: 
[ 0 . 588 , 0 . 907 ] ) and median 𝑟 𝑏𝑠 = 0 . 106 [ 0 . 081 , 0 . 127 ] . Thus, while in terms 
of 𝑑 the effect might be considered “large ”, 𝑟 𝑏𝑠 corresponds to a vari- 
ance explained of roughly 1% and hence would be considered “small ”
by many researchers. 

So, what effect size should the researcher report, and which should 
be emphasized in the interpretation? Our general guidance would be to 
carefully consider the answer in the context of the research question. 
Perhaps both could be reported, but if the public health impact of an 
intervention is considered the 𝑟 𝑏𝑠 might be more strongly focused on in 
the discussion of results. 

Finally, caution is warranted in interpreting these results as “effect 
sizes, ” as the causal relationship could be from obesity to NAcc N0, from 

NAcc N0 to obesity, bidirectional, or even non-existent (i.e., due to con- 
founding). We do not adjust for potential confounding factors or their 
proxies in this example. In light of this, it would be more appropriate 
to call 𝑑 and 𝑟 𝑏𝑠 as computed here “association sizes ”. We examine the 
question of direction of causality using the twin data ( Heath et al., 1993 ) 
in SM Section S.3. 

6. Control of confounding variables 

An important challenge to the internal validity of effect estimates 
from the ABCD Study (and from any observational study) is the likely 
presence of confounding variables for observed associations. Neces- 
sary but not sufficient conditions for a variable to confound an ob- 
served association between an independent variable (IV) and a depen- 
dent variable (DV) are that the factor is associated with both the ex- 
posure and the outcome in the population, but not causally affected by 
either ( VanderWeele and Shpitser, 2013 ) (if a variable is causally down- 
stream of the IV or the DV or both, it may be a collider or a mediator 
( Rothman et al., 2008 )). Conditioning on confounders (or their proxies) 
in regression analyses will tend to reduce bias in effect size estimates, 
whereas conditioning on colliders or mediators (or their proxies) will 
tend to increase bias. To make matters more difficult, assessed variables 
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Fig. 4. Association Between Obesity and 
Nucleus Accumbens RSI N0. 

can be proxies for both confounding factors and mediators or colliders 
simultaneously, in which case it is not clear whether conditioning will 
improve or worsen bias in effect size estimates. We thus recommend 
that investigators using ABCD data think carefully about challenges to 
estimating effects of exposures and perform sensitivity analyses that ex- 
amine the impact of including/excluding covariates on associations. In 
the next sections we discuss these topics more thoroughly in the context 
of conditioning on covariates in regression models. 

6.1. Covariate adjustment 

Although the inclusion of covariates in statistical models is a 
widespread practice, determining which covariates to include is neces- 
sarily complex and presents an analytical conundrum. The advantages 
and disadvantages of covariate inclusion in statistical models has been 
widely debated ( Meehl, 1971 ; Schwarz, 1970 ) and reviewed elsewhere 
( Atinc et al., 2012 ; Becker et al., 2016 ; Spector and Brannick, 2011 ), 
so we focus our discussion on the practical implications of covariate 
adjustment in the ABCD Study. 

Datasets with a rich set of demographic and other variables lend 
themselves to the inclusion of any number of covariates. In many re- 
spects, this can be seen as a strength of the ABCD Study, but this can 
also complicate the interpretation of findings when research groups 
adopt different strategies for what covariates to include in their models. 
For instance, a recent comprehensive review of neuroimaging studies 
( Hyatt et al., 2020 ) found that the number of covariates used in models 
ranged from 0 to 14, with 37 different sets of covariates across the 68 
models reviewed. This review showed that brain-behavior associations 

varied substantially as a function of which covariates were included in 
models: some sets of covariates influenced observed associations only a 
little, whereas others resulted in dramatically different patterns of re- 
sults compared to models with no covariates. Which variables are ap- 
propriately included as confounders in any given analysis depends on 
the research question, highlighting the need for thoughtful use of co- 
variates. 

Covariates are often used in an attempt to yield more “accurate, ”
or “purified ” ( Spector and Brannick, 2011 ) estimates of the relation- 
ships among the IVs and DV, thereby revealing their “true ” associations 
( Atinc et al., 2012 ) (i.e., to eliminate the impact of confounding on ob- 
served associations ( Rothman et al., 2008 )). Under this assumption, the 
inclusion of covariates implicitly assumes that they are somehow in- 
fluencing the variables of interest, either contaminating the relation- 
ship between the IV and DV or the measurement of the variables of 
interest. Thus, not controlling for covariates presumably distorts ob- 
served associations among the IVs and DV ( Meehl, 1971 ; Spector and 
Brannick, 2011 ). Note that we use “somehow ” to emphasize frequent 
researcher agnosticism regarding the specific role of the covariates in- 
cluded in the model. Because statistical control carries with it major 
assumptions about the relationships among the observed variables and 
latent constructs, some of which are generally unspecified and others of 
which are potentially unknowable, conclusions drawn from models that 
mis-specify the role of the covariate will be incorrect. 

When covariates are thought to influence the observed variables of 
interest but not the latent construct, this is thought of as measurement 
contamination ( Fig. 5 A). Measurement contamination ostensibly occurs 
when a covariate influences the observed variables (x and y in Fig. 5 A). 
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Fig. 5. Models for Measurement Contamina- 
tion, Spuriousness, and Mediation. 

Importantly, a major assumption surrounding the presumption of mea- 
surement contamination is that the covariate does not affect the under- 
lying constructs (X and Y in Fig. 5 A), only their measures. Removing 
the influence of covariates by controlling for them presumes that absent 
such control, the association between the IVs and DV is artefactual. 

There are also a number of ways in which covariates are thought to 
influence the latent constructs and not just the measurement of them 

(see Meehl (1971) ( Meehl, 1971 ) for a thorough discussion). Two such 
models are spuriousness ( Fig. 5 B) and mediation ( Fig. 5 C). Under a spu- 
riousness (confounding) model, the IV (X) and DV (Y) are not directly 
causally associated but are both caused by the covariate. Therefore, any 
observed association between the IV and DV is spurious given that it is 
caused by the covariate. Under a mediation model, the IV (X) and DV (Y) 
are statistically associated only through the covariate. Spuriousness and 
mediation models are generally statistically indistinguishable (though 
temporal ordering can sometimes assist in appropriate intepretations), 
and under both models, controlling for the covariate results in a reduced 
association between the IV and DV. In either case, including covariates 
can effectively remove effects of interest from the model. At best, this 
practice obscures rather than purifies relationships among our variables 
of interest. At worst, this practice can render incorrect interpretations of 
the true effect. Rather than suggesting that covariates should be avoided 
altogether, we view them as having an important role in testing com- 
peting hypotheses. 

Thorough treatments of covariate use in statistical modeling are 
given by others ( Atinc et al., 2012 ; Becker et al., 2016 ; Spector and 
Brannick, 2011 ). In the next section we review steps in reasoning about 
which covariates to include and how to think about resulting associa- 
tions. 

6.1.1. Covariate adjustment: researcher considerations 
What is the role of the covariate? What is the theoretical model? Could 

the exclusion and inclusion of the covariate inform the theoretical model? Ad- 
dressing these questions through the practice of simply explicitly speci- 
fying the role of the covariate in the model, and even more specifically 
its hypothesized role in the IV-DV associations, helps avoid including 
covariates in the model when doing so is poorly justified. Moreover, it 
encourages thoughtful hypothesis testing. Ideally, explicit justification 
of the inclusion of each covariate in the model should be included in the 
reporting of our results. Better yet, as opposed to treating control vari- 
ables as nuisance variables, a more ideal model would include covariates 
in hypotheses ( Becker et al., 2016 ). We also encourage considering the 
extent to which the exclusion and inclusion of the covariate could in- 
form the theoretical model. In an explanatory framework, all covariates 
should be specified a priori . In a predictive framework, one can conduct 
nested cross-validations and model comparisons to find the most robust 
model with procedurally-selected covariates. 

How do my models differ with and without covariates? We recommend 
running models with and without covariates and comparing their re- 
sults. This practice encourages researchers to better consider the effect 

of covariates on observed associations. At the same time, engaging in 
multiple testing can increase Type I error rates. Regarding our sugges- 
tion, we encourage a shift away from comparing models on the basis 
of p-values and instead encourage researchers to compare effect sizes 
of the predictor of interest in models with and without the covariates. 
Confidence intervals are critical to compare across models, as the range 
of plausible effects is more important than the point differences in ef- 
fect size estimates. The focus on effect sizes as opposed to statistical 
significance is important given that including many covariates in the 
statistical model reduces degrees of freedom, in turn increasing standard 
errors and decreasing statistical power for any given IV. Covariates may 
be correlated with one another as well, reducing precision and produc- 
ing large differences in p-values when some variables are included or 
omitted from a model. 

If the effect sizes do not differ as a function of the inclusion of the co- 
variate (e.g., their confidence intervals substantially overlap), one might 
consider dropping it from the model, but noting this information some- 
where in the text. Becker (2005) ( Becker, 2005 ) offers more suggestions 
regarding what to do when results from models with and without co- 
variates differ (see also Becker et al. (2016) ( Becker et al., 2016 )). Ad- 
ditionally, should one choose to adopt models with covariates included, 
we recommend placing analyses from models without covariates in an 
appendix or in the supplemental materials; such a practice will aid in 
comparison of results across studies, particularly across studies with dif- 
ferent sets of covariates in the models. 

Causal effects from observational data It is worth formalizing this dis- 
cussion for situations when there is interest in estimating causal ef- 
fects: the comparison of potential outcomes, e.g., comparing outcomes 
for children in ABCD as if all of their parents had alcohol problems, 
vs. none of their parents having alcohol problems. Two methods that 
are particularly relevant for estimating causal effects in cohort studies 
such as ABCD are instrumental variables analyses and propensity score 
methods. Instrumental variables analyses rely on finding some “instru- 
ment ” that is plausibly randomly assigned (conditional on covariates), 
affects the exposure of interest, and is not directly related to outcomes 
( Angrist et al., 1996 ; Hernán and Robins, 2006 ). 

Here we will focus, though, on propensity score methods as a fairly 
general purpose tool for estimating causal effects. In general, interpret- 
ing a difference in outcomes between exposure groups as a causal ef- 
fect requires two things: 1) “overlap ” (individuals in the two exposure 
groups are similar to one another on the confounders), and 2) “uncon- 
founded treatment assignment ”; that there are no unobserved differ- 
ences between exposure groups once the groups are equated on the 
observed characteristics. Propensity score methods ( Stuart, 2010 ) can 
help assess whether overlap exists, and equate the exposure groups us- 
ing matching, weighting, or subclassification. Covariates should thus be 
selected in order to satisfy unconfounded treatment assignment, and 
as noted above, factors that are “post-treatment ” (and thus potentially 
mediators) should not be included. A benefit of the ABCD Study de- 
sign is that longitudinal data is available, to measure confounders be- 
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fore exposure and exposure before outcomes, and the large set of poten- 
tial confounders observed and available to be adjusted for. Sensitivity 
analyses also exist to assess robustness of effect estimates to a poten- 
tial unobserved confounder (e.g., ( Cinelli et al., 2020 ; Liu et al., 2013 ; 
VanderWeele and Ding, 2017 )). 

In SM Section S.4, we give a worked example of a sensitivity anal- 
ysis for the potential impact of omitting unmeasured confounders us- 
ing ABCD data on breastfeeding and neurocognition. Finally, methods 
should be used that account for the probability sample nature of the 
ABCD cohort, in order to ensure effects are being estimated for the pop- 
ulation of interest ( Lenis et al., 2019 ; Ridgeway et al., 2015 ). 

6.1.2. Example: Covariate adjustment 
Here, we provide a worked example focusing on the associations be- 

tween parental history of alcohol problems and child psychopathology, 
an important substantive question that has received attention in the lit- 
erature ( Hesselbrock and Hesselbrock, 1992 ). The ABCD Study contains 
a rich assessment of family history of psychiatric problems (e.g., alco- 
hol problems, drug problems, trouble with the law, depression, nerves, 
visions, suicide) and child psychopathology, including child- and parent- 
reported dimensional and diagnostic assessments. We examined the re- 
lation between parental history of alcohol problems (four levels: neither 
parent with alcohol problems, father only, mother only, both parents) 
and child externalizing assessed with the parent-reported Child Behavior 
Checklist (CBCL). Based on the earlier-described considerations, we de- 
lineated several tiers of covariates to include in the models in sequence 
(or in a stepwise fashion). The first tier included “essential ” covariates 
that the researcher views as required to include in the models, the sec- 
ond tier included “non-essential ” covariates, and the third tier included 
“substantive ” covariates that can inform the robustness of the model, or 
more generally inform the theoretical model. 

Our first tier includes age, sex at birth, and a composite of maternal 
alcohol consumption while pregnant. The inclusion of this latter covari- 
ate is deemed as essential to rule out the possibility that any associations 
between parental history of alcohol problems and child psychopathol- 
ogy was not due to prenatal alcohol exposure. In this context, maternal 
alcohol consumption was considered a construct confound. The second- 
tier covariates included race/ethnicity, household income, parental ed- 
ucation, and parental marital status. In the context of this research ques- 
tion, these covariates might be deemed “non-essential ” for three reasons. 
First, the researcher may not have any clear hypotheses surrounding the 
role of these covariates in the IV-DV associations. Second, the researcher 
may not think that there are important group differences in the second- 
tier covariates that are worth exploring and reporting. Third, the re- 
searcher might expect that some of the “non-essential ” covariates may 
be causally related to the IVs and DV or may share common causes with 
them (e.g., they may be proxies for both confounders and mediators 
or colliders simultaneously). We did not have specific hypotheses re- 
garding race/ethnicity differences in these associations, but exploratory 
analyses may be informative. At the same time, race/ethnicity may be 
strongly associated with other covariates (e.g., socioecomomic status, 
adversity), and so researchers must take care when interpreting the im- 
pact of its inclusion in the model. 

Other “non-essential ” covariates (e.g., household income, parental 
education, and parental marital status) may be either causally related 
to the IVs or DV or may share a common cause. For instance, parental ex- 
ternalizing – which likely overlaps with parental history of alcohol prob- 
lems – are associated with both increased likelihood of divorce and child 
externalizing, but the two are not causally related ( Lahey et al., 1988 ; 
Salvatore et al., 2017 ). Thus, demographics may, at least in part, proxy 
our variables of interest. Moreover, parental history of alcohol problems 
may proxy the broader construct of externalizing psychopathology. Con- 
trolling for indicators that share a common cause with our IVs and DVs 
partials out an important, etiologically relevant part of the phenotype, 
which can obscure true IV-DV associations.Based on this information, 
one might decide to report models with and without these covariates 

and consider the extent to which differences in these sets of models in- 
form a particular theoretical model. 

There was a significant linear association between parental history 
of alcohol problems with tier 1 covariates included, and there is no ma- 
jor difference between the models with and without tier 2 covariates 
( Fig. 6 A). Because we deemed tier 2 covariates as “nonessential, ” we 
elected to move forward only with tier 1 covariates. 

Finally, a third tier of covariates may be used to test the robust- 
ness of the associations between parental history of alcohol problems 
and child psychopathology. Here, we see that other forms of parental 
history of psychiatric problems, particularly externalizing (i.e., parental 
history of drugs, trouble with the law) display similar, if not more ro- 
bust associations, with CBCL Externalizing ( Fig. 6 B). Including other 
forms of parental externalizing (e.g., drug use, trouble with the law), 
may inform the extent to which the associations between parental his- 
tory of alcohol problems and child psychopathology are more general 
to parental history of other externalizing ( Kendler et al., 2011 )). In- 
deed, the associations between parental history of alcohol problems 
and CBCL Externalizing became attenuated when parental history of 
drug problems and trouble with the law were included in the model 
( Fig. 6 C), which suggests that the associations are general with re- 
spect to parental history of externalizing. In one further robustness 
check, we see that including parental history of internalizing problems 
(e.g., nerves, depression) slightly attenuates the associations between 
parental history of alcohol problems and CBCL Externalizing, though 
the effects of covarying parental history of externalizing were stronger 
( Fig. 6 C). 

Altogether, we learned from the tier 3 covariates that the associa- 
tions between parental history of alcohol problems and CBCL Externaliz- 
ing may be more general to history of externalizing, or even psychiatric 
problems more generally. These covariates were not treated as covari- 
ates per se , but as variables whose inclusion and exclusion informed the 
theoretical model. 

In sum, we hope it is clear that determining which covariates should 
be included in our statistical models is complex and requires consid- 
erable thought. We caution against the over-inclusion of covariates 
in statistical models, and against the assumption that including co- 
variates purifies the associations among our variables of interest; in- 
stead their inclusion can obscure rather than purify such associations 
( Schisterman et al., 2009 ). 

7. Summary and conclusions 

The sample size of the ABCD Study is large enough to reliably detect 
and estimate small effect size relationships among a multiplicity of ge- 
netic and environmental factors, potential biological mechanisms, and 
behavioral and health-related trajectories across the course of adoles- 
cence. Thus, the ABCD Study will be a crucial resource for avoiding Type 
I errors (false positive findings) when discovering novel relationships, 
as well as failures to replicate that result from the replication sample be- 
ing too small to have sufficient power. Moreover, ABCD will allow for 
stronger interpretation of non-significant results as they will not be due 
to low power for all but the tiniest of effect sizes, or researchers may opt 
to take advantage of the high power to assess the absence of differences 
using other statistical procedures like equivalency tests ( Lakens, 2017 ). 
Other studies in the field suffer from false positives that do not replicate, 
and overestimation of effect sizes in general, which typically arise from 

a research environment consisting of many small studies, p-hacking, and 
publication bias towards positive findings ( Walum et al., 2016 ). ABCD 
will therefore help directly address the replication problems afflicting 
much of current neuroscience research ( Button et al., 2013 ), and which 
would be bolstered by pre-registration steps that we outline above for 
ABCD data. 

ABCD may also help researchers to address questions of “practical 
significance ” for effects that may be small by traditional standards (e.g., 
explaining 1% of variation or less), but may be statistically significant 
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Fig. 6. The association between parental history of alcohol problems and CBCL Externalizing. 

due to the large sample size of the ABCD Study. As we noted, we expect 
that ABCD report will predominantly report small effect sizes, simply 
reflecting the fact that many, if not most, real-world relationships are in 
fact small. But in this scenario, it would be a mistake to dismiss all small 
effect size relationships. Indeed, an ostensibly small effect size might still 
be of clinical or public health interest ( Rosenthal et al., 2000 ) despite 
appearing “small ” by traditional standards ( McClelland and Judd, 1993 ; 
Wray et al., 2018 ). The effect may also be small due to imprecise mea- 
surement even if the underlying relationships are far from weak. Finally, 
even if the “noise-free ” effects of individual factors are small, they may 

cumulatively explain a sizeable proportion of the variation in neurode- 
velopmental trajectories a scenario which has recently played out in 
genome-wide association studies (GWAS) of complex traits ( Boyle et al., 
2017 ). 

At the same time, it is important to interpret these effects in the con- 
text of potentially confounding covariates, and like the interpretation of 
the effects themselves, the choice of inclusion of covariates must be prin- 
cipled. Misspecification can lead to serious threats to internal validity 
of the conclusions. For both effects of primary interest and covariates, 
that the focus remains on effect sizes, rather than binary “yes or no ”
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assessments of whether data support or reject a particular hypothesis. 
For example, for the goal of obtaining personally relevant modifiable 
predictors of substance abuse or other clinical outcomes, prediction ac- 
curacy of 75% would correspond to a very-large effect size of around 1.4, 
accounting for about 30% of the variance. (However, for modifications 
of variables targeted at a population level or for policy interventions, 
a smaller effect size might still be important.) Thus, binary judgements 
on whether associations are “significant ” can be fraught with error and 
give rise to misleading headlines ( Goodman, 2008 ). Worse, Type I or 
Type II errors (declaring an effect to be significant when it is not real, 
or absent when it is, respectively) can mislead the field for long peri- 
ods. Such results could delay the much needed progress in reducing the 
human and financial costs of mental health and other disorders. Thus, 
the careful consideration of the statistical and methodological factors 
we have outlined should be considered essential for the investigation of 
this prominent public dataset. 

In summary, the ABCD Study is collecting longitudinal data on a rich 
variety of genetic and environmental data, biological samples, markers 
of brain development, substance use, and mental and physical health, 
enabling the construction of realistically complex etiological models in- 
corporating factors from many domains simultaneously. While estab- 
lishing reproducible relationships between pairs (or small collections 
of measures) in a limited set of domains will still be important, it will 
be crucial to develop more complex models from these building blocks 
to explain enough variation in outcomes to reach a more complete un- 
derstanding or to obtain clinically-useful individual predictions. Multi- 
dimensional statistical models must then incorporate knowledge from 

a diverse array of domains (e.g., genetics and epigenetics, environ- 
mental factors, policy environment, ecological momentary assessment, 
school-based assessments, and so forth) with brain imaging and other 
biologically-based measures, behavior, psychopathology, and physical 
health, and do this in a longitudinal context. The sample size, popula- 
tion nature, duration of study, and, importantly, the richness of data 
collected in ABCD will be important for attaining this goal. 

Data and Code Availability Statement 

Data are publicly released on an annual basis through the NIMH 

Data Archive (NDA, https://nda.nih.gov/abcd ). The ABCD Study data 
are openly available to qualified researchers for free. Access can be re- 
quested at https://nda.nih.gov/abcd/request-access . Code for the repli- 
cation of analyses conducted in the manuscript can be retrieved at 
https://github.com/ABCD-STUDY/ 
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