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1. A mean on a semi-group S is a positive linear functional of norm one
on the space ?re(2) of bounded, real-valued functions on 2. A bounded semi-
group S of linear operators from a Banach space £ to itself is called er-
godic if there exists a system zA of averages A such that for every S in S
linu iAS—A) =linu iSA —A) =0; we have three strengths of ergodicity of
S according as uniform, strong, or weak convergence is used in the operator
algebra.

The first part of this paper deals with the relationship between existence
of invariant means and ergodicity of bounded representations. In Theorem 2
it is shown that weak ergodicity of every bounded representation of 2 is
equivalent to weak ergodicity of the right and left representations of 2 by
right and left translations on ?w(2), and equivalent to the existence of a mean
on tw(2) invariant under right and left translations. These conditions, in
turn, are equivalent to existence of a directed system of finite means on ?re(2)
converging weakly to two-sided invariance under all right and left translations
of m(2). Uniform ergodicity is similarly related to existence of finite means
converging in the norm of ?re(2)* to two-sided invariance (Theorem 4).

The second part of this paper gives some sufficient conditions for exist-
ence of invariant means or of finite means converging in norm to invariance.
For the former, the Markoff method of proof by fixed-point arguments is ap-
plied (§5) to "solvable" semi-groups and groups, and to semi-groups which
are the union of expanding directed systems of sub-semi-groups with means.
(For example, a group G such that every finite subset generates a finite sub-
group has an invariant mean.) It is also proved by a direct construction
(Theorem 6) that if G is a normal subgroup of a group H and if G and H/G
have two-sided invariant means, so has H. In §6 a parallel result is proved for
finite means converging in norm to invariance. These results greatly increase
the family of groups known to have invariant means. Solvable groups formed
the only such class previously known; §6 now shows that a solvable group
satisfies a stronger property; it has a system of finite means converging in
norm to invariance.

Presented to the Society, September 1, 1949 and September 2, 1949 under the titles Means
on semigroups and groups and Means and ergodicity of semigroups; received by the editors July
5, 1949.

(') Written while the author was on sabbatical leave and partially supported by a stipend
from the Office of Naval Research.
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The last section shows that if G has an invariant mean, then every
bounded representation of G on a Hubert space is equivalent to a unitary
representation, and also shows that the free group on two generators has no
invariant mean.

It is to be emphasized that the ergodic and invariance properties of major
interest here are properties of abstract semi-groups or groups; in this sense
they are "algebraic" properties of a semi-group though the definitions go out-
side the semi-group to bounded representations or to function spaces.

2. The definition of ergodicity below is adapted from that of Eberlein(2)
to the special case of bounded semi-groups. In what follows £ will be a
Banach space(3) and £(£, C) the Banach space of all linear operators from
£ into C. S will be a bounded(4) semi-group contained in the Banach algebra
£(£,£); that is(6) lub {||S|||5GS }=N<<*,and for each 5, S' in S , SS' is
also in S- For each b in£ lets (&)"■ (5è|5GS } and £(ô) = closed convex hull
oí Bib). Let K={T\ TGLiB, B) and TbGKib) for every b in B} ; that is,
if 'Pb^sKQ)) is the cartesian product of the sets £(£>), then i£ = £(£, £)
CWb^BKib). The symbol zA will represent a directed system(6) each element
of which is an element of £(£, £).

Definition 1. S is called ergodic under the system of averageszA when all
the following conditions are satisfied:

(a) zAqZK.
(b) For each 5 in S , linu A (5 — I) = 0, where I is the identity operator in

£(£, £).
(c) For each 5 in S, KmA (5- I)A=0.
The strength of the assumption of ergodicity of S depends on the topology

of £(£, B) used in (b) and (c). Corresponding to the uniform (or norm) s*-
and w*-topologies(7) in £(£, £), we have uniform s*- or w*-ergodicity of S
under zA. S is called ergodic in a given sense if and only if there exists a di-
rected system <¡A of averages under which S is ergodic in the given sense.

5*-ergodicity of S is the property which carries the burden of the F. Riesz
proof(8) of the mean ergodic theorem. It may be noted that if in the proofs
of most such results the s*-limit is used in (b), it suffices to use the w*-limit
in (c) since its only use is to get a certain point into the manifold of common
fixed points of S .

(2) W. F. Eberlein, Proc. Nat. Acad. Sei. U.S.A. vol. 34 (1948) pp. 43-47, and Trans. Amer.
Math. Soc. vol. 67 (1949) pp. 217-240.

(3) S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
(4) For brevity we keep to the bounded case even in this section where the results can be

adapted to the more general definition of ergodicity used by Eberlein.
(6) [pI Q\ ls the set of elements p with the property Q.
(•) SS' is the element of L(B, B) such that 55'(6) =5(5'(6)) for all b in B; that is, multi-

plication in L(B, B) is functional composition.
C) M. M. Day, Trans. Amer. Math. Soc. vol. 51 (1942) pp. 583-608.
(8) F. Riesz, J. London Math. Soc. vol. 13 (1938) pp. 274-278.
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Let us begin with a simple characterization of w*-ergodicity of S • As-
sume^) that £ is embedded in £**, the second conjugate of £, by the canon-
ical mapping Qbiß) =ßib) for all ß in £*; then £(£, £) can be regarded as a
subspace of £(£, £**). To the uniform, s*-, and w*-topologies of £(£, £**)
we must add a fourth, the w*-topology; this is the relative topology imposed
on £(£, £**) by the product space topology (also called the point-open
topology) of the space of all functions from B into £** when the w*-topology
is used in £**. w*-linu A =A0 if and only if linu Ab iß) =A0biß) for every b
in£ and (3 in E*. In this w*-topology every sphere in £(£, £**) iscompact(10).

Let E* =w*-closure of K in £(£, £**).

Lemma 1. S is w*-ergodic if and only if there exists A* in £(£, £**) such
that (a*) A*GK*; (b*) A*(S-I) =0, and (c*) iS-I)**A* =0(n).

K is bounded so K* is bounded and w* -compact. If S is ergodic under zA,
let A* be a w*-cluster point of zA; that is, for every A in zA and every w*-
neighborhood U oí A* there exists A' ^ A such that 4'£¿7. Clearly A* GK* ;
the proofs of (b*) and (c*) are so similar that we display only that of (c*).
Given S in §, b in B, ß in £*, and e>0, there exists Ae in zA with
|/3[(5-J)i46]| <e if A^At; then there exists A^At such that | (-4*6)
[iS-I)*ß]-[iS-I)*ß]iAb)\<e. Hence \ [iS-I)**A*b]iß2) = \iA*b)[iS
--O*0]| <l [(5-/)*j3](il6)|4-e=|j8[(5-7)i4&]|4-É<2e. Using in order the
freedom of e, Ô, and b gives (c*).

If A* inE* satisfies (a*) to (c*), each w*-neighborhood U oí A* meets K;
for each U let Au belong to KC\U. Ordering neighborhoods by inclusion
then gives a directed system zAçZK such that w*-limA A =A*. To prove, for
example, (c) take S in§ , b in B, and ß in £*; then

lim 0(S - I)Ab = lim [(5 - I)*ß](Ab)
A A

= (¿¿)[(S - I)*ß] = [(5 - I)**A*b](ß) = 0,
so 0 = w* — linu iS — I)A.

Theorem 1. If K* =K, in particular, if S ib) is w-conditionally compact or
w-sequentially conditionally compact for each b, or if B is reflexivei}2), then S is
w*-ergodic if and only if S is uniformly ergodic.

Under either compactness hypothesis Eberlein(13) has shown that KQ)) is

(•) As in M. M. Day, Trans. Amer. Math. Soc. vol. 51 (1942) pp. 399-412.
(I0) Compact is used here in the sense once denoted by bicompact. To prove compactness,

C, the unit sphere in L(B, B**), is closed in Pb(=B C(b), where C(b) is the sphere of radius ||ô||
about 0 in B**. Each C(b) is î«*-compact, so Tychonoff's theorem asserts C is compact.

(H) As usual the adjoint 5* of an 5 in L(B, B) is that element of L(B*, B*) defined by 5*0(6)
=ß(Sb) for all 6 in B, ß in B*. 5** = (5*)* is, therefore, in L(B**, B**).

(12) B reflexive means Q(B) =B**.
(13) W. F. Eberlein, Proc. Nat. Acad. Sei. U.S.A. vol. 33 (1947) pp. 51-53.
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1950] MEANS AND ERGODICITY 279

w*-closed in £**; hence K is w*-closed and E* =E. Under the reflexivity
assumption, £(£, £**)=£(£, £), so K*=K. Then ^4*GE and is invari-
ant.

It will be necessary to recall that attached to each semi-group S in £(£, £)
there are two closed linear manifolds Af0(S ) = {b\ (5 — 7)6 = 0 for all 5 in S },
and Afi(S ) - closed linear hull of {iS-I)b\ SGS, bGB}. Let M (S ) = Af0(S )
+ MiiS) = {x+y\xGMoiS), yGMiiS)}. The gist of the usual ergodic
theorems is in the following collection of conclusions; these and further
references can be found in the references of footnotes 2, 8, and 9.

If S is s*-ergodic under zA, then
(1) lim a AB=rb exists in the norm topology if and only if bGM(S).
(2) M(S ) is closed in B.
(3) rb = b if and only if bG Mo(S );rb = 0 if and only if bG -Mi(S ) ; and for

all S in S ,tS = St = tt = t; hence r is the projection of M(2> ) along Afi(S ) onto
Afo(S).

(4) ||x|| ̂ iV = lub {||5|||5GS}.
(5) rb is the unique point in K(b)r\Mo(ê)-
(6) bGM(ë) if and only if Ab, AGzA have a weak cluster point ba in B;

in this case bo = rb.
If S is only w*-ergodic under zA, the conclusions change only in that the

first limit is taken in the weak rather than the norm topology of B.
Using (6) we see: If S is w*-ergodic under a system zA such that Ab has a

weak cluster point in B for every b in B, then S is uniformly ergodic with t as a
single invariant average. This gives another proof of Theorem 1 ; (1) identifies
A* as r. It may be noted that this could also be stated as: S is ergodic under
a single invariant average A in K if and only if S is w*-ergodic and Ai(S )
= £ (thenA=r).

3. In this section we consider bounded representations of a fixed abstract
semi-group. Let 2 be a semi-group with elements a; that is, in 2 is defined a
binary multiplication which satisfies the associative law. A right ileft) rep-
resentation of 2 is a function £ from 2 to an £(£, £) such that F„<
= £„£„'(£,„' = £„'£„). We wish to find conditions under which every bounded
right and left representation of 2 is ergodic in some sense. To this end we
employ certain regular representations of 2.

Let íw(2) be the Banach space of all bounded, real-valued functions x on
2. For each a in 2 define R = r(cr)=ra in £(rre(2), w(2)) by Rxi<r') =x(<r'<r)
for all a' in 2 and x in ?w(2). The function r is the right representation of 2,
although we shall also apply this name to the semi-group f\ = r(2). Similarly
we define the left representation I by £ = ¿(tr) = /„ if Lxicr')=xiao') for all tr' in
2 and x in w(2); let £=¿(2).

It is clear that elements of %. commute with elements of £, and that
the elements of %_ and „£ are of norm not greater than 1, so 'R. and jf¿ are
bounded representations of 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let e be the unit function, e(ff) = l, in ?re(2). A meanu over 2 is an element
of rez(2)* such that ¿¿(e)=||p.|| =1; it is well known that for an element of
fre(2)*/u(e) =||m|| is equivalent to a(x) = 0 if x(o) =0 for all a.

Theorem 2. The following conditions on a semi-group 2 are equivalent (14).
(a) Every bounded right or left representation is w*-ergodic.
(b) The regular representations 1\ and .£ are w*-ergodic.
(c) There exists a mean ju in rez(2)* invariant under <R* and jÇf (where

£R*={E*|EG£R.}).
(d) e is at distance one from Mi(1{) + Mi(£).
(e) For every bounded representation Fof"Z and S = E(2), there exists A*

satisfying (a*), (b*), and (c*) ; in fact, A* is in the w*-closure of the convex hull
ofê.

Obviously (e)—»(a)—-»(b) ; the rest of the argument depends on the follow-
ing propositions:

(A) If <R and £ are w*-ergodic, then AfoCR) = MoiJQ ={te\t real}.
If xGMoilO, r„(x)=x for all <r or r„x(o-') = x(o-'er) = x(o-') for all cr, o'.

Hence la>xio) = x(o-') for all a'; that is, Z„<x = x(o-')e if o-'G2. Clearly scalar
multiples of e are in AfoCR) and in Af0(.£) so x = ix — l„>x)+l,>xGMiijQ
+ Mo(jQ = M(JQ. By ergodicity of jf¿ (items 1 and 5) l,'X = l„>>x for every a',
a" in 2, so x(cr') =>*(<r") for all a', a" in 2.

Let eP = smallest semi-group in L(w(2), w(S)) containing iR and „£; by
commutativity, fP = {E£ | E G"R., LGJ^}- We also recall the definition of
partial order and convergence in a semi-group given by Alaoglu and Birk-
hoff(16). We shall use the symbols p, X, w for elements of the convex hulls
of 'R, JÇj and CP, respectively. Ordering these by multiplication, we say pèp'
if there exists p" such that p=p"p'. Alaoglu and Birkhoff showed that, for
given x, lim,, px exists (in norm) if and only if (5) of the conclusions of ergodicity
holds for every p'x. Applying this to a w*-ergodic *R. we find that
limp \\px — trx\\ —0 for every x in AfCR), where tr is related to <R as r was
related toS-

(B) If î\ and jf¿ are w*-ergodic and xG-MCR), then limT |¡tjíX — 7rx|| =0.
This argument depends on the commutativity of 5\ with .£; compare also

Eberlein's Theorem 8.2.
Since a similar result holds with <R replaced by £ we obtain :
(C) If <R and jf¿ are w*-ergodic and x G -M"CR) + M(^Q), then lim* 7rx exists

in the norm topology. limT irx = 0 if xGMiilQ + MiijQ; limT ttx = x if x( = /e)
GJIfo(«0=Mo(0-

Since every x is of norm not greater than 1, ||limx irx|| Ss||x||. It follows
that iiyGMii<Rj + MiijQ, \\y + e\\^\\e\\ =■ 1. This proves that (b) implies (d).

(") Alaoglu and Birkhoff, Proc. Nat. Acad. Sei. U.S.A. vol. 12 (1939) pp. 628-630, have
observed that for groups (c) implies some form of ergodicity.

(I6) Alaoglu and Birkhoff, Ann. of Math. (2) vol. 42 (1940) pp. 293-309.
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By the Hahn-Banach theorem and (d) there is a mean ß such that p.(x) = 0
for x in Mii<R) + MiiJQ. But m = 0 on Afi(<R) means p.(Ex-x)=0 for all
x or R*u = ß for all £. Similarly, ß is invariant under "P*, so (d) implies (c).

Now let £ be a bounded representation of 2 in £(£, £) and define A*
from u, as in footnote 9, as follows: For each b in £, E„ b is a bounded function
of (r,/6(ff) ; for each ß in £*, j8:/0, defined by ö:/6(er) =/3(/„(<r)), is in w(2). De-
fine -4*6(|8) =niß:fh) for all /3 in £*. It is easily verified that A* ££(£, £**) ;
(b*) and (c*) can be checked as in footnote 9. For (a*) recall that each mean
¡x is a w*-limit of finite means p.T, where 7 is a function on 2 such that 7(0-)
= 0, X^t(°") = 1> 7(°0=O except at a finite number of points, and p;7(x)
=23„7((r)x((r). It is easily verified that if ß = w*-limy ßy, then A* =w*-lim7
^,cy(o-)F(a), so ^4*GE*.

Corollary 1. // every bounded right and left representation of 2 is w*-
ergodic, then every bounded representation F over a reflexive space B has the in-
variant t (0/ Theorem 1 and the conclusions from s*-ergodicity) given by ßirb)
= ßiß:fb) for every ß in B*,b in B, where u is an arbitrary mean invariant under

<R* and £*.

In some semi-groups ergodicity of one regular representation is enough to
enforce ergodicity of all right and left representations. The hypothesis of the
next corollary is satisfied if on the appropriate side 2 has either a unit or
unique cancellation; a similar result holds with left and right interchanged.

Corollary 2. Let 2 be a semi-group such that for every x in ?w(2) there exists
o" in 2 and x' in rez(2) such that l,"x' = x. Let p* be an average for iR defined,
as at the end of the preceding proof, from a mean ß. Then *R »5 ergodic under p* if
and only if ß is invariant under <R* and £*.

All that need be proved is invariance of p.; we sketch one case. By hy-
pothesis

0 =   [p*(£ - I)x]ia) = p(a:/(Ä_n.)

for all ff£m(2)*, xG?re(2), EG'R- Applying this to an a defined by a(x)
— xi<r") for all xG»*(2), we can show that a:f(R-i)X= (£ — I)l„"X for all x, so
that

0 =  [(£ - I)*ß]il,.,x) for all er", x.

Under the hypothesis, £*p =M for all £ in <R. A similar proof disposes of L*ß
and of the cases with right and left interchanged.

We remark here that if both cancellation laws hold in 2, then it can be
shown that if an element ß of ?w(2) * is invariant under 'R* and £*, the same
is true of the positive part of ß. This gives the following corollary.

Corollary 2'. If both cancellation laws hold in 2 (for example, if 2 is a
group), then the following conditions are equivalent to those of Theorem 2 :
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(c')  There exists ß^Oin m(Z)* invariant under <R* and «£*.
(d') AfiCR) + MiijQ is not dense iin norm) in w(2).

Invariance of ß under <R* and „£* is equivalent to the vanishing of ß on
Mi (il) and Mi(.Q, so (c') and (d') are equivalent. If (c') holds, ||p+|| +||m~||
= ||m|| 3^0, so at least one of p.+/||p.+|| and ju. /|j/x ]j is defined; that one will
satisfy (c).

4. In this section(16) we discuss a restricted form of ergodicity in which
the averages A used are actually finite averages of the elements of the semi-
group S • Let 13 be the convex hull in £(£, B) of the semi-group S. It was
shown in footnote 15 that 15 is also a semi-group in £(£, £) ; clearly M0(15)
= Mo(S) and Mi(15) =Mi(S). For further notation let $ = w*-closure of 15
in £(£,£) and let $* =w*-closure of 15 in £(£,£**) (so E = E*n£(E, £)).

Lemma 2. Lemma 1 and Theorem 1 remain valid if K and E* are replaced
by $ and $*, through all of §2.

Definition 2. S is restrictedly ergodic in a given topology of £(£, £) if it
is ergodic in that topology under a directed system of averages zAçZ^ô.

Lemma 3. In LiB, B) a convex set is w*-closed if and only if it is s*-closed ;
hence ®=s*-closure of 15.

If £oGs*-closure of C, a convex set, there exist e>0 and bu • ■ • , bn in
£ with Z7={r|||rii-r06i||<e} disjoint from C. Let £' = £X£X - - • XB
(using « factors) and let ||(&i, • • • , &n)||=max¿g„ ||ô;||. Let C'={T'
= (77>i, • • • , Tbn)\TGC} and let r¿ = (r02>i, • • • , T0bn). Then C is convex
and ||r'-r¿|| ^e if T'GC. By Mazur's theorem(17) there existsß'GB'* such
that ô'(£o)>lub^Gc ß'iT')+e. Since ß'iTbu ■ ■ ■ , Tbn) = ¿¿g.ô, (Eè,-),
where ßiGB*, the w*-neighborhood V= {T\ |p\-(£ — T0)bi\ <e/n} is disjoint
from C; hence T0 is not in the w*-closure of C if it is not in the s*-closure of C.

Paralleling Theorem 1, this lemma now yields the following theorem.

Theorem 3. Under the hypotheses of Theorem 1,S is restrictedly w*-ergodic
if and only if it is restrictedly s*-ergodic.

In this case $*ÇJE* =KQB, so Ä* =$; hence $ is w*-compact. Hence
S w*-ergodic under zAÇLf^ implies zA has a w*-cluster point A 0 ; by Lemma 3,
this A o is the s*-limit of a directed system zA'CTj. It is easily verified that S is
s*-ergodic under zA' and we have the additional property that s*-linu'.4'
exists; by the remarks at the end of §2 we know A0 = s*-liniA' A' is t, the pro-

(18) The amount of space used here in §4 on the special case of restricted uniform ergodicity
and in §6 on existence of finite means converging in norm to invariance is justifiable on the
grounds of ignorance; every known example of a group with an invariant mean (including the
new cases introduced by the theorems of §5) has, as I have since shown, a system of finite means
converging in norm to invariance.

(17) S. Mazur. Studia Mathematica vol. 4 (1933) pp. 70-84.
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jection associated with S •
Combining this with (b) implies (e) of Theorem 2 we derive:

Corollary 3. When the regular representations 51 and „£ of a semi-group
2 are w*-ergodic, then every bounded right or left representation S = E(2) is
restrictedly w*-ergodic and every bounded representation of 2 over a reflexive B
is restrictedly s*-ergodic.

To strengthen this somewhat, let Q be the set of finite means over 2; that
is, 7GC? means y(o)^0 for all 0, 7(0-) =0 except on a finite subset of 2, and
^2«(=ty(o) = 1- As we mentioned before, each mean ß is a w*-limit of a di-
rected system TÇZC- Applying this to the ß of Theorem 2, (c), we have the
following corollary.

Corollary 4. If % and J^are w*-ergodic, then there exists a directed system
TÇZQ such that each bounded representation F of 2 is restrictedly w*-ergodic
under the directed system {<py\yGY} of finite means, where <py — ̂ «(=ty(o)F(cr).

A similar result holds for uniform ergodicity. To prove it we give the fol-
lowing lemma.

Lemma 4. If there exists a directed system YÇ.Q such that, for each o' in 2,
limy [lub {¡ ^2^y(o)(x(<rcr') — x(cr))| | ||xl| ^l} =0, then, for cpy defined as in
Corollary 4, IimT ||<£TE„' — <£-y|| =0 for each right representation F of 2.

For 110,^.-^11= lub {| Y,M<r)ß[F(<r)(F(<T')-I)b]\\\\ß\\^l, \\b\\^l}
= lub {| E.7(cr)(x((T(r')-x((r))||||x||álub,||Es||}.

It should be pointed out that if Q maps ¿i(2) into ?re(2)* by
Qy(x) — X)"G s y(a)x(o), then the hypothesis of Lemma 4 becomes

lim \\¿Qy - QT|| = 0.

Using this and the corresponding results for J^ and for left representations
gives the following theorem.

Theorem 4. // there exists a directed system V Cg which converges strongly to
2-sided invariance in the sense that limy \\ii'<r — I)*Qy\\ =0 andlimy \\ih — I)*Qy\\
= 0for every a, then every bounded right or left representation of 2 is restrictedly
uniformly ergodic; a suitable system of averages is {<j>y\yGY}, where <py
= ^2cyio)Fio). Conversely, ifL is a semi-group such that for every x in mÇZ,)
there exists 0" in 2 and x' in M(2) such that l„>>x' = x and \\x'\\ ^ ||x||, then uni-
form ergodicity of Runder a directed system {p7|7Gr} of finite means implies
that the system Y converges strongly to 2-sided invariance. (Right and left can be
interchanged here.)

For one typical case of the converse, we have by assumption ||r„p7— py\\
-»0. But
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\r,Pt - py\\ J2 y (<*')(?„■ -r*')

This will be

lub
MISV'Gz

lub
MISl,a"GS

J2y(a')x(o-"ao-') - x(cr'V)

Z7(<0lU"*(V) -/,"*(*')]

lub        \Qy[(h -I)l...x]\
bnsi,<'"Gs

lub        \{(l,-I)*Qy](l.'-x)\.
MláV'Gs

ä îub | [ii. - D*Qy](x) | = |[(/.-/)*e,

under the hypothesis of the converse.
5. The last sections showed the relationship between restricted ergodicity

of all bounded representations and the existence of finite means approaching
two-sided invariance, and (in the w*-case) the existence of a single two-
sidedly invariant mean. We present in this section some existence proofs for
such means.

For semi-groups we can give (Theorem 5) an invariant^ if the semi-group
is solvable in a sense to be made precise below. For groups we show that
existence of a left-invariant X suffices for existence of a two-sided invariant p.
and then (Theorem 6) show that if G and H/G have such means, so has H.
This, of course, applies to arbitrary solvable groups and, with slight modi-
fication, to show existence of a ß in C(H)* if H is an extension of a compact
G by a solvable H.

For groups with finite means converging in norm to invariance we have
parallel results (see §6) ; we can reduce to the left-sided approach, and we can
prove H has such means if G and G/H have.

Lemma 5. Let S be a semi-group of distributive operators in a linear space
B, let p be a positive-homogeneous sub-additive functional on B, and suppose
there is a constant N with piSb) ^ Npib) for all b, S. Let Eo be a linear subspace
of B invariant under S and let <po be a distributive functional on Eo invariant
under S and dominated by p (that is, cpo(Sb) =tpn(b) for all bGEo, SGS, and
<bo(b) ikp(b) for bGEo). If there exists a distributive extension ßo of <po to all
B such that ß0(b) Sp(b) for all b and ßü(SxS2b) =ß0(S2Sib) for all bGB, SiGS ,
then there is a distributive extension ß of(p0 to all B such that ß(Sb) —ß(b) for all
S,b,andß(b)^Np(b).

The assumption on ß0, that SiS^ßo^S^S^ßo for all Si in S , provides just
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enough commutativity to make the Markoff proof(18) (that there is a fixed
point common to all S* in the TO*-closed convex hull of {5*ô0| SGS }) effec-
tive. Morse and Agnew(19) have also proved such a theorem by an adaptation
of Banach's proof of existence of a Banach limit for bounded sequences.

If S is a semi-group, call Si a commutator set for S if for each pair S, S' in
S there exists Si in Si such that SS' = SiS1S or S'S = SiSS', and there exists
S2 in S i such that SS' = S'SS2 or S'S = SS'S2.

Lemma 6. Let S, p, <¡>o, and £0 be as in Lemma 5. If there exists a distributive
extension ß0 of <po to all B such that S*ß0 = ßo for all S* in a commutator set Si*
of S *, and ßo(b) íkp(b) for all b, then there exists an extension ß of <bo to all B
such that S*ß = ßfor all S in S and (3(6) ̂  Npib) for all binB.

If S, S' are given in S, arrange them in the proper order so that S*S'*
= S'*S*St Then S*S'*ßo = S'*S*S2*ß0 = S'*S*ß0, so Lemma 5 applies.

Call 2 solvable if there exists a chain of sub-semi-groups 2=20D2i
D • • •• D2n, with 2I+i a commutator set for 2,- and 2n commutative.

Theorem 5. Let 2 be a solvable semi-group. Then there exists a mean ß in-
variant under il* and £* iso the other conditions of Theorem 2 also hold).

Let £R, = r(2i) and „£i = /(2j) and let i\- be the semi-group generated by
51,- and .£,; then %,n and J^„ are abelian and commute. The Hahn-Banach
theorem gives a ßo such that p-o(e) =||mo|| = 1; since <Pn is commutative, Lemma
5 gives a p-i invariant under <P*. Since %¡ and „£< commute, it is easily verified
that *Pi+i is a commutator sub-semi-group for <P¿. Lemma 6 and induction
complete the proof.

This applies, of course, to solvable groups. Other notable simplifications
of proof appear, however, for groups, due to the presence of the cancellation
law and the inverse operation. In what follows G will be a group and £ will be
the element of £(rej(G), miG)) defined by £x(g) =x(g_1) for all gin G, x in
miG). The formulasrgT= Tig-1, l„T=Trf1, T2 = I, Te = e, and ||£x|| =||x|| for
all x are easily established.

Lemma 7. If there exists a mean X in rez(2)* invariant under .£*, then there
exists a mean p in m(X)* invariant under both <R* and .£*.

To define first a right-invariant mean p let p = £*X. Then from l*\ =X for all
g, we see that r*p=r*£*X = £%*-1X = £*X = p. X(e) = 1 implies p(e) = £*X(e)
=X(£e) =X(e) = 1. || £*|| = 1 and T*2 is the identity, so ||p|| =||x|| ( = 1).

Given right- and left-invariant means p and X define a two-sided invariant
mean p, as follows: for xGmiG) and gGG, let x(g) =p(/„x), and let p(x)
= X(x). This ß can be shown to be an invariant mean.

(") A. Markoff, C. R. (Doklady) Acad. Sei. URSS. N.S. vol. 10 (1936) pp. 299-301.
(») R. P. Agnew and A. P. Morse, Ann. of Math. (2) vol. 38 (1938) pp. 20-30.
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The argument above can be applied to any subspace of miG) closed
under the operations in question. In particular if G is a topological group and
U(G) the space of uniformly continuous, bounded functions on G, then U(G)
is closed under right and left translations and under the formation of x. If
G is the extension of a compact group by a discrete group, this space U(G)
coincides with the space C(G) of all bounded continuous functions, and is
also closed under T.

Corollary 5. 7/2 is a group, then the conditions of Theorem 2 and Corol-
laries 2, 2', 3, 4 are also equivalent to

(c") there exists a mean p. or a p^O in ?re(2)* invariant under il* or „£*,
or

(à") MiCR) or MiijQ is not dense in m(2),
or

if") there exists a directed system T of finite means converging weakly to
one-sided invariance.

Theorem 6. Let H be a group and G a normal sub-group of H. If there
exist invariant means over m(G) and over m(H/G), then there is an invariant
mean over m(H).

By Lemma 7 it suffices to find a left-invariant mean over H. Suppose that
a is left-invariant over miG) and ß left-invariant over ret(£), where H = H/G.
For fixed h in H and x in miH), define xu in ire(G) by xA(g) =x(Äg) ; then let
xQi) =aixh). We prove that if h and h' are in the same coset h, then x(h)
= x(h') ; for h = h'g' so

Xh(g) = x(hg) = xQi'g'g) = xh,(g'g) = (lg>xh,)(g),

so Xh = lg'Xh', and a(xn) =a(xw). Hence x(h) depends only on the coset h; we
define x on H by x(A) =xQi).

Now define y on m(H) by 7(x) =ß(x). This y can be shown to be a left-in-
variant mean, and Lemma 7 completes the proof.

Again this proof is valid for any subspace E(H) for which the con-
structed functions xh lie in an £(G) with left mean and the x lie in an E(H)
with a left mean. As before it may be noted that U(G), U(H), and U(H/G)
would satisfy these conditions.

Corollary 6. If the chain of commutator sub-groups of a group G ends at the
identity, then there is in m(G)* a two-sided invariant mean 71 so all the condi-
tions of Theorem 2 hold.

This follows by induction from Theorem 6.

Corollary 7. Let H be a topological group and G a compact normal sub-
group of H such that H/G satisfies the hypotheses of Corollary 6 ; then there is in
C(H) * a two-sided invariant mean.
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The Haar measure in G is a left-invariant a on CiG) — Í7(G). Corollary 5
provides a left-invariant ß on w(7í/G)2C(ií/G)2 UiH/G). Hence the re-
marks after Theorem 6 apply to give in CiH)* an invariant mean 7.

An elementary argument using w*-compactness proves the following
corollary.

Corollary 8. Let 'S, be a semi-group with a system A of sub-semi-groups ô,
directed by ¡2, with UjeAÔ = 2, such that for each 5 there is in rei(2)* a mean
ßs invariant under r(5)* and lib)*. Then there is a mean ß invariant under all
r(2)* and /(2)*.

As an aid in applying this we use the following lemma.

Lemma 8. If 2' is a sub-semi-group of 2, and if there exists a mean p.' in
m(2')* invariant under r'(2')* and Z'(2')*, then there exists a mean ß in fre(2)*
invariant under r(2') * and Z(2') *.

Letting £x = x'mean x'(o-') =x(ít') for all 0' in 2', the definition ß = P*ß'
gives an appropriate mean on m(S).

From these, Theorem 6, and the obvious mean on a finite group follow
(a) if every finitely generated sub-semi-group of 2 has a two-sided invariant
mean, so has 2; (b) if G is a group such that every finite subset generates a
finite sub-group, then G has an invariant mean; and (c) if G — U«« Hi, where
Hi and Hi+i/Hi are finite or solvable for all ordinals i<a, and if H\= U.oiiE
for every limit ordinal X <a, then G has an invariant mean.

6. The existence of finite means over rez(G) converging in norm to two-
sided invariance is a stronger restriction on G than is the existence of a single
invariant mean u in miG)*, for this is equivalent to existence of finite means
converging weakly to invariance. For this stronger restriction we have, how-
ever, almost the same properties (except for the analogues of Corollary 7
to the end of §5).

Lemma 9. If on a group G there exists a directed system A of finite means
X such that limx ||ieX—X|| =0 for every g in G, then there exists a directed system
<P offinite means d> such that lim0 ||Zff<£ —0|| =0 and lim^, ||v£— </>|| =0 for every
g in G.

As in Lemma 7, let

Ik.P - p|| = £ I pig's) - p(g') I = HI MrY-1) - Ms'-1) I
a' a'

= ||i,-*x-x||,
so lim„ ||rap—p|| =0. To construct a two-sided mean 4> from one left mean X
and one right mean p, define 4>=<p{\, p) by

*(*) = E X(A)p(A-ig) = £ HgfMt1).
hGO f€zG
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Then

Ik«* - ¿II = EI *(«<>) - <p(g) I
a

= ElZxwk^Koí-PÍ*-1«)]!

áEE x(ä) I rooP(Â-«g) - p(k-*g) |
0 *

- E X(A) E I ̂ .P(A') - p(A') | = |k,oP - p||.
h h'

Similarly

II*«* - *ll = E I <t>(gog) - <t>(g) |
- El E[M^/)-x(g/)]p(/-i)|
sLpCnEIWcO-^Cifll

/ 0

= Ep(/-1)Ek0x(g')-x(g')|
/ s'

= ||/..x - x|j.
Let <Ï>={</>(X, £*X)|XGAJ and order $ as A was ordered; that is,

¿(X,   £*X)è<p(X',   £*X')  if and only if X^X'.  Then

lim^, |ke<p —<p|| =Hm#|]Z,<p —<p|| =0
for all g in G.

Now as with invariant means we have the following theorem.

Theorem 7. Let H be a group, G a normal sub-group of H, and H* = G/H.
If there exist on G and on H* directed systems of finite means converging in norm
to (either-sided) invariance, then there exists on H a directed system of means
converging in norm to two-sided invariance.

By Lemma 9 we can consider only left invariance, so suppose that
lima ||/ea —aj| =0 for each g in G and lim3 \\lh*ß— ß\\ =0 for each A* in H*. Let
£ be a system of representatives in H of the group H/G; then each A in H is
uniquely representable as A=/g, /G£, gGG. Then (fg)(f'g') = (ff')(gf'g'),
where gh = h~1ghGG also.

Now for a and ß given define ß=ß(a, ß) by ß(fg) =oc(g)ß(J*), where A*
= coset containing A. Then, iifof=<pg', <1>GF, g'GG, and g'go = gi,

W(/í) = »(te'fg) = ß((M)*)«(g'gig) = ß((fof)*Mgig).
Hence
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IIW - J-ll = E        I ß((fof)*)a(gig) - ß(f*)«(g) I
/Gf.bGg

=§    E   ß((fof)*) I <*(gig) - «(*) I
fGF.gGa

+    E     I ß((M)*) - ß(f*) I cc(g)
/Gf,5Gq

á E pW</)*)||*.i« - «|| + \\lflß - ß\\
f

^ \\lfß - ß\\ +      lub     ||/,ia - «||.
/s(a./)*)^o

If £ and G are finite, the theorem is evident from the beginning. If £ or G
is infinite, the new directed system of means will be ordered by triples
(ß, 5, 7r), where (3 is in the given system of means on H*, ô is a finite subset
of G, and ir is a finite subset of £; (ß, 5, ir) Sï (ß', 5', ir') means that ß^ß',
53ô', and it'Dtt'. Define | 5 J to mean the number of elements in 5. For given
/o,/, and go, as above, letfof — cp'g', and gi = g'go- For given (ß, ô, ir) the set of
such gi obtained for/oG^, goGô, and /3(/*)^0 is finite. Hence there exists
a = a(ß, ô, ir) such that ||¿sia — a|| <1/| S| ■ 17r| for each such gi.

Let ß(ß, Ô, w) =ß(a(ß, 5, w),ß); then

lim   \\l/oBoß - ß\\ = 0.
(0,ä,ir)

This and Lemma 9 complete our proof.

Corollary 9. If the chain of commutator sub-groups of G ends at the identity
in a finite number of steps, then there exists a directed system of finite means
converging in norm to two-sided invariance.

G = GoDGiDG2D ■ ■ ■ ZDGn, abelian, and G,/Gt+i is abelian. To verify
the hypotheses of Theorem 7 for an induction argument requires only the
following lemma.

Lemma 10. // G is an abelian group, then the set V of all finite means on G
is an abelian semi-group under the operation of convolution, (y O y') (g)
= E^Go y(h~x)y'(gh). Ordering V by 7^7' if there exists y" withy =y" O y',
r becomes a directed system and limT ||/„7 —7|| =0 for all g.

The proof is essentially that of Eberlein's remark that every abelian semi-
group of linear operators is uniformly ergodic under its semi-group of finite
means, or can be derived from that fact by Theorem 4.

Returning for a moment to Corollary 9, it can be seen from the proofs of
Theorem 7 and Lemma 9 that a directed system $ of means on G is iso-
morphic to TXAXII, where Y is the system approaching invariance on G/Gi,
A is the system of finite subsets of Gi, and IT is the system of finite subsets of
G/Gi.
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Corollary 10. If G satisfies the hypotheses of Corollary 9, then every
bounded representation of G is restrictedly uniformly ergodic.

Since r*Qy — Qy = Q(rg-iy—y) and Q is norm-preserving, the conclusion
of Corollary 9 gives the hypothesis of Theorem 4.

Cohen(20) gave, as a sufficient condition for (s*-) ergodicity of every
bounded representation of the positive integers under a sequence of means
defined by a regular Toeplitz matrix {aa}> essentially the condition
lim< 2Z* | a,-*+i — au \ =0. The discussion here and around Theorem 4 can be
modified to prove this condition necessary and sufficient for uniform ergodic-
ity under the given sequence of means.

Lorentz(21) uses this same condition in a paper on Banach limits. His work
shows that an element x lies in the ergodic subspace M(S ) of the regular
representation of the semi-group S of integers if and only if p(x) has the same
value for every Banach limit ( = invariant mean). His proof can easily be
adapted to each abelian semi-group, but it is not yet determined for how
general a class of groups the result is valid.

7. We conclude with counter-examples and applications.
To show that there need not be a mean even one-sided invariant on the

space of all bounded uniformly continuous functions on a locally compact
group, let G be the discrete free group on two generators; the space in ques-
tion then reduces to m(G). If each element of G is written in reduced form,
then it begins with either a, b, a-1, or b~l (unless g = u, the identity of G).
Let A, B, A'1, and E"1 be the sets of this form. Then A,bA,b2A, ■ ■ ■ , bnA
are all disjoint. If, for example, x(g) =0 for g not in A, then lbx, l&x, ■ ■ ■ ,
fox are all disjoint so p( £¿sn4*x) =rep(x) if p is left-invariant, while
II "¿Lien lb'x\\ =||x||, so re|p(x)| ^||x|| for all re, and p(x) =0. But if xA(g) =x(g)
if gG^4, xA(g)=0 if gG^4,  we have ß(x) =ß(xA)+ß(xB)+ß(xA-1)+ß(xB-1)
+ p(Xu)=0.

I. Kaplansky suggested the following generalization of a theorem proved
by Sz. Nagy(22) for G = the integers or the real line.

Theorem 8. Let G be a group with a two-sided invariant mean p in m(G)*.
Then every bounded representation F of G in an inner product space B is equiva-
lent to a unitary representation in the sense that there exists a new inner product
defining the same topology in B, and such that every £„ is unitary with respect to
this new inner product.

As in the paper cited in footnote 22, for <p, \pGB let (<j>, \¡/) be the original
inner-product in the space £. Define a new inner-product stepwise, by x(g)
= (Fg<f>, Fgip), (<p, \p)=ß(x). Then (</>, \p) is an inner product in H, and, if || £„||

(2°) L. W. Cohen, Ann. of Math. (2) vol. 41 (1940) pp. 505-509.
(21) G. G. Lorentz, Acta Math. vol. 80 (1948) pp. 167-190.
(22) B. de Sz. Nagy, Acta Univ. Szeged Sect. Sei. Math. vol. 11 (1947) pp. 152-157.
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á.iV for all g, then (<p, <p)/NS(<P, <j>)ûN(<j>, <p). Also, defining \<j>\2 = (^, </>),
| Fg4>\ =\<p\ for all </>, g.

[It is known that if an inner product with these properties is given, there
exists a positive definite £ such that (</>, \p) — (£_1</>. P-1^)- ]

In case G is a topological group and Fg is continuous in w*-, s*-, or re-topol-
ogies, it suffices that p. be invariant over C(G).

Corollary 11. If G satisfies the hypotheses of Corollary 6, every bounded
representation on a Hilbert space is equivalent to a unitary representation. If G
satisfies the hypotheses of Corollary 7, then every continuous bounded representa-
tion is equivalent to a continuous unitary representation.

It should be mentioned that very simple (even finite) semi-groups need
have no invariant mean. If 2 is an arbitrary set and ao' = a' for all a, a', then
2 has no right-invariant mean if it has more than one element. I. —I for every
o and rax = x(o)e for every a, and Mi(31) =?re(2).

That there is no invariant mean does not (apparently) imply that there
is a bounded representation on a Hilbert space not equivalent to a unitary
representation. Thus far I have not succeeded in settling this more difficult
question even for the free group G on two generators.

Another problem of interest is this: Suppose every bounded representa-
tion of a group or semi-group is s*-ergodic. Is it restrictedly uniformly
ergodic?

Institute for Advanced Study,
Princeton, N. J.
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