
Journal of Cryptographic Engineering (2019) 9:137–158

https://doi.org/10.1007/s13389-018-0180-2

REGULAR PAPER

MEAS: memory encryption and authentication secure against
side-channel attacks

Thomas Unterluggauer1 ·Mario Werner1 · Stefan Mangard1

Received: 14 June 2017 / Accepted: 11 January 2018 / Published online: 25 January 2018

© The Author(s) 2018. This article is an open access publication

Abstract

Memory encryption is used in many devices to protect memory content from attackers with physical access to a device.

However, many current memory encryption schemes can be broken using differential power analysis (DPA). In this work, we

present Meas—the first Memory Encryption and Authentication Scheme providing security against DPA attacks. The scheme

combines ideas from fresh re-keying and authentication trees by storing encryption keys in a tree structure to thwart first-order

DPA without the need for DPA-protected cryptographic primitives. Therefore, the design strictly limits the use of every key to

encrypt at most two different plaintext values. Meas prevents higher-order DPA without changes to the cipher implementation

by using masking of the plaintext values. Meas is applicable to all kinds of memory, e.g., NVM and RAM. For RAM, we

give two concrete Meas instances based on the lightweight primitives Ascon, PRINCE, and QARMA. We implement and

evaluate both instances on a Zynq XC7Z020 FPGA showing that Meas has memory and performance overhead comparable

to existing memory authentication techniques without DPA protection.

Keywords Side-channel attacks · DPA · Memory · Encryption · Authentication

1 Introduction

Memory encryption is the standard technique to protect

data and code against attackers with physical access to a

memory. It is widely deployed in state-of-the-art systems,

such as in iOS [2], Android [22], Mac OS X [1], Win-

dows [19], and Linux [26,36]. Typical encryption schemes

employed in these systems are Cipher-Block-Chaining with

Encrypted Salt-Sector IV (CBC-ESSIV) [20], Xor-Encrypt-

Xor (XEX) [47], and XEX-based Tweaked codebook mode

with ciphertext Stealing (XTS) [30]. These schemes success-

fully prevent attackers from accessing memory content when

the device is shut off and the encryption key is not present

on the device, e.g., an encrypted USB flash drive.

B Thomas Unterluggauer

thomas.unterluggauer@iaik.tugraz.at

Mario Werner

mario.werner@iaik.tugraz.at

Stefan Mangard

stefan.mangard@iaik.tugraz.at

1 Institute for Applied Information Processing and

Communications, Graz University of Technology,

Inffeldgasse 16a, 8010 Graz, Austria

Contrary to that, in many situations in the Internet of

Things (IoT), a physical attacker is in possession of a running

device, or can turn a device on. In these cases, the attacker

can, for example, observe and tamper with data in RAM. As

a result, memory encryption and tree-based authentication

techniques, e.g., Merkle trees [40], Parallelizable Authenti-

cation Trees [27] (PAT) and Tamper Evident Counter [18]

(TEC) trees, are increasingly deployed to protect data in

RAM. As one prominent example, RAM encryption and

authentication was only recently adopted in consumer prod-

ucts with Intel SGX [25]. Similarly, there are efforts to

encrypt RAM on AMD [32] and ARM systems [29] as well.

However, whenever a physical attacker has access to a

running device, the attacker is also capable of performing

side-channel attacks. This means that the attacker cannot

just read and tamper with the memory, but is also capa-

ble of measuring side-channel information, such as the

power consumption of the hardware, during the encryption

and authentication of the memory. The attacker can then

exploit such side-channel information to learn the secret key

used for memory encryption and authentication. In prac-

tice, an attacker performing both passive, e.g., bus probing,

and active, e.g., data spoofing, attacks on the memory, is

also capable of observing side-channel information, e.g., by

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-018-0180-2&domain=pdf
http://orcid.org/0000-0001-8317-648X

138 Journal of Cryptographic Engineering (2019) 9:137–158

attaching an oscilloscope for measuring the power, during the

actual encryption or authentication process. As such, side-

channel attacks are realistic for any physical attacker when

given access to a running device. One particularly strong class

of side-channel attacks is differential power analysis [34]

(DPA), which allows successful key recovery from observ-

ing the power consumption during the encryption/decryption

of several different data inputs. DPA attacks effectively accu-

mulate side-channel information about the key being used by

observing multiple encryptions/decryptions under the same

key.

However, contemporary memory encryption and authenti-

cation schemes that protect memory against physical attack-

ers, e.g., [17,25,44,48,54,55], lack the consideration of side-

channel attacks and DPA in particular. More concretely, the

security of contemporary schemes is built upon the assump-

tion of a microchip that is secure against active and passive

adversaries and which does not leak any information about

the key via side channels. However, as pointed out before, the

assumption that side-channel attacks on microchips are infea-

sible is too strong. In fact, DPA attacks were quite recently

shown to pose a serious threat to memory encryption on

general-purpose CPUs. While the DPA presented in [57]

breaks many contemporary memory encryption schemes, the

practical attacks in [5,37,50,57] document the feasibility of

DPA on memory encryption and authentication on state-of-

the-art systems.

In principle, there exist techniques to protect crypto-

graphic primitives against DPA attacks. For example, an

implementation can be protected by changing the hardware

such as by applying masking techniques [12,23], which use

randomization to make the side-channel information inde-

pendent from the actually processed value. However, pro-

tecting implementations of cryptographic primitives against

DPA is expensive and a tough problem in an active field of

research existing for almost two decades. The massive over-

heads for DPA-protected implementations range between a

factor of four and a few hundred [6,10,42,45] and would

thus render current memory encryption and authentication

schemes in latency sensitive applications impractical. In con-

trast, more efficient solutions are in sight when considering

side-channel protection throughout the cryptographic design

and looking for potential synergies.

1.1 Contribution

In this paper, we solve the problem of protecting data in

memory against physical attackers in possession of a running

device. More concretely, we solve the stringent problem of

DPA attacks on memory encryption and authentication with-

out additional memory overhead over conventional schemes.

We approach the topic with a detailed analysis of the secu-

rity of fresh re-keying [33,39] as a promising mechanism to

prevent DPA on memory encryption. While re-keying com-

pletely thwarts DPA on the cryptographic key, our major

result here is that re-keying provides merely first-order DPA

security for the memory content itself. In particular, we show

that the read–modify–write access patterns inevitably occur-

ring in encrypted memory allow for profiled, higher-order

DPA attacks that leak constant plaintext data when re-keying

is applied to memory encryption.

Second, we build on our analysis and present Meas—the

first Memory Encryption and Authentication Scheme secure

against DPA attacks. The scheme is suitable for all kinds

of memory including random access memory (RAM) and

non-volatile memory (NVM). By making use of synergies

between fresh re-keying and authentication trees [18,27,40],

Meas simultaneously offers security against first-order DPA

and random access to all memory blocks. In more detail,

Meas uses separate keys for each memory block that are

stored in a tree structure and changed on every write access in

order to strictly limit the use of each key to the encryption of

two different plaintexts at most. For higher-order DPA secu-

rity, Meas performs data masking by splitting the plaintext

values into shares and storing the encrypted shares in mem-

ory. This allows to flexibly extend DPA protection to higher

orders in trade for additional memory. For all DPA protection

levels, Meas does not require DPA-protected implementa-

tions of the cryptographic primitives, making Meas suitable

for common off-the-shelf (COTS) systems equipped with

unprotected cryptographic accelerators. However, Meas is

also an ideal choice for constructing a DPA-secure system

from scratch as engineers do not have to cope with complex

DPA protection mechanisms within the cipher implementa-

tion.

Third, we give two lightweight Meas instances suitable

for RAM that encrypt and authenticate the tree nodes with

strictly bounded data complexity per key. Meas-v1 uses the

PRINCE cipher and derives a fresh key for each encryption

block using the sponge Ascon. Meas-v2 provides faster tree

traversal by using the same key for the encryption of several,

but a sufficiently small number of, e.g., 4 or 8, blocks using

the tweakable cipher QARMA.

Finally, we implement both Meas instances on the Xil-

inx XC7Z020 System on Chip (SoC) Field Programmable

Gate Array (FPGA) to practically evaluate the performance

of RAM encryption and authentication with Meas.1 We show

that Meas provides protection against the very powerful DPA

attacks, and still features the same performance and memory

overhead as state-of-the-art memory authentication schemes

which completely lack side-channel protection. In particu-

lar, we show that a 4-ary, first-order DPA-secure instance

of Meas-v2 is a highly suitable choice for encrypting and

1 Both implementations are available at https://github.com/IAIK/

memsec.

123

https://github.com/IAIK/memsec
https://github.com/IAIK/memsec

Journal of Cryptographic Engineering (2019) 9:137–158 139

authenticating RAM in practice. Contrary to that, protecting

cryptographic implementations against DPA to make use of

state-of-the-art schemes would result in massive overheads

making memory encryption and authentication infeasible.

1.2 Outline

This work is organized as follows. In Sect. 2, we first state

our threat model and requirements, and we then discuss the

state of the art on memory encryption and authentication. The

state of the art on side-channel attacks and countermeasures

is content of Sect. 3. We analyze the re-keying countermea-

sure in terms of memory encryption in Sect. 4 and use the

results to present our first-order DPA-secure Meas in Sect. 5.

Section 6 then presents data masking to achieve higher-order

DPA security in Meas. We give two lightweight instances of

Meas suitable for RAM in Sect. 7 and detail their implemen-

tation in Sect. 8. An evaluation of Meas is done in Sect. 9,

and we finally conclude in Sect. 10.

2 Memory encryption and authentication

The encryption and authentication of memory is an impor-

tant measure to prevent attackers with physical access from

learning and/or modifying the memory content. There are

several schemes for memory encryption and authentication

available, but none of them takes the risk of side-channel

attacks into account.

In this section, we define two threat models: the non-

leaking chip model restates the state of the art [17,25,44,

48,54,55], and the extended leaking chip model further takes

side-channel leakage into account. Moreover, we summarize

present techniques for memory encryption and authentica-

tion and its requirements.

2.1 Threat model and requirements

The non-leaking chip model in previous works assumes a sin-

gle, secure microchip performing all relevant computations,

e.g., a CPU. An attacker cannot perform any kind of active

or passive attacks against this chip. All other device com-

ponents outside this chip, e.g., buses, RAM modules and

HDDs, are under full control of the adversary. Therefore,

a physical attacker can, e.g., probe and tamper with buses,

exchange peripherals, or turn the whole device on and off. For

off-chip memory, this means that an attacker with physical

access is capable of freely reading and modifying the memory

content.

While reading can give an attacker access to confidential

data stored inside the memory, modification breaks mem-

ory authenticity in several ways [17]: In spoofing attacks,

an attacker simply replaces an existing memory block with

arbitrary data, in splicing attacks, the data at address A is

replaced with the data at address B, and in replay attacks,

the data at a given address is replaced with an older version

of the data at the same address.

Our leaking chip model extends the non-leaking chip

model by considering passive side-channel attacks. It assu-

mes that the microchip performing all relevant computations

leaks information on the processed data via side channels,

e.g., power and electromagnetic emanation (EM). Physical

attackers can observe this leakage and perform side-channel

attacks.

Hence, cryptographic schemes protecting the confiden-

tiality and authenticity of off-chip memory in the leaking

chip model have to fulfill three main requirements.

1. The only information an adversary can learn from mem-

ory is whether a memory block (i.e., ciphertext) has

changed or not.

2. Prevention of spoofing, splicing, and replay attacks.

3. Protection against side-channel attacks.

In addition, fast random access to all memory blocks, high

throughput (fast bulk encryption), and low memory overhead

are desired.

2.2 Memory encryption

Memory encryption schemes usually split the memory

address space into blocks of predefined size, e.g., sector size,

page size, or cache line size. Each of these blocks is then

encrypted independently using a suitable encryption scheme.

The partitioning of the address space into memory blocks

aims to provide fast random access on block level and fast

bulk encryption within the instantiated encryption scheme.

Hereby, the chosen block size strongly affects possible

trade-offs w.r.t. metadata overhead, access granularity, and

speed.

So far, several memory encryption schemes have been

proposed in the non-leaking chip model and are being used

nowadays, e.g., the tweakable encryption modes XEX [47]

and XTS [30], CBC with ESSIV [20], and counter mode

encryption [48,54].

2.3 Memory authentication

Like for memory encryption, memory authentication sche-

mes split the memory address space into blocks and aim

for separate authentication of each of these blocks. Several

memory authentication schemes have been proposed in the

non-leaking chip model.

For example, a keyed Message Authentication Code

(MAC) using the block address information can protect

123

140 Journal of Cryptographic Engineering (2019) 9:137–158

against spoofing and splicing attacks. However, it still allows

for replay attacks. In order to protect against replay attacks,

authenticity information must be stored in a trusted envi-

ronment, e.g., in secure on-chip memory, that an attacker

cannot modify. Authentication trees minimize this demand

for secure on-chip storage, namely only the tree’s root is

stored in secure memory, while the remaining tree nodes

can be stored in public memory. Such trees therefore protect

against spoofing, splicing, and replay attacks. Authentication

trees over m memory blocks with arity a have logarithmic

height l = loga(m). Three prominent examples of authen-

tication trees are Merkle trees [40], Parallelizable Authenti-

cation Trees [27] (PAT), and Tamper Evident Counter [18]

(TEC) trees. We give a detailed description of them in

Appendix A.

3 Side-channel attacks

Present memory encryption and authentication schemes are

designed to protect off-chip memory against adversaries with

physical access assuming a microchip that is secure against

all active and passive attacks. However, in IoT scenarios, the

assumption that the microchip is secure against all passive

attacks is often too strong since, in practice, a microchip run-

ning an algorithm leaks information on the processed data via

various side channels, such as power, timing, and electromag-

netic emanation (EM). This allows adversaries to perform

passive side-channel attacks, which can reveal secret keys

that are used in cryptographic implementations. There exist

two basic classes of passive side-channel attacks [34]: Sim-

ple Power Analysis (SPA) and differential power analysis

(DPA). Originally, SPA and DPA have been introduced for

the power side-channel, but their basic principle is applicable

to all kinds of side channels such as power, EM, and timing.

Therefore, we will use the terms SPA and DPA throughout

the paper, but note that our elaborations apply to all kinds of

side channels.

3.1 Simple power analysis

In SPA attacks, the adversary tries to learn the secret value

processed inside a device from observing side channels dur-

ing a single processing of the secret value to be revealed, e.g.,

the adversary tries to learn the encryption key from a power

trace observed during a single encryption. However, the

adversary is allowed to observe the same encryption multiple

times to reduce measurement noise. Clearly, an implemen-

tation that cannot keep a key secret for a single encryption

is worthless. Therefore, bounded side-channel leakage for a

single encryption and thus security against SPA attacks is a

precondition for any implementation.

3.2 Differential power analysis

Quite naturally, the amount of information learned about a

secret value from a side channel increases with the number of

different inputs processed under the respective secret. This

is exploited in DPA attacks, which use the observation of

several different processings of a secret value in a device to

learn its value, e.g., the adversary tries to learn the secret key

from power traces observed during the encryption/decryption

of multiple (public) input values.

One important property of DPA attacks is their order. The

order d of a DPA [34,41] is defined as the number of d dif-

ferent internal values in the executed algorithm that are used

in the attack. The attack complexity of DPA grows exponen-

tially with its order [12].

3.3 Profiled attacks

Independently of whether SPA or DPA is performed, side-

channel attacks can make use of profiling. Profiling of

a side-channel, e.g., the power consumption, means to

construct templates [13] that classify the side-channel infor-

mation of a target device with respect to a certain value

processed inside the device. In the actual attack, the tem-

plates are matched with the side-channel trace to gain some

information on the value processed inside the device. The

information learned from template matching can then be

exploited in either SPA or DPA manner. Note, however, that

conducting profiled attacks requires much more effort than

performing non-profiled attacks. Further note that in many

applications it is impossible to perform the required profiling

step at all.

3.4 DPA countermeasures

The effectiveness of DPA attacks has caused a lot of effort to

be put into the development of countermeasures to prevent

DPA. Two basic approaches to counteract DPA have evolved,

namely (1) to protect the cryptographic implementation using

mechanisms like masking, and (2) the frequent re-keying of

unprotected cryptographic primitives.

3.4.1 Masking

Masking [12,23], also called secret sharing, is a technique

that can hinder DPA attacks up to certain orders. The idea

behind masking is to prevent DPA by making the side-

channel leakage independent from the processed data.

In a masked cryptographic implementation, every secret

value v is split into d +1 shares v0, . . . , vd in order to protect

against d-th order DPA attacks. Thereby, d shares are chosen

uniformly at random and the (d + 1)-th share is chosen such

that the combination of all d +1 shares gives the actual secret

123

Journal of Cryptographic Engineering (2019) 9:137–158 141

value v. As a result, an adversary is required to combine

the side-channel leakage of all d + 1 shares to be able to

exploit the side channel, i.e., to perform a (d + 1)-th order

DPA.

While the masking operation itself is usually cheap,

e.g., XOR, cryptographic primitives typically contain sev-

eral operations that become more complex in the masked

representation. This eventually results in massive implemen-

tation overheads. For example, the first-order DPA-secure

threshold implementations of AES in [10,42] add an area-

time overhead of a factor of four.

3.4.2 Frequent re-keying

The success rate of key recovery with DPA rises with the

number of different processed inputs. Therefore, frequent re-

keying [33,39] tries to limit the number of different processed

inputs per key, i.e., the data complexity.

The countermeasure constrains a cryptographic scheme

to use a certain key k only for q different public inputs (q-

limiting [53]). When the limit of q different inputs is reached,

another key k′ is chosen. Thus, for a certain key k, an adver-

sary can only obtain side-channel leakage for q different

inputs, which limits the feasibility of DPA to recover k.

Therefore, designing schemes and protocols with small

data complexity q is one measure to prohibit DPA against

unprotected cryptographic implementations. In more detail,

it is widely accepted that very small data complexities, i.e.,

q = 1 and q = 2, have sufficiently small side-channel leak-

age and do not allow for successful key recovery from DPA

attacks [7,46,53,56].

Leakage-resilient cryptography Frequent re-keying can be

applied to any cryptographic scheme, e.g., an encryption

scheme E NC or an authenticated encryption scheme AE ,

by choosing a new key whenever a new message has to be

encrypted and authenticated, respectively. However, in such

a re-keying approach, side-channel resistance is also affected

by the concrete instance of the cryptographic scheme. In

practice, the cryptographic scheme must be able to pro-

cess arbitrarily long messages using a standard primitive,

e.g., AES with 128-bit block size. This situation facil-

itates DPA in certain modes, such as CBC. Therefore,

the cryptographic scheme must be designed with special

care.

A generic construction for an encryption scheme E NC

that can process arbitrarily long messages without DPA vul-

nerability is given in Fig. 1. For DPA security, it requires a

new key k0 to be chosen for every new message. To securely

process an arbitrary number of message blocks, the depicted

scheme chains a primitive F that encapsulates the block

encryption ci = E(ki ; pi) and a key update mechanism

ki+1 = u(ki). Hereby, the included key update mechanism

Fig. 1 Generic encryption scheme E NC

ki → ki+1 ensures the unique use of each key ki . The

construction can be considered secure against side-channel

attacks if the key update mechanism is chosen such that

the side-channel leakages of all invocations to F cannot be

usefully combined. However, note that given that the key

is iteratively derived using F , random access to individual

blocks is typically quite expensive.

Exemplary constructions following the principle of Fig. 1

to design DPA-secure schemes from unprotected primitives

are the leakage-resilient encryption schemes in [46,53,56]

and the leakage-resilient MAC in [45]. Block-cipher-based

instantiations of these schemes have a data complexity of

q = 2 in order to prohibit successful key recovery via DPA

attacks.

4 Re-keying for memory encryption

Frequent re-keying is a mechanism to protect against DPA

without requiring that the implementation of the crypto-

graphic primitive uses costly DPA countermeasures such as

masking. Simultaneously, there are more and more practi-

cal systems being deployed with unprotected cryptographic

accelerators by vendors not being aware of side-channel

attacks. As a result, re-keying-based schemes are an inter-

esting option for protecting memory encryption and authen-

tication against DPA.

In this section, we perform the first investigation of the

security of re-keying in the context of memory encryption

and authentication. It shows that contrary to other use cases,

the re-keying operation itself can be realized without DPA

countermeasures when protecting memory. However, we also

show that the application of re-keying to memory encryption

allows for profiled, higher-order DPA that leaks confidential

constants in memory due to read–modify–write operations

inevitably occurring in encrypted memory.

4.1 The re-keying operation

Up until now, the principle of re-keying was applied only

to communicating parties aiming for confidential transmis-

sion. Hereby, constructions following Fig. 1 prevent DPA,

but require the initialization with a fresh key and thus secure

123

142 Journal of Cryptographic Engineering (2019) 9:137–158

key synchronization between the communicating parties. A

common approach to this synchronization is to derive a fresh

key from a shared master secret k and a public, random nonce

n [21,39,53]. However, this approach shifts the DPA prob-

lem to the key derivation, which thus needs DPA protection

through mechanisms like masking.

The encryption and authentication of data stored in

memory gives different conditions for the instantiation of

re-keying-based schemes. In particular, encrypting data in

memory means that encryption and decryption are performed

by the same party, i.e., a single device encrypts data, writes

it to the memory, and later reads and decrypts the data.

Therefore, key synchronization becomes unnecessary and

the cryptographic scheme can be re-keyed using random

numbers without the need for any cryptographic primitive

or function being implemented with DPA countermeasures.

4.2 Re-keying and plaintext confidentiality

The typical target of DPA attacks is the key being used as key

recovery fully breaks a cryptographic scheme. Re-keying-

based schemes thus thwart such attacks and make DPA on

the key infeasible. However, the actual goal of encryption is

to ensure data confidentiality. Therefore, protecting the key

against DPA is a useful measure, but as our analysis shows,

the application of re-keying to memory encryption can yet

result in a loss of memory confidentiality.

The main observation that leads to this conclusion is

read–modify–write operations that inevitably occur in any

encrypted memory. These take place whenever the write

granularity is smaller than the encryption granularity. For

example, when a single byte is written to a memory that

is encrypted using an 128-bit block cipher, the respective

128-bit encryption block has to be loaded from memory,

decrypted and modified according to the byte-wise write

access, and then be encrypted again and written back to

the memory. In this case, 120 bits of the respective block

remain the same. The same phenomenon is observed in

encryption schemes that cover multiple encryption blocks

p0, p1, p2, Here as well, one plaintext block, e.g., p0,

might be changing, while others, e.g., p1, remain constant.

If now re-keying is applied to memory encryption, the

constant plaintext parts within read–modify–write opera-

tions will be encrypted several times using different keys.

This causes constant, secret plaintext parts to be mixed with

varying keys. This situation is quite similar to the original

DPA setting, where a constant, secret key is mixed with

varying plaintexts. For stream ciphers, attackers can easily

exploit this mixing operation—the XOR of varying pad and

constant plaintexts—in a first-order DPA. Namely, attack-

ers can model the power consumption of the varying pad

for each plaintext hypothesis using the observed ciphertexts.

Matching the power model with the side-channel observa-

tions eventually reveals the constant plaintext. For block

ciphers, a first-order DPA does not work, but a profiled,

second-order DPA that is similar to unknown plaintext tem-

plate attacks [28] can be applied to learn constant plaintexts.

While we emphasize that there are also other second-order

techniques, e.g. [14,35], that can be employed in this set-

ting, we consecutively focus on adapting unknown plaintext

template attacks to extract constant plaintexts from re-keyed

block ciphers.

4.2.1 Unknown plaintext template attacks

In [28], the constant key k of a block cipher E is attacked

by observing the encryption of several unknown plain-

texts with the help of power templates. Hereby, the power

templates are used to learn information on the unknown

plaintexts p0, p1, . . . and intermediate values v0, v1, . . . in

the respective encryption processes E(k; p0), E(k; p1),

Exploiting the relation between the information learned on

p0, p1, . . . and v0, v1, . . ., the key k is recovered. As the

attack combines side-channel information from both the

unknown plaintexts p0, p1, . . . and the intermediate values

v0, v1, . . ., the order of this attack is two.

The described attack can be easily applied to a re-keyed

encryption scheme (cf. Fig. 1). Namely, read–modify–write

operations cause a constant plaintext block pi to be encrypted

several times using different keys ki , k′
i , Changing the

roles of plaintext and key in the attack from [28], re-keying

allows to learn the constant plaintext block pi from side-

channel information on the varying key ki , k′
i , . . . and some

intermediate value vi , v
′
i , . . ., both extracted using power

templates. As a result, one plaintext may only be encrypted

with one single key for re-keying to completely thwart DPA.

This also seems reasonable in the view of leaking more infor-

mation on a plaintext, the more often it is encrypted under

different conditions, i.e., using different keys.

Summarizing, memory encryption inevitably causes read–

modify–write operations. These cause re-keyed stream ciph-

ers to become vulnerable to first-order DPA and re-keyed

block ciphers to become vulnerable to profiled, second-order

DPA. These attacks do not target the actual keys, but the

confidential memory content. While these attacks cannot be

prevented in the memory scenario, note that the effort and

complexity of profiled, second-order DPA attacks is very

high in practice. Hence, re-keyed block encryption provides a

suitable basis to construct a memory encryption scheme with

first-order DPA security. We further pursue this approach in

Sect. 5. To obtain higher-order security, we extend our design

in Sect. 6 and propose masking of the stored plaintext val-

ues. This effectively increases the number of values to be

recovered via templates without the need for masking being

implemented in the cipher.

123

Journal of Cryptographic Engineering (2019) 9:137–158 143

5 DPA-securememory encryption and
authentication

The analysis in Sect. 4 showed that frequent re-keying of

a block-cipher-based mode is a suitable approach to con-

struct a memory encryption and authentication scheme with

first-order DPA security from unprotected cryptographic

primitives. However, one major requirement in Sect. 2 is to

provide fast random access in memory, but random access is

not a feature of present re-keying-based encryption schemes.

A common way to provide fast random access to large

memory is to split the memory into blocks that can be directly

accessed. However, encrypting each of these memory blocks

by the means of fresh re-keying would render the number of

keys to be kept available in secure on-chip storage too high.

This problem is quite similar to memory authentication with

replay protection, which also requires block-wise authentic-

ity information to be stored in a trusted manner. To tackle this

issue, state-of-the-art authenticity techniques (cf. Sect. 2 and

Appendix A) employ tree constructions to gain scalability

and to minimize the required amount of expensive on-chip

storage.

In this section, we therefore use the synergies between

frequent re-keying and memory authentication to present

Meas—a Memory Encryption and Authentication Scheme

with first-order DPA security built upon unprotected crypto-

graphic primitives and suitable for all kinds of large memory,

e.g., RAM and NVM. Similar to existing memory authenti-

cation techniques, Meas uses a tree structure to minimize

the amount of secure on-chip storage. However, instead of

hashes or nonces, keys are encapsulated within the tree. In

more detail, the leaf nodes of the tree, which store the actual

data, are encrypted and authenticated using an authenticated

encryption scheme that is provided with fresh keys on every

write access. Similarly, the inner nodes of the tree, which

store the encryption keys for their respective child nodes, are

encrypted with an encryption scheme that uses a fresh key

on every write. Meas is shown secure in the leaking chip

model, and in particular, its DPA security is substantiated by

limiting the number of different processed inputs per key to

q = 2 such as in [7,46,53,56].

In the following, we first present the construction of

Meas, followed by a security analysis considering authen-

ticity and side-channel attacks.

5.1 Construction

The construction of Meas is designed to be secure according

to the leaking chip model. Therefore, Meas requires an SPA-

secure block encryption scheme E NC and an SPA-secure

authenticated encryption scheme AE . Both E NC and AE

have to fulfill the common security properties for (authen-

ticated) encryption schemes and must be based on block

encryption such as in [56]. However, Sect. 7 will detail con-

crete instances for both E NC and AE . Apart from that, any

other operations within Meas, such as loading keys, must be

SPA-secure. In addition, a secure random number generator

is needed for generating keys.

An example of the tree construction proposed for Meas is

depicted in Fig. 2. For the sake of simplicity, this example as

well as the following description assumes the use of a binary

tree, i.e., arity a = 2. However, instantiating the tree with

higher arity is easily possible.

The structure of Meas is as follows. The data in memory is

split into m plaintext blocks pi . Each of these pi is encrypted

and authenticated to a ciphertext-tag pair (ci , ti) using the

authenticated encryption scheme AE with data encryption

key deki :

(ci , ti) = AE(deki ; pi) 0 ≤ i ≤ m − 1.

The encryption scheme E NC then encrypts the data encryp-

tion keys deki to the ciphertexts cl−1,i using key encryption

keys kekl−1,i . The operator || denotes concatenation.

cl−1,i = E NC(kekl−1,i ; dek2i ||dek2i+1) 0 ≤ i ≤
m

2
−1.

Recursively applying E NC in a similar way to the key

encryption keys finally leads to the desired tree.

c j,i = E NC(kek j,i ; kek j+1,2i ||kek j+1,2i+1)

0 ≤ j ≤ l − 2, 0 ≤ i ≤
m

2l− j
− 1.

While all ciphertexts and tags are stored in public,

untrusted memory, the root key kek0,0 is stored on the leaking

chip.

5.1.1 Read operation

When reading data (ci , ti) from memory, all the keys on the

path from the root key kek0,0 down to the respective data

encryption key deki are decrypted one after another. The data

encryption key deki is then used to decrypt and authenticate

the respective memory block (ci , ti).

For example in Fig. 2, to obtain the plaintext block p2

stored in (c2, t2), the root key kek0,0 is used to decrypt

kek1,0. Then, kek1,0 is used to decrypt kek2,1, which per-

mits to decrypt dek2. Finally, dek2 is used with (c2, t2) to

authenticate and decrypt the respective plaintext p2.

Note that the decryption of the encapsulated keys can only

be performed sequentially. However, this is not considered

a problem since computation is typically much faster than

storage (e.g., RAM or HDD). On the other hand, caching of

the intermediate nodes (key encryption keys) is supported

123

144 Journal of Cryptographic Engineering (2019) 9:137–158

Fig. 2 Meas’s tree construction for m = 8 data blocks and with an arity of a = 2

by Meas in order to achieve good performance, e.g., small

average access latency.

5.1.2 Write operation

Writing data to the memory is where the actual re-keying

is performed. Namely, the process of updating pi with p′
i

involves the replacement of all keys along the path from the

root key kek0,0 down to the respective data encryption key

deki with randomly generated ones. On the other hand, the

keys for the adjacent subtrees are only reencrypted under the

new node keys. This re-keying can be performed in a single

pass from the root to the leaf node of the tree.

For example in Fig. 2, when block p5, which is stored

in (c5, t5), gets replaced, also the keys kek0,0, kek1,1, kek2,2

and dek5 have to be changed. Therefore, the node c0,0 is

decrypted to extract kek1,0 and kek1,1. The new node c′
0,0 can

then be determined by encrypting kek1,0 and a new kek′
1,1

with the new key encryption key kek′
0,0. The nodes c1,1 and

c2,2 are updated in the same way. The new data block (c′
5, t ′5)

is then the result of authenticated encryption of p′
5 under the

new data encryption key dek′
5.

Note that it is not necessary to check authenticity when a

full block is written to the memory. Only read–modify–write

operations on a data block require an authenticity check. This

authenticity check is automatically performed when the data

is read prior to modification and thus does not inhere any

additional costs. Also note that read–modify–write opera-

tions require only one single tree traversal, because the data

encryption key required for the read operation automatically

becomes available in the last steps of the write (and re-keying)

procedure.

5.2 Authenticity

The design of Meas protects data authenticity with respect to

spoofing, splicing, and replay attacks using both the authen-

tic root key and the AE scheme. In particular, spoofing and

splicing attacks on the leaf nodes are directly detected by

the AE scheme since different keys are used for each block.

Moreover, the AE scheme indirectly also protects the inner

tree nodes for properly chosen schemes AE and E NC . In

such case, any tampering with the ciphertext of an intermedi-

ate node will lead to a random but wrong key to be decrypted.

This tampering will thus propagate down to the leaf node to

give an erroneous, random data encryption key and finally

an authentication error.

Replay protection for all nodes is the result of the authentic

root key, which gets updated on every write to any leaf node,

i.e., choosing a new, random root key on every write access

ensures that the secure root reflects the current state of the tree

in public memory. Vice versa, the authenticity tags in the leaf

nodes output by the AE scheme reflect the authenticity of the

path from the root to the respective data block. Therefore, if

the authenticity check of a leaf node fails, any node on the

path from the root to the leaf may be corrupted.

5.2.1 Handling corruption

Our approach to verify the authenticity within Meas also

has a strong influence on how data accesses need to be per-

formed to be side-channel secure. In particular, Meas relies

on two schemes E NC and AE that, for any tree node size, use

each (internal) key only for a small number of, e.g., q = 2,

encryption blocks. To guarantee this property of E NC and

AE also when accessing a certain leaf node within Meas,

a secure implementation must only decrypt those plaintext

parts within intermediate tree nodes (i.e., keys) that are actu-

ally needed for accessing the requested data block in the leaf.

Namely, these keys become authenticated when accessing the

leaf node, which allows to detect malicious modifications

of these keys in memory. Eventually, this allows to identify

attackers who perform DPA attacks on encryption keys by

introducing authenticity failures on purpose. On the other

hand, decrypting keys (in intermediate tree nodes) that are

not used any further allows attackers to modify the respec-

tive keys’ ciphertext and thus to induce a DPA setting without

being detected [15]. Nevertheless, when a corrupted leaf node

has been detected, the authenticity of the tree must be restored

before any further actions are taken.

Restoring authenticity of the tree is simple and requires

no additional support. It is sufficient to replace all corrupted

123

Journal of Cryptographic Engineering (2019) 9:137–158 145

data (leaf) nodes with random values since regular writes

restore authenticity from the root to the respective leaf node.

Restoring authenticity in this manner also causes re-keying

on all nodes on the path from the root to the leaf to take

place. This re-keying procedure effectively thwarts any DPA

that otherwise could be performed by malicious modification

of stored ciphertexts.

For example in Fig. 2, if the authenticity check of the

node (c4, t4) fails, any of the nodes c0,0, c1,1, c2,2 and

(c4, t4) can be erroneous. Therefore, the plaintext p4 is

replaced with a random plaintext p′
4 in order to restore

the authenticity. Hereby, new keys kek′
0,0, kek′

1,1, kek′
2,2 and

dek′
4 are chosen and the stored values c′

0,0, c′
1,1, c′

2,2 and

(c′
4, t ′4) are updated accordingly. This procedure restores the

authenticity of the path from kek0,0 to dek4, but leaves

any adjacent subtree intact. Moreover, the choice of fresh

keys kek′
0,0, kek′

1,1, kek′
2,2 and dek′

4 prevents first-order DPA

through adversaries repeatedly modifying c′
0,0, c′

1,1, c′
2,2 or

(c′
4, t ′4).

5.2.2 Recovering from corruption

Depending on the actual application, there are different

approaches to deal with the corruption. A straightforward

approach, which is suitable for RAM encryption, is to simply

reset the tree and start from scratch. The memory encryption

engine of SGX [25], for example, follows this approach and

requires a system restart to recover. However, applying this

idea to block-level disk encryption is impractical since a reset

of the tree is equivalent to destroying the data of the whole

block device.

Another, more graceful approach is to recover from the

corruption when possible. In the case of RAM encryption,

it is, for example, possible that the operating system kills

(and restarts) only those processes which actually accessed a

corrupted data block. In the setting of disk encryption, it can

be enough to report which files or directories were destroyed

to enable appropriate error handling.

Given a single authentication failure, it is not possible

to determine which node is corrupted. However, since cor-

ruptions in higher tree nodes lead to authenticity failures in

more data blocks, it is possible to identify the subtree which is

affected by the data corruption using multiple adjacent reads.

This can even be done quite efficiently in a binary search like

approach (i.e., O(log m) reads), assuming that only a single

node has been corrupted.

For example in Fig. 2, when the authenticity check of data

block 2, i.e., (c2, t2), fails, then data block 3 is checked next.

If block 3 is authentic, then only block 2 (child of dek2) is

corrupted. Otherwise, either block 0 or block 1 is checked

next. If this next block is authentic, then only blocks 2 and 3

(children of kek2,1) have been corrupted. In case of another

error, a final check in the right subtree (children of kek1,1)

is needed to determine if only the left subtree (children of

kek1,0) or the whole tree is corrupted. Note, however, that

locating the corruption requires each authenticity failure to

be followed by a re-keying step as described in Sect. 5.2.1 in

order to resist DPA. For example, if data block 2 is read and

detected to be corrupted, the path from the root key to data

block 2 must be re-keyed. If during the location phase data

block 3 is detected to be unauthentic as well, also the path

from the root key to data block 3 must be re-keyed. The same

procedure applies to all other checks in the location phase.

5.3 Side-channel discussion

We discuss the side-channel security using three types of

attackers with increasing capabilities. The first type solely

uses passive attacks and tries to exploit the side-channel leak-

age during operation. The second type additionally induces

authenticity errors by tampering with the memory and strives

for exploiting error handling behavior. The third type further

tries to gain an advantage by restarting, i.e., power cycling,

the whole system at arbitrary points in time.

5.3.1 Passive attacks

The protection of Meas against DPA lies within the re-keying

approach. Therefore, every randomly generated key is used

for the encryption and decryption of exactly one tree node

with one specific plaintext. As soon as the plaintext of a node

changes in any way, also a new key for the encryption of the

respective node is generated.

For a certain key, a physical attacker who only passively

observes Meas can thus at most acquire side-channel traces

of one encryption and arbitrarily many decryptions of one

single plaintext. Even though the trace number is possibly

high, the best an attacker can do is to combine all the traces

to a single rather noise free trace of this one key-plaintext

pair. To perform a DPA, on the other hand, traces for multiple

different plaintexts are required. In the presence of a passive

physical attacker, Meas is therefore secure against first-order

DPA attacks given that both E NC and AE are SPA secure.

5.3.2 Passive attacks andmemory tampering

An active physical attacker who tampers with the memory

content can gain additional information by corrupting the

ciphertext of certain nodes. Namely, such tampering gives

side-channel information from the decryption of different

data for one single key. However, even with such tamper-

ing it is only possible to acquire one additional side-channel

trace for a specific key. This is due to the fact that every tam-

pering is detected as soon as the leaf node is authenticated.

Handling the authentication error involves restoring authen-

ticity and thus re-keying which makes the gathering of further

123

146 Journal of Cryptographic Engineering (2019) 9:137–158

traces impossible. As a result, the number of acquirable traces

(i.e., under the same key, but with different ciphertexts) is

clearly bounded by two. Given the assumptions in related

work on leakage-resilient cryptography [46,53,56], bound-

ing the input data complexity per key by two makes Meas

secure against first-order DPA for malicious memory corrup-

tion.

5.3.3 Passive attacks, memory tampering and restarts

The side-channel security of Meas relies on the assumption

that tree operations are performed atomically. This means

that, e.g., once a read operation is started, all steps involved

in Meas, i.a., the MAC verification and the re-keying on

authenticity failure, must be performed and completed. This

assumption holds true for a running device since physical

fault attacks on the leaking chip are outside the threat model.

However, restarting the device during operation can break

this assumption. In this case, attackers can use a combination

of power cycling and memory tampering to collect arbitrar-

ily many side-channel traces and perform a first-order DPA

against a non-volatile key. However, this attack is easily pre-

vented when the concrete use case is known.

For the encryption and authentication of RAM, there is

simply no reason to maintain persistent keys between sys-

tem restarts. Similar to SGX, the device generates a new

random key on startup which effectively thwarts the attack.

For NVM, however, a persistent root key is unavoidable. Yet,

there are easy and secure solutions for NVM too. For exam-

ple, one could store one additional bit on the leaking chip to

record whether a presumably atomic operation is currently

active. This allows to detect aborted operations in Meas on

startup and thus to take further actions, e.g., counting and

storing the number of aborted operations on the leaking chip

and appropriate error handling when a certain threshold is

reached. Such countermeasures can also be integrated with

the transaction/journaling functionality of a file system.

Summarizing, Meas itself does not contain any mecha-

nism to deal with malicious power cycling. However, for both

RAM and NVM simple and cheap solutions are available.

6 Higher-order DPA security

The tree construction presented in the previous section pro-

vides memory confidentiality and authenticity in the presence

of a first-order side-channel adversary. However, profiled,

second-order attacks as outlined in Sect. 4 still reveal the con-

tent of the tree nodes protected by the means of re-keying.

Since the loss of confidentiality of a node close to the root

would also reveal large chunks of the protected memory, i.e.,

all child nodes, protection against higher-order DPA is desir-

able.

In this section, we propose masking of the plaintext values

to extend the protection of Meas to higher-order DPA. The

extension works with cryptographic primitives implemented

without DPA countermeasures and allows to dynamically

adjust the protection order depending on the actual threat.

6.1 Concept

The basic idea to provide higher-order DPA security is to add

a masking scheme (cf. Sect. 3.4.1) to Meas. However, unlike

the masking of specific cryptographic implementations, the

proposed data masking scheme operates with unprotected

primitives. Therefore, the plaintext data in each tree node of

Meas is first masked, and then the masked plaintext and the

masks are encrypted separately and both stored in memory.

On decryption, both the masked plaintexts and the masks

are decrypted and the masks applied to obtain the original

plaintext value.

The masking scheme requires new masks to be chosen

whenever the key of a tree node is changed. This is the case

on every write access to a specific node. As a result, the data

being encrypted is randomized. This prevents that constant

data is encrypted under different keys. Moreover, it requires

adversaries trying to learn a constant plaintext using profiled

attacks such as described in Sect. 4 to additionally extract

information on every single mask from the side-channel.

Therefore, the order of the attack increases accordingly.

6.2 Masking details

The following masking approach can be applied accordingly

to both the intermediate nodes, which use an encryption

scheme E NC , and the leaf nodes, which use an authenti-

cated encryption scheme AE . However, for simplicity we

only consider the encryption of an arbitrary tree node using

an encryption scheme E NC .

When encrypting a tree node in Meas, the node’s plaintext

p is split into b + 1 blocks p0, . . . , pb according to the size

of the underlying encryption primitive, i.e., 128 bits in case

of AES. In order to protect this node against d-th order DPA,

d − 1 random and secret masks m0, . . . , md−2 have to be

generated. These masks are then applied to each plaintext

block pi to give random values ri :

ri = pi ⊕ m0 ⊕ · · · ⊕ md−2 0 ≤ i ≤ b.

In the actual encryption, both the masks m0, . . . , md−2

and the random values r0, . . . , rb are processed and the

respective ciphertext c is stored in memory:

c = E NC(dek; m0|| · · · ||md−2||r0|| · · · ||rb).

123

Journal of Cryptographic Engineering (2019) 9:137–158 147

Whenever the node has to be read, the ciphertext is

decrypted to give m0|| . . . ||md−2||r0|| . . . ||rb. To obtain the

plaintext blocks pi , the masking is reverted by again xor-ing

all masks m0, . . . , md−2 to each block ri .

6.3 Side-channel discussion

The re-keying of the (authenticated) encryption scheme guar-

antees that adversaries are not capable of building suitable

DPA power models from the observation of ciphertexts and

thus prevents DPA against the key completely.

To prevent the loss of plaintext confidentiality from the

profiled, second-order attacks outlined in Sect. 4, the pro-

posed masking scheme randomizes the plaintext input using

d −1 random, secret masks. As a result, the scheme requires

adversaries to combine side-channel information from (d+1)

different values to recover the plaintext, i.e., to perform a

(d + 1)-th order DPA. In particular, such DPA requires to

learn side-channel information on the varying key, an inter-

mediate value in the cipher, and the d −1 masks. On the other

hand, the masking scheme requires to additionally encrypt

d − 1 masks in each tree node. However, for a properly cho-

sen encryption scheme E NC , these encryption operations

cannot be exploited in a DPA, because both the masks and

the keys are random and always changed simultaneously on

every write access to the respective tree node.

Unfortunately, using the same masks for multiple encryp-

tion blocks within a tree node can yet give side-channel

leakages with an order below d +1. For illustration, we con-

sider a single mask m0, i.e., d = 2. In this case, attackers

could exploit the combination of m0 with b + 1 different

plaintext blocks within a tree node to learn the mask m0 in

a second-order side-channel attack with unknown input and

output. Once m0 is known, m0 can be used to learn a con-

stant plaintext block pi in the same tree node using another

second-order attack.

However, such lower-order attacks are impractical for

Meas for two main reasons. First, in order to perform a lower-

order attack on a constant pi , an attacker must initially learn

all the masks m0, m′
0, m′′

0, . . . as they are changed upon re-

keying. Second, the number of different operations with a

certain mask m0 is bounded by the number of b + 1 plain-

text blocks in each tree node. For example, a 4-ary instance

of Meas might reuse the same mask four times, which will

typically not suffice to recover the mask. Consequently, the

data complexity for each mask is limited in the same way as

it is limited for each key within Meas, making lower-order

attacks to learn the masks practically infeasible. Contrary to

that, the number of different keys used for a constant plaintext

block pi is potentially unlimited.

The data complexity for each mask depends on the num-

ber of plaintext blocks in a tree node that share the respective

mask. This number of plaintext blocks depends on the tree

arity a for intermediate nodes, and on the data block size sb

for data leaf nodes. Hence, both the data block size and the

tree arity must be chosen to give a data complexity per mask

that suits the device’s leakage behavior. Hereby, note that

learning the masks involves at least a second-order attack set-

ting with unknown input and output, which usually allows for

higher data complexities than for keys that encrypt/decrypt

known plaintexts or ciphertexts.

From an implementation perspective, the sum of plaintext

and the masks must be stored in a register prior to the encryp-

tion operation for the masking to protect Meas also in the

presence of hardware glitches. This is automatically the case

if the masking is implemented in software. Hereby, the result

is stored in a register and may then, e.g., be further processed

in a cryptographic hardware accelerator.

Besides, we also emphasize that profiled DPA attacks such

as in Sect. 4—which are counteracted by the proposed mask-

ing scheme—are quite hard to conduct on state-of-the-art

systems. For example, while the unknown plaintext template

attack in [28] was performed against software implementa-

tions on 8-bit and 32-bit microcontrollers, a profiled DPA

will take significantly more effort on hardware implemen-

tations embedded in a complex system-on-chip. Moreover,

the attack complexity also rises rapidly with the attack

order. As a result, small protection orders will already be

sufficient for Meas in practice. However, a detailed anal-

ysis of the side-channel leakage of a device implementing

Meas is indispensable for a proper choice of the protection

order.

6.4 Implementation aspects

The definite choice of the implemented protection order

allows for various trade-offs influenced by several param-

eters: the cost for storing the masks, the concrete leakage

behavior of the device, and the risk. Hereby, the leakage

behavior and the cost for storing the masks are closely cou-

pled.

A DPA is more likely to be successful on a device the

more side-channel leakage the device gives. Therefore, a

higher protection order is needed the more the device leaks,

which leads to higher storage costs for masks. Alternatively,

the leakage of the device might be reduced by hiding coun-

termeasures [38] in the implementation, such as shuffling.

However, such countermeasures can only be built into newly

designed devices. Nevertheless, besides the actual strength of

a potential attacker, the actual leakage behavior of the device

forms the basis for the choice of the protection order and thus

memory cost.

Besides, the choice of the protection order is also strongly

influenced by the concrete risk of an attack. In more detail, a

trade-off between the protection order and the risk is possible.

Namely, the higher the risk of an attack to a specific block,

123

148 Journal of Cryptographic Engineering (2019) 9:137–158

Fig. 3 Schematic overview of

ENC in Meas-v1

Algorithm 1 Specification of Meas-v1

Encryption: E NC(k0; p)

Input: key k0 ∈ {0, 1}skey , plaintext p ∈ {0, 1}∗

Output: ciphertext c ∈ {0, 1}∗

p0, . . . , pu−1 ← b-bit blocks of p

S ← k0||0
sstate−skey

S ← f r1 (S)

for i = 0, . . . , u − 1 do

k ← S[0 . . . skey − 1]

ci ← E(k; pi)

S ← f r2 (S)

return c0|| . . . ||cu−1

Authenticated Encryption: AE(k0; p)

Input: key k0 ∈ {0, 1}skey , plaintext p ∈ {0, 1}∗

Output: ciphertext c ∈ {0, 1}∗, tag t ∈ {0, 1}stag

p0, . . . , pu−1 ← b-bit blocks of p

S ← k0||0
sstate−skey

S ← f r1 (S)

for i = 0, . . . , u − 1 do

k ← S[0 . . . skey − 1]

ci ← E(ki ; pi)

if i 	= 0 then

S ← (S[0 . . . b − 1] ⊕ ci−1)||S[b . . . sstate − 1]

S ← f r2 (S)

S ← f r1 ((S[0 . . . b − 1] ⊕ cu−1)||S[b . . . sstate − 1])

c ← c0|| . . . ||cu−1

t ← S[0 . . . stag − 1]

return (c, t)

the better should be the protection of the respective block,

i.e., the higher should be the protection order. Concretely

in Meas, the tree nodes stored in levels closer to the root

are a more interesting target for an attacker since revealing

the keys stored in these nodes would allow to decrypt large

parts of the memory. Therefore, tree nodes closer to the root

are at higher risk and thus need a higher protection order.

However, the number of nodes in one tree level decreases the

closer the respective level is to the root. As a result, increasing

the protection order for tree nodes at higher risk has only

little memory overhead in Meas and thus is an inexpensive

improvement of security against higher-order DPA.

7 Instantiation

The design of Meas requires an SPA-secure block encryption

scheme E NC and an SPA-secure authenticated encryption

scheme AE . Using existing proposals of leakage-resilient

block encryption [56] and a leakage-resilient MAC [45],

both E NC and AE can be easily obtained from unprotected

cryptographic implementations of standard primitives like

AES and SHA-2 and the generic composition encrypt-then-

MAC [8]. However, for the encryption and authentication of

RAM, more lightweight constructions for E NC and AE are

desirable.

In this section, we present two lightweight Meas instances

for the purpose of RAM encryption and authentication. The

first, Meas-v1, uses the lightweight block cipher PRINCE for

encryption, and the sponge Ascon for key stream generation

and authentication. As a result, Meas-v1 uses a fresh key

for the encryption of each plaintext block to prevent DPA

on the key. The second, Meas-v2, improves on Meas-v1 in

terms of efficiency in trade for an slightly increased number

of, e.g., 4 or 8, different inputs processed under the same

key. In particular, it omits key derivation in intermediate tree

nodes to instead directly access the required keys using the

tweakable block cipher QARMA. The security of Meas-v2

thus relies on the infeasibility of DPA for 4- or 8-limited data

complexity per key.

7.1 Meas-v1

Our instance Meas-v1 is intended for RAM encryption and

authentication and constructs E NC and AE by combining

two different primitives: a lightweight block cipher E for

encryption, and an r -round permutation f r for sponge-based

key derivation and authentication. While E NC uses the

sponge merely for key stream generation, the sponge duplex

construction [9] is used in AE to also absorb the computed

ciphertext and to compute the tag. Algorithm 1 gives the

description of the respective algorithms. Their schematic is

illustrated in Figs. 3 and 4, respectively. Since Meas applies

(authenticated) encryption to message blocks of fixed, well-

defined length, we describe E NC and AE without a padding

rule and assume the messages to be a multiple of the b-bit

block size of E . Note that for optimization, AE absorbs the

123

Journal of Cryptographic Engineering (2019) 9:137–158 149

Fig. 4 Schematic overview of AE in Meas-v1

Algorithm 2 Specification of E NC in Meas-v2

Encryption: E NC(k0; p)

Input: key k0 ∈ {0, 1}skey , plaintext p ∈ {0, 1}∗

Output: ciphertext c ∈ {0, 1}∗

p0, . . . , pu−1 ← b-bit blocks of p

for i = 0, . . . , u − 1 do

ci ← E(k0; addr(pi); pi)

return c0|| . . . ||cu−1

ciphertexts ci with some delay. This allows to compute the

permutation f r2 and the encryption E in parallel.

We use PRINCE [11] as the block cipher E and the Ascon

permutation [16] with r1 = 8 and r2 = 6 rounds for the

sponge. PRINCE uses a key of skey = 128 bits to pro-

cess blocks of b = 64 bits and the Ascon state S is sized

sstate = 320 bits. These parameters allow to implement both

E NC and AE with adequate throughput and low latency in

hardware. The size of the tag stag can be chosen according

to the desired security level, e.g., stag = 64 or 128 bits.

7.2 Meas-v2

One performance bottleneck of Meas-v1 is the sequential

key derivation within a tree node. On the other hand, direct

access to a certain key within an intermediate tree node

can significantly increase performance. By relaxing the con-

straints for DPA security, direct access to certain keys within

a specific tree node becomes feasible.

For this purpose, we construct E NC using a tweakable

block cipher. This allows to efficiently encrypt/decrypt parts

of a tree node similar to ECB, but provides better security

in terms of ciphertext distinguishability. Given a tweakable

block cipher E(k; τ ; p) that encrypts a b-bit plaintext p with

the key k and tweak τ , a tree node comprising u plaintext

blocks p0, . . . , pu−1 is thus encrypted by simply computing

E(k; addr(pi); pi) for i = 0, . . . , u − 1, where the tweak τ

is set to be the address of the respective pi in memory. This

is summarized in Algorithm 2.

On the other hand, we keep the design of AE in Meas-v2

the same as in Meas-v1. However, to avoid the implemen-

tation of another cipher for the use in AE , we recommend

using the same tweakable cipher E(k; τ ; p) in AE as well

and set the tweak τ in AE to either the block address or a

constant. As the tweakable block cipher E(k; τ ; p), we use

the lightweight design QARMA-64 [4] with the parameter

r = 6.

In terms of DPA, the mentioned approach increases the

number of different inputs processed using a single key

according to the number of plaintext blocks u in a tree

node. However, for many practical implementations DPA

will remain infeasible also for, e.g., 4 or 8, different encryp-

tions using the same key. This assumption facilitates the

efficient and secure implementation of Meas-v2 for, e.g.,

binary and 4-ary trees.

8 Implementation

The two lightweight instances Meas-v1 and Meas-v2 are

designed for RAM encryption and authentication. In order

to show their practical applicability to this use case, an

implementation allowing the evaluation of performance and

implementation cost is desirable. In this section, we thus

present an implementation of both Meas instances on the

Xilinx Zynq platform.

8.1 Platform

For the implementation, we chose a ZedBoard featuring the

Xilinx Zynq XC7Z020 SoC and 512 MB DDR3 RAM. This

SoC consists of two parts: (1) a processing system (PS) com-

prising a dual-core ARM Cortex-A9 processor as well as

several peripherals, and (2) a Xilinx Artix-7 programmable

logic (PL). The PS is connected to the PL via 32-bit advanced

extensible interfaces (AXI). The PL has access to the RAM

via 64-bit AXI.

For memory encryption and authentication, we designed

an encryption pipeline capable of Meas that is placed in

123

150 Journal of Cryptographic Engineering (2019) 9:137–158

Fig. 5 Zynq platform with Meas pipeline

Fig. 6 Memory layout for 4-ary Meas

the PL. As shown in Fig. 5, the software running on the

ARM core is configured such that the processor accesses the

main memory via the PL, where all accesses are transparently

encrypted and authenticated using Meas.

8.2 Memory layout

The implementation of Meas requires to place all the tree

nodes as well as their metadata somewhere in the RAM. For

this purpose, and as shown in Fig. 6, the physical memory

is partitioned into two parts. In the first part, all data (leaf)

nodes of Meas are placed. These also contain their respective

authenticity tags. The consecutive, second part contains all

intermediate tree nodes storing the keys.

8.3 Address translation

In order to provide the functionality of Meas transparently to

the CPU, a translation of the CPU’s memory requests to the

encrypted physical memory is required. Without considera-

tion of tree node fetches, Fig. 7 illustrates this CPU address

translation. The CPU memory request is split according to

the block size of the data (leaf) nodes. The Meas imple-

mentation then issues independent requests to each of these

data leaf nodes. Hereby, the size of the authentication tags is

taken into account, which causes both an address shift and

additional tags to be fetched.

However, the tree construction requires to also load sev-

eral keys to decrypt a certain data (leaf) node. These key load

operations are handled the same way as the requests to the

data leaf nodes themselves. In particular, the Meas imple-

mentation issues, translates, and processes the respective key

load requests to intermediate tree nodes transparently without

further CPU interaction and follows an address translation

similar to data leaf nodes.

8.4 MEAS pipeline

The pipeline architecture of our Meas implementation is

visualized in Fig. 8. Its design results from the typical data

flow in encrypted memory accesses. In particular, all requests

run through a series of modules performing different actions.

Hereby, the single modules interact by using a simple hand-

shake mechanism. The width w of the respective data stream

can be set to either 64 or 128 bits.

Our implementation communicates with CPU and mem-

ory via five different AXI4 interfaces: (1) the CPU address

port, (2) the CPU read port, (3) the CPU write port, (4) the

memory read port, and (5) the memory write port. Read

requests use the modules shaded in light gray. Write requests

are implemented as read–modify–write operations and addi-

tionally use the modules depicted in dark gray. Dashed lines

mark modules needed to process or optimize key-related

requests to intermediate tree nodes.

8.4.1 Data flow

The implementation in Fig. 8 processes a typical memory

request as follows. First, the CPU issues a request on the

CPU Address Port. The Request Modifier then

splits and aligns the request according to the block size of

the data (leaf) nodes. It further issues the respective key

load requests within intermediate tree nodes. The Memory

Reader fetches the required (encrypted) data from the

main memory via the Memory Read Port. The Key

Injector then inserts the key to be used for decryption

into the data stream fetched from memory. This key might

either be a root key stored in the Secure Root, or be the

result of a previous key load request that is obtained by the

Key Processing module. The Decryption module

performs the actual decryption procedure according to our

instances in Sect. 7.

For key load requests, the requested key is extracted from

the decrypted data using theKey Processing Module.

For read requests, the decrypted data is filtered according

to the original CPU request by the Data Filter and

returned to the CPU via the CPU Read Port by the Read

Responder. To correctly handle CPU read requests with

wrapping burst functionality, the Wrap Burst Cache

performs a re-ordering of the decrypted data if necessary.

For write requests, the Data Modifier modifies the

decrypted data according to the data received from the CPU

via the CPU Write Port. This is where the actual read–

modify–write procedure takes place. The modified data is

encrypted again using the Encryption module and writ-

ten to the main memory via the Memory Write Port by

the Memory Writer.

To improve the performance of the Meas pipeline, the

Secure Root can implement an arbitrary number of roots

123

Journal of Cryptographic Engineering (2019) 9:137–158 151

to support multiple parallel trees in memory. Multiple roots

effectively reduce both the tree height and the memory over-

head in case more secure memory is available on the secure

chip. To further improve the performance of read requests,

the Meas pipeline incorporates a Key Cache for faster

key retrieval within the tree. For this purpose, the Cache

Fetcher queries the cache for the key requested in a key

load request. On a hit, the key load request is dropped and the

key forwarded. Otherwise, the key load request is forwarded

without modification. The Key Cache is filled using the

Cache Writer, which receives the keys to be stored in

the cache from the Key Processing module.

8.4.2 Re-keying

Write requests in Meas require the re-keying of all nodes

on the path from the root to the respective data leaf node.

This re-keying operation takes place in the Secure Root

for the root keys themselves, and in the Key Processing

module for non-root keys stored within the tree. In particular,

besides filtering out the decryption keys from the decrypted

data in key load requests, the Key Processing updates

the respective keys during write requests. The new key is gen-

erated by the pseudo-random number generator PRNG. This

PRNG uses a Keccak[400] instance that is initialized with a

random secret and that securely sequeezes a secret, pseudo-

random stream. The freshly generated keys are provided to

the Data Modifier to update the keys in the respective

write requests and for encryption.

9 Evaluation

Meas is a novel approach to provide authentic and confiden-

tial memory with DPA protection. While there already exist

several concepts for memory encryption and authentication

(cf. Sect. 2), all of them lack the consideration of side-channel

attacks.

In this section, we compare Meas with these state-of-the-

art techniques regarding security properties, parallelizability,

randomness, and memory overhead. Our methodology to

assess the memory overheads is independent of any con-

crete implementation, precisely states the asymptotic mem-

ory requirements of all schemes, and is realistic for any

real-world instance. In addition, we evaluate the practical

performance of our Meas implementation from Sect. 8 com-

pared to TEC trees when encrypting RAM. It shows that

Meas efficiently provides first-order DPA-secure memory

encryption and authentication at roughly the same mem-

ory overhead and performance as existing authentication

#

Fig. 7 Data node requests for 4-ary Meas

Fig. 8 Meas encryption and authentication pipeline

123

152 Journal of Cryptographic Engineering (2019) 9:137–158

Table 1 Comparison of Meas

with other constructions for

scalable authentic and/or

confidential memory which

offer block-wise random access

Auth. Conf. DPA security Parallelizable Memory overhead

Read Write

Meas � � �
a

a−1
·

skey

sb
+

stag

sb

PAT � � �
a

a−1
·

stag+snonce

sb

TEC tree � � � �
a

a−1
·

stag+snonce

sb

Merkle tree � � �
a

a−1
·

shash

sb

techniques, which, on the other hand, completely lack the

consideration of DPA at all. In particular, the 4-ary instance of

Meas-v2 is a highly suitable choice for DPA-secure encryp-

tion and authentication of RAM.

9.1 Security properties

Comparing the contestants in Table 1 regarding security

properties shows that only Meas and TEC trees provide both

confidentiality and authenticity in the form of spoofing, splic-

ing and replay protection. DPA security, on the other hand, is

only featured by Meas and Merkle trees. However, Merkle

trees do not provide confidentiality and their DPA security

can be considered a side effect. Namely, the hash functions

used in Merkle trees simply do not use any secret material,

i.e., keys or plaintexts, which is the common target in DPA

attacks.

9.2 Parallelizability

A more performance oriented feature, on which previous

tree constructions typically improved on, is the ability to

compute the cryptographic operations involved in read and

write operations in parallel. Having this property is nice in

theory, but is in practice not the deciding factor to gain per-

formance. To make use of a scheme’s parallelism, multiple

parallel implementations of the cryptographic primitives as

well as multi-port memory, to read and write various nodes

in parallel, are required. Since these resources are typically

not available, a common, alternative approach to improve

performance is the excessive use of caches.

In Meas, due to the key encapsulation approach used

to achieve its DPA security, parallelizing the computations

within the encryption scheme is not possible. However, this is

not necessarily a problem preventing the adoption of Meas in

practice since on-chip computation is very fast compared to

off-chip memory accesses. Additionally, like for all authenti-

cation trees, caches for intermediate nodes are a very effective

and important measure to reduce the average latency. In sum-

mary, the performance of any authentication tree (and Meas)

is mainly determined by the tree height, which depends on

both the tree arity and the number of blocks in the authen-

ticated memory, and the cache size. As a result, given a

concrete implementation of the cryptographic primitive, the

actual runtime performance of all authentication trees is

expected to be quite similar, which is also emphasized by

the implementation results following in Sect. 9.6.

9.3 Memory overhead

Table 1 further contains the memory overhead formulas that

have been derived for each scheme. These formulas take into

account the tree arity a, and the sizes for data blocks sb,

nonces snonce, hashes shash , tags stag , and keys skey . The

overhead formulas neglect the influence of the actual num-

ber of data blocks m given that it vanishes with rising node

counts. The overheads therefore have to be considered as an

upper bound which gets tight with m → ∞. This approach

gives exact and comparable results that are independent of the

actual implementation and that are realistic for any memory

with more than 128 data blocks.

The different parameters involved may make the over-

head comparison seem difficult at first glance. However,

it gets quite simple when actual instantiations are consid-

ered. Instantiating the trees for a fixed security level with

snonce = stag = skey and shash = 2 · stag , for example,

shows that Merkle trees, PATs, and TEC trees have identi-

cal overhead. The overhead of Meas, on the other hand, is

even lower, especially with small arity. This is due to the

fact that in Meas only leaf nodes are directly authenticated.

On the other hand, PATs and TEC trees directly protect the

authenticity of every tree node.

The memory overhead of Meas, PATs, Merkle trees, and

TEC trees is also visualized in Fig. 9 for different block

sizes. For practical instantiations, the block size will be cho-

sen according to the system architecture, namely page size,

sector size, or cache line size. Both the sectors of modern

disks and memory pages in state-of-the-art systems are sized

4096 bytes (= 32768 bits). Such large block size is out of

scope of Fig. 9 as it has negligible memory overhead in

any case. Besides, the memory overhead for a block size

of 4096 bits (sector size in older hard disks) is also very low,

e.g., 7.3% for 4-ary Meas. However, the memory overhead

of Meas for block sizes fitting nowadays cache architec-

tures is also practical given the security features it provides.

While today’s typical cache line size is 512 bits, modern

123

Journal of Cryptographic Engineering (2019) 9:137–158 153

1024 2048 4096 8192 16384
0

20

40

60

80

100

120

140

512

Block Size [bit]

O
v
er

h
ea

d
[%

]

Meas (1st-order DPA security)

Merkle Tree / PAT / TEC Tree

Meas (2nd-order DPA security)

Meas (3rd-order DPA security)

Fig. 9 Memory overhead comparison for 4-ary trees depending on pro-

tection order and block size with a security level of 128 bits (a = 4,

snonce = stag = skey = 128, shash = 256)

CPUs often come with features such as Adjacent Cache Line

Prefetch [31], which effectively double the cache line fetches

from memory to 1024 bits. In a 4-ary Meas, for example,

such block size results in decent 29.2% memory overhead.

Note that these relatively small overheads—quite sim-

ilar to existing authentication techniques—in combination

with additional and exclusive DPA protection are the main

advantage of Meas. Using existing memory encryption and

authentication schemes with DPA-protected implementa-

tions, on the other hand, would result in overheads of a

factor of four to a few hundred [6,10,42,45] and thus be

far more expensive, eventually rendering memory encryp-

tion and authentication in many applications impractical.

9.4 Memory overhead withmasking

The memory overhead of Meas with higher-order DPA pro-

tection additionally depends on the protection order d and

the size of the masks smask . This size smask typically equals

the block size of the cryptographic primitive sstate. A gen-

eralized version of the limit of the memory overhead as the

number of memory blocks approaches infinity is:

a

a − 1
·

skey + (d − 1) · smask

sb

+
stag

sb

.

In addition to the memory overhead without masking,

Fig. 9 shows the memory overhead with masking for a 4-ary

tree and 128-bit security, i.e., the keys, the tags, and the masks

are sized 128 bits. It shows that masking adds multiplicatively

to the memory overhead for all block sizes. However, for

larger block sizes, the memory overhead of Meas becomes

negligible regardless of the protection order. Note that the

1 2 3 4 5
0

20

40

60

80

100

120

140

Protection Order

O
v
er

h
ea

d
[%

]

binary Meas

4-ary Meas

8-ary Meas

16-ary Meas

Fig. 10 Memory overhead of Meas depending on arity and protection

order (1024-bit blocks, 128-bit security)

protection order stated for Meas in Fig. 9 applies to all nodes

in Meas. If, however, and as explained in Sect. 6.4, differ-

ent protection orders are used for nodes at different risk, the

depicted plots mark the border cases for the actual memory

overhead. For example, if low-level tree nodes do not use

masking (i.e., having first-order DPA security) and first-order

masking is applied to all other nodes (i.e., having second-

order DPA security), the actual memory overhead is lower-

and upper-bounded by the plot with first- and second-order

protection, respectively.

An evaluation of the memory overhead of Meas over dif-

ferent protection orders and arity is depicted for 1024-bit

blocks and 128-bit security in Fig. 10. Hereby, it turns out

that the memory overhead is strongly influenced by the tree’s

arity leading to two main observations. First, a higher arity

clearly lowers the memory overhead, but for an arity higher

than eight, the reduction resulting from another increase of

the arity becomes quite small. Second, the memory over-

head rises linearly with the protection order, but the increase

is stronger the lower the tree’s arity is. This is due to the

masks for randomization of the plaintext being chosen and

stored for each tree node. As a result, higher arity leads to

more plaintext blocks sharing such masks in one tree node

and thus lower memory overhead due to the masking.

9.5 Randomness

Meas consumes a considerable amount of randomness. In

particular, fresh random keys and masks must be chosen for

all nodes on the path from the root to the leaf whenever

a write operation is performed. For Meas with protection

order d, this sums up to (skey + (d − 1) · smask) · (l + 1)

random bits needed on each write operation, where l is the

123

154 Journal of Cryptographic Engineering (2019) 9:137–158

tree height. Implementations of Merkle trees, PATs and TEC

trees without consideration of side channels, however, do not

require any random value if all nonces are chosen as counters.

Yet, cipher implementations that protect PATs and TEC trees

against side-channel attacks rely on significant amounts of

randomness too. Namely, implementations with protection

order d split their state into (d + 1) shares. This demands for

at least d · sstate random bits per cipher invocation that get

necessary for all accessed nodes on both reads and writes.

Contrary to that, Meas does not require randomness during

read accesses.

9.6 Implementation results

We extensively evaluated the performance of our Meas

implementation from Sect. 8. In particular, we ran both

Meas-v1 and Meas-v2 on the Digilent ZedBoard using dif-

ferent tree arities. As a state-of-the-art reference, we further

implemented and ran a variant of TEC trees with different

arities based on the same architecture as given in Fig. 8. These

TEC trees use Ascon [16] for authenticated encryption. For

all our evaluations, we used an unprotected implementa-

tion of Ascon that computes three permutation rounds per

cycle.

The evaluations for TEC trees were done with 64-bit coun-

ters (nonces) and 64-bit tags, which is a common instance for

TEC trees in RAM [25]. For our evaluations of Meas, we

used a side-channel protection order d = 1 and 128-bit keys.

Besides, we operated Meas with 128-bit tags as 64-bit tags

only gave negligibly better results. Another relevant evalua-

tion parameter is the data block size sb. A suitable choice for

sb typically is the processor’s cache line size. While the cache

of the ARM Cortex-A9 processor on the ZedBoard’s Xilinx

XC7Z020 SoC features 256-bit cache lines, we configured

the cache to always fetch 512-bits from memory by enabling

the double line fill feature [3]. For this reason, both Meas

and the TEC tree use a data block size of sb = 512 bits. To

speed up our designs, we made use of 1024 root keys (or root

nonces for TEC trees) and a cache with 1024 slots to store

keys (or nonces, respectively).

All our implementations use the 32-bit GP0 AXI interface

to the CPU and the 64-bit HP0 AXI interface to the memory.

As a result, a natural choice for the widthw of the internal data

stream that connects the various modules in Fig. 8 is 64 bits.

For the TEC tree implementation, we hence set w = 64 bits.

On the other hand, Meas operates heavily on 128-bit keys,

which could make a 128-bit internal stream more efficient.

For this reason, we evaluated the performance impact of the

internal data stream width by running both Meas-v1 and

Meas-v2 with both w = 64 and w = 128 bit internal stream

width.

In our evaluations, we booted Linux (Xilinx Linux ker-

nel 4.4, tag 2016.2) [59] in encrypted and authenticated

memory, and measured the memory performance using a

set of benchmarks. In particular, we executed tinymembench

0.3 [51] and LMBENCH 3.0-a9 [52] for determining the

memory bandwidth and latency, respectively. We performed

these benchmarks for 256 MB of encrypted and authenti-

cated memory provided to the ARM CPU and an FPGA

clock frequency of 50 MHz. Note that at 50 Mhz, the 32-

bit GP0 interface bounds the achievable memory bandwidth

with 200 MB/s.

9.6.1 Memory bandwidth

Figures 11 and 12 show the read and the write memory

bandwidth for all our designs and different tree arities. As

mentioned before, we compare both Meas-v1 and Meas-

v2 with 64- and 128-bit internal data stream width to our

TEC tree implementation. As expected, it shows that Meas-

v2 performs clearly better than Meas-v1 in terms of read

TEC

TREE

MEAS-v1

w=64bit

MEAS-v1

w=128 bit

MEAS-v2

w=64bit

MEAS-v2

w=128 bit

0

20

40

60

80

4
3

2
6

3
3

3
2

4
2

4
9

3
1 3

5

4
2

4
9

4
6

2
7 2
9

4
6

5
2

R
ea

d
B

an
d
w

id
th

[M
B

/s
]

Binary Tree 4-ary Tree 8-ary Tree

Fig. 11 Read performance determined with tinymembench (NEON

read prefetched (64 bytes step))

TEC

TREE

MEAS-v1

w=64bit

MEAS-v1

w=128 bit

MEAS-v2

w=64bit

MEAS-v2

w=128 bit

0

5

10

15

20

1
0

6

7

8

9

1
4

7

8

1
0 1

1

1
4

6 6

9 9

W
ri

te
B

an
d
w

id
th

[M
B

/s
]

Binary Tree 4-ary Tree 8-ary Tree

Fig. 12 Write performance determined with tinymembench (NEON

fill)

123

Journal of Cryptographic Engineering (2019) 9:137–158 155

bandwidth, yielding up to 52 MB/s. Meas-v2 only fetches

and decrypts the actually required keys from within interme-

diate tree nodes and thus allows for faster read access. On

the other hand, the write performance is generally lower and

only a little better for Meas-v2 than for Meas-v1, because

the re-keying step requires to read, modify, and re-encrypt full

intermediate nodes in Meas-v2 as well. However, the slightly

better write performance of up to 11 MB/s is caused by E NC

lacking initialization and key derivation in Meas-v2. In terms

of the internal data stream width, it shows that despite the

64-bit memory interface, the 128-bit internal interface gives

better results for both Meas-v1 and Meas-v2. This is mainly

due to the instant availability of the 128-bit keys from caches

in the read case, and the faster processing of decrypted keys

in the write case.

In terms of tree arity, 4-ary trees give the best write

bandwidth for both Meas and the TEC tree. As a closer inves-

tigation shows, an arity of four results in the least amount of

data being processed when accessing a data block. Regard-

ing read bandwidth, 4-ary trees give the best performance for

TEC trees and Meas-v1. However, for Meas-v2 higher arity

leads to higher read performance, as Meas-v2 reduces the

amount of data to be read from memory during read accesses

by providing direct access to the keys within intermediate

tree nodes.

9.6.2 Latency

Figure 13 shows the latency of all our Meas designs and

the TEC tree for different arities. As the main bottleneck

of both memory bandwidth and latency is the processing of

all the tree nodes, our latency results behave quite similarly

to the measured read bandwidth in Fig. 11. In particular,

Meas-v2 offers clearly better latency than Meas-v1 across

all arities, namely down to 1315 ns (roughly 65 FPGA clock

cycles), while the TEC tree behaves quite similarly to Meas-

TEC

TREE

MEAS-v1

w=64bit

MEAS-v1

w=128 bit

MEAS-v2

w=64bit

MEAS-v2

w=128 bit

0

1,000

2,000

3,000

1
,
8
3
0

2
,
9
1
3

2
,
4
0
6

2
,
3
0
9

1
,
8
2
8

1
,
4
2
6

2
,
4
2
3

2
,
1
7
5

1
,
7
3
0

1
,
3
9
6

1
,
5
4
4

2
,
6
6
9

2
,
5
0
3

1
,
5
8
1

1
,
3
1
5

L
at

en
cy

[n
s]

Binary Tree 4-ary Tree 8-ary Tree

Fig. 13 Memory latency determined with LMBENCH (lat_mem_rd

8M)

TEC

TREE

MEAS-v1

w=64bit

MEAS-v1

w=128 bit

MEAS-v2

w=64bit

MEAS-v2

w=128 bit

0

10

20

30

40

4

8 8 8

9

1
9

3
0

3
0

3
3 3

5

3

6 6 6 6

U
ti

li
za

ti
on

[%
]

Flip Flops LUTs BRAMs

Fig. 14 FPGA utilization on XC7Z020 for 8-ary trees

v2. For the TEC tree and Meas-v1, an arity of four yields

the lowest latency. However, for Meas-v2 read accesses

become faster the higher the arity is. As before, an internal

data stream sized 128 bits yields lower latency than 64-bit

streams.

9.6.3 Resource utilization

Figure 14 shows the utilization of flip flops, look-up tables

(LUTs), and 36 KB block RAMs (BRAM) on the XC7Z020

FPGA SoC for Meas and the TEC tree. In total, this

XC7Z020 provides 106,400 flip flops, 53,200 LUTs, and 140

36 KB BRAMs. As the tree arity hardly influences hardware

utilization, we focus on the results for 8-ary trees. These

results show that all designs are dominated by logic, with an

utilization of up to 35 % of LUTs, while the demand for flip

flops and BRAMs stays below 10 %. Compared to the TEC

tree, Meas consumes 60–80% more logic, because it imple-

ments a (tweakable) block cipher and a PRNG in addition to

the Ascon permutation.

9.6.4 Discussion

Our evaluations indicate quite similar performance of TEC

trees and Meas-v2 and higher implementation cost for Meas

in general. However, our instances of Meas use 128-bit keys

and tags, while our TEC tree implementation operates with

smaller 64-bit nonces and tags. Besides, our TEC tree does

not offer DPA protection.

On the other hand, TEC trees equipped with protected

cryptographic implementations would suffer from signifi-

cantly lower performance than Meas. Namely, as previous

results [43] show, designing masked cryptographic imple-

mentations with low latency is difficult, because register

stages are needed to ensure side-channel security. For

example, the first-order protected, round-parallel Ascon

implementation from [24] requires three clock cycles per

123

156 Journal of Cryptographic Engineering (2019) 9:137–158

permutation round. To illustrate the effect of such imple-

mentation on the memory bandwidth, we integrated the

implementation from [24] into our pipeline from Sect. 8, but

omitted any efforts to generate the 320 bits of randomness

required per cycle. While this reduced resource utilization by

25% compared to the unprotected, unrolled implementation

of Ascon that computes three rounds per cycle, the read and

write bandwidth of the TEC tree drop to 2.6 and 0.9 MB/s,

respectively. Even when employing Ascon to encrypt and

authenticate memory without a tree and replay protection,

the bandwidth using the first-order masked implementation

merely reached 4.2 MB/s compared to roughly 100 MB/s [58]

when using the unprotected implementation.

Summarizing our evaluation results and especially taking

into account write performance and side-channel constraints,

we conclude that Meas-v2 with arity four is a DPA-secure,

highly practical, and hence suitable choice to encrypt RAM.

However, as 4-ary Meas-v2 encrypts four 128-bit keys per

intermediate tree node with a 64-bit cipher, 4-ary Meas-

v2 relies on the assumption of DPA being infeasible given

eight different encryptions per key. If DPA on such 8-limiting

construction is considered feasible, binary Meas-v2 and 4-

ary Meas-v1 are viable alternatives with solid performance

results and only four and two encryptions per key, respec-

tively.

10 Conclusion

Authentic and encrypted memory is a requirement for storing

and processing data in hostile environments where attack-

ers have physical access. The consideration of the imminent

threat of side-channel attacks against the involved crypto-

graphic primitives is thus the natural next step.

In this work, we therefore presented Meas, the first

Memory Encryption and Authentication Scheme which is

secure against DPA attacks. The scheme does not require

any DPA-protected primitive, allowing its use in COTS sys-

tems. Moreover, Meas provides fast random access on the

configured block level and can be adopted for all kinds of

use cases including RAM and disk encryption.

The scheme combines the concept of fresh re-keying

with authentication trees by storing the involved keys in

an encrypted tree structure. While this prevents first-order

DPA, masking of the plaintext values flexibly extends the

protection of Meas to higher-order DPA if required. Com-

pared to existing schemes, Meas exclusively offers DPA

protection by design at roughly the same memory overhead

and performance. This is a clear benefit over state-of-

the-art memory authentication and encryption techniques,

which would face impractical implementation and runtime

overheads for DPA-protected implementations if adapted

accordingly.

Acknowledgements Open access funding provided by Graz Univer-

sity of Technology. The research leading to these results has received

funding from the European Research Council (ERC) under the Euro-

pean Union’s Horizon 2020 research and innovation programme (Grant

Agreement No. 681402). Further, this work has been supported by the

Austrian Research Promotion Agency (FFG) under the Grant Number

845579 (MEMSEC).

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Appendix A: Authentication trees

In the following we describe three prominent examples of

authentication trees, namely Merkle trees [40], Paralleliz-

able Authentication Trees [27] (PAT), and Tamper Evident

Counter [18] (TEC) trees. Note, however, that there are also

hybrid variants like Bonsai Merkle trees [49], which use ele-

ments from both Merkle trees and PATs. The description

assumes binary trees, the operator || denotes concatena-

tion.

A.1 Merkle trees [40]

Merkle trees use a hash function H to hash each of the m

memory blocks pi :

hl,i = H(pi) 0 ≤ i ≤ m − 1.

These hashes hl,i are recursively hashed together in a

tree structure and the root hash h0,0 is put on the secure

chip:

h j,i = H(h j+1,2i ||h j+1,2i+1) 0 ≤ i ≤ m
2l− j − 1,

0 ≤ j ≤ l − 1.

A.2 Parallelizable authentication trees [27]

PATs use a nonce-based MAC and a key k to authenticate

each of the m data blocks pi using a tag tl,i :

tl,i = M AC(k; nl,i ; pi) 0 ≤ i ≤ m − 1.

The nonces nl,i are recursively authenticated in a tree

structure using again nonce-based MACs. While the key k

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Cryptographic Engineering (2019) 9:137–158 157

and the root nonce n0,0 must be stored on the secure chip,

all other nonces and the tags are stored publicly in off-chip

memory:

t j,i = M AC(k; n j,i ; n j+1,2i ||n j+1,2i+1) 0 ≤ i ≤ m
2l− j −1,

0 ≤ j ≤ l − 1.

A.3 Tamper evident counter trees [18]

While Merkle trees and PATs provide memory authentic-

ity, TEC trees additionally provide memory confidential-

ity. Therefore, TEC trees use Added Redundancy Explicit

Authenticity [20] (AREA) codes. Hereby, each plain mem-

ory block pi is padded with a nonce nl,i and then encrypted

with key k using a common block cipher:

cl,i = E(k; pi ||nl,i) 0 ≤ i ≤ m − 1.

For verification, a ciphertext cl,i is decrypted to p′
i ||n

′
l,i

and n′
l,i compared with the original nonce nl,i . Hereby, the

authenticity is ensured by the diffusion of the block cipher

as it makes it hard for the adversary to modify the encrypted

nonce nl,i . The nonce nl,i is formed from the memory block

address and a counter ctrl,i [18]. The nonce counters are

recursively authenticated using AREA codes in a tree struc-

ture. The key k and the root counter ctr0,0 are stored on the

secure chip:

c j,i = E(k; ctr j+1,2i ||ctr j+1,2i+1||n j,i) 0≤ i ≤ m
2l− j −1,

0 ≤ j ≤ l − 1.

References

1. Apple Inc.: Apple Technical White Paper: Best Practices for

Deploying FileVault 2 (2012). https://docplayer.net/281501-Best-

practices-for-deploying-filevault-2.html. Accessed Dec 2015

2. Apple Inc.: iOS Security (2015). https://www.apple.com/business/

docs/iOS_Security_Guide.pdf. Accessed Dec 2015

3. ARM.: Core Link™ Level 2 Cache Controller L2C-310 Technical

Reference Manual. ID080112

4. Avanzi, R.: The QARMA block cipher family. Almost MDS

matrices over rings with zero divisors, nearly symmetric even-

mansour constructions with non-involutory central rounds, and

search heuristics for low-latency s-boxes. IACR Trans. Symmetric

Cryptol. 2017(1), 4–44 (2017)

5. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bit-

slicing and masking at 1 Ghz. In: Cryptographic Hardware and

Embedded Systems—CHES 2015, pp. 599–619 (2015)

6. Belaïd, S., Grosso, V., Standaert, F.: Masking and leakage-resilient

primitives: one, the other(s) or both? Cryptology ePrint archive,

report 2014/053 (2014)

7. Belaïd, S., Santis, F.D., Heyszl, J., Mangard, S., Medwed, M.,

Schmidt, J., Standaert, F., Tillich, S.: Towards fresh re-keying with

leakage-resilient PRFs: cipher design principles and analysis. J.

Cryptogr. Eng. 4(3), 157–171 (2014)

8. Bellare, M., Namprempre, C.: Authenticated encryption: relations

among notions and analysis of the generic composition paradigm.

J. Cryptol. 21(4), 469–491 (2008)

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing

the sponge: single-pass authenticated encryption and other appli-

cations. In: 18th International Workshop on Selected Areas in

Cryptography, SAC 2011, Toronto, ON, Canada, 11–12 August

2011, Revised Selected Papers, pp. 320–337 (2011)

10. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A

more efficient AES threshold implementation. In: Progress in

Cryptology—AFRICACRYPT 2014, pp. 267–284 (2014)

11. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M.,

Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C.,

Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE—a low-latency

block cipher for pervasive computing applications (full version).

IACR Cryptology ePrint Archive 2012, 529 (2012)

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound

approaches to counteract power-analysis attacks. In: Advances in

Cryptology—CRYPTO 1999, pp. 398–412 (1999)

13. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Cryp-

tographic Hardware and Embedded Systems—CHES 2002, pp.

13–28 (2002)

14. Clavier, C., Reynaud, L.: Improved blind side-channel analysis by

exploitation of joint distributions of leakages. In: Cryptographic

Hardware and Embedded Systems—CHES 2017, pp. 24–44 (2017)

15. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unter-

luggauer, T.: ISAP—towards side-channel secure authenticated

encryption. IACR Trans. Symmetric Cryptol. 2017(1), 80–105

(2017)

16. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon

v1.2. (2016)

17. Elbaz, R., Champagne, D., Gebotys, C.H., Lee, R.B., Potlapally,

N.R., Torres, L.: Hardware mechanisms for memory authentica-

tion: a survey of existing techniques and engines. Trans. Comput.

Sci. 4, 1–22 (2009)

18. Elbaz, R., Champagne, D., Lee, R.B., Torres, L., Sassatelli, G.,

Guillemin, P.: Tec-tree: a low-cost, parallelizable tree for efficient

defense against memory replay attacks. In: Cryptographic Hard-

ware and Embedded System—CHES 2007, pp. 289–302 (2007)

19. Ferguson, N.: AES-CBC + Elephant diffuser: a disk encryption

algorithm for Windows Vista (2006). Technical Report. http://

citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.1617

20. Fruhwirth, C.: New methods in hard disk encryption (2005). http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1124

21. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random

functions. J. ACM 33(4), 792–807 (1986)

22. Google Inc.: Android full disk encryption (2015). https://source.

android.com/security/encryption/. Accessed Dec 2015

23. Goubin, L., Patarin, J.: DES and differential power analysis (the

“duplication” method). In: Cryptographic Hardware and Embed-

ded Systems—CHES 1999, pp. 158–172 (1999)

24. Groß, H., Mangard, S.: Reconciling d +1 masking in hardware and

software. In: Cryptographic Hardware and Embedded Systems—

CHES 2017, pp. 115–136 (2017)

25. Gueron, S.: A memory encryption engine suitable for general

purpose processors. IACR Cryptology ePrint Archive 2016, 204

(2016)

26. Halcrow, M., Savagaonkar, U., Ts’o, T., Muslukhov, I.: Ext4

Encryption Design Document. https://goo.gl/qbcZV2

27. Hall, W.E., Jutla, C.S.: Parallelizable authentication trees. In:

Selected Areas in Cryptography—SAC 2005, pp. 95–109 (2005)

28. Hanley, N., Tunstall, M., Marnane, W.P.: Unknown plaintext tem-

plate attacks. In: Information Security Applications—WISA 2009,

pp. 148–162 (2009)

123

https://docplayer.net/281501-Best-practices-for-deploying-filevault-2.html
https://docplayer.net/281501-Best-practices-for-deploying-filevault-2.html
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.1617
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.1617
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1124
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1124
https://source.android.com/security/encryption/
https://source.android.com/security/encryption/
https://goo.gl/qbcZV2

158 Journal of Cryptographic Engineering (2019) 9:137–158

29. Henson, M., Taylor, S.: Beyond full disk encryption: protection on

security-enhanced commodity processors. In: Applied Cryptogra-

phy and Network Security—ACNS 2013, pp. 307–321 (2013)

30. IEEE: IEEE standard for cryptographic protection of data on block-

oriented storage devices. IEEE Std 1619-2007 (2008)

31. Intel Corporation: Intel® 64 and IA-32 Architectures Software

Developer Manuals. 325462-058

32. Kaplan, D., Powell, J., Woller, T.: AMD memory encryp-

tion (2016). https://developer.amd.com/resources/articles-

whitepapers/. Accessed May 2017

33. Kocher, P.: Leak-resistant cryptographic indexed key update. US

Patent 6,539,092, 25 March 2003

34. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In:

Advances in Cryptology—CRYPTO 1999, pp. 388–397 (1999)

35. Linge, Y., Dumas, C., Lambert-Lacroix, S.: Using the joint dis-

tributions of a cryptographic function in side channel analysis.

In: Constructive Side-Channel Analysis and Secure Design—

COSADE 2014, pp. 199–213 (2014)

36. Linux Kernel Organization Inc.: Linux Kernel 4.3 Source Tree

(2015). https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.

git/log/?id=refs/tags/v4.3. Accessed Nov 2015

37. Longo, J., Mulder, E.D., Page, D., Tunstall, M.: SoC it to EM: elec-

tromagnetic side-channel attacks on a complex system-on-chip. In:

Cryptographic Hardware and Embedded Systems—CHES 2015,

pp. 620–640 (2015)

38. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks—

Revealing the Secrets of Smart Cards. Springer, Berlin (2007)

39. Medwed, M., Standaert, F., Großschädl, J., Regazzoni, F.: Fresh

re-keying: security against side-channel and fault attacks for low-

cost devices. In: Progress in Cryptology—AFRICACRYPT 2010,

pp. 279–296 (2010)

40. Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE

Symposium on Security and Privacy—SP, 1980, pp. 122–134

(1980)

41. Messerges, T.S.: Using second-order power analysis to attack DPA

resistant software. In: Cryptographic Hardware and Embedded

Systems—CHES 2000, pp. 238–251 (2000)

42. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Push-

ing the limits: a very compact and a threshold implementation of

AES. In: Advances in Cryptology—EUROCRYPT 2011, pp. 69–

88 (2011)

43. Moradi, A., Schneider, T.: Side-channel analysis protection and

low-latency in action—case study of PRINCE and midori. In:

Advances in Cryptology—ASIACRYPT 2016, pp. 517–547 (2016)

44. Owusu, E., Guajardo, J., McCune, J.M., Newsome, J., Perrig, A.,

Vasudevan, A.: OASIS: on achieving a sanctuary for integrity and

secrecy on untrusted platforms. In: Computer and Communications

Security—CCS 2013, pp. 13–24 (2013)

45. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentica-

tion and encryption from symmetric cryptographic primitives. In:

Computer and Communications Security—CCS 2015, pp. 96–108

(2015)

46. Pietrzak, K.: A leakage-resilient mode of operation. In: Advances

in Cryptology—EUROCRYPT 2009, pp. 462–482 (2009)

47. Rogaway, P.: Efficient instantiations of tweakable blockciphers

and refinements to modes OCB and PMAC. In: Advances in

Cryptology—ASIACRYPT 2004, pp. 16–31. Springer, Berlin

(2004)

48. Rogers, B., Chhabra, S., Prvulovic, M., Solihin, D.: Using Address

Independent Seed Encryption and Bonsai Merkle Trees to Make

Secure Processors OS- and Performance-Friendly. In: IEEE/ACM

International Symposium on Microarchitecture—MICRO 2007,

pp. 183–196 (2007)

49. Rogers, B., Chhabra, S., Prvulovic, M., Solihin, Y.: Using address

independent seed encryption and bonsai merkle trees to make

secure processors OS- and performance-friendly. In: IEEE/ACM

International Symposium on Microarchitecture—MICRO 2007,

pp. 183–196 (2007)

50. Sami Saab, P.R., Hampel, C.: Side-channel protections for cryp-

tographic instruction set extensions. Cryptology ePrint Archive,

Report 2016/700 (2016)

51. Siamashka, S.: TinyMemBench (2013). Accessed March 2017

52. Staelin, C., McVoy, L.: LMbench—tools for performance analysis

(2007). Accessed March 2017

53. Standaert, F., Pereira, O., Yu, Y., Quisquater, J., Yung, M.,

Oswald, E.: Leakage resilient cryptography in practice. In: Towards

Hardware-Intrinsic Security—Foundations and Practice, pp. 99–

134 (2010)

54. Suh, G., Clarke, D., Gasend, B., van Dijk, M., Devadas, S.: Efficient

memory integrity verification and encryption for secure processors.

In: IEEE/ACM International Symposium on Microarchitecture—

MICRO 2003, pp. 339–350 (2003)

55. Suh, G.E., Clarke, D.E., Gassend, B., van Dijk, M., Devadas, S.:

AEGIS: architecture for tamper-evident and tamper-resistant pro-

cessing. In: International Conference on Supercomputing—ICS

2003, pp. 160–171 (2003)

56. Taha, M.M.I., Schaumont, P.: Key updating for leakage resiliency

with application to AES modes of operation. IEEE Trans. Inf.

Forensics Secur. 10(3), 519–528 (2015)

57. Unterluggauer, T., Mangard, S.: Exploiting the physical disparity:

side-channel attacks on memory encryption. In: Constructive Side-

Channel Analysis and Secure Design, COSADE 2016, pp. 3–18

(2016)

58. Werner, M., Unterluggauer, T., Schilling, R., Schaffenrath, D.,

Mangard, S.: Transparent memory encryption and authentication.

In: Field Programmable Logic and Applications—FPL 2017, pp.

1–6 (2017)

59. Xilinx: Linux Kernel xilinx-v2016.2 (2016). Accessed March 2017

123

https://developer.amd.com/resources/articles-whitepapers/
https://developer.amd.com/resources/articles-whitepapers/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tag s/v4.3
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tag s/v4.3

	MEAS: memory encryption and authentication secure against side-channel attacks
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Memory encryption and authentication
	2.1 Threat model and requirements
	2.2 Memory encryption
	2.3 Memory authentication

	3 Side-channel attacks
	3.1 Simple power analysis
	3.2 Differential power analysis
	3.3 Profiled attacks
	3.4 DPA countermeasures
	3.4.1 Masking
	3.4.2 Frequent re-keying

	4 Re-keying for memory encryption
	4.1 The re-keying operation
	4.2 Re-keying and plaintext confidentiality
	4.2.1 Unknown plaintext template attacks

	5 DPA-secure memory encryption and authentication
	5.1 Construction
	5.1.1 Read operation
	5.1.2 Write operation

	5.2 Authenticity
	5.2.1 Handling corruption
	5.2.2 Recovering from corruption

	5.3 Side-channel discussion
	5.3.1 Passive attacks
	5.3.2 Passive attacks and memory tampering
	5.3.3 Passive attacks, memory tampering and restarts

	6 Higher-order DPA security
	6.1 Concept
	6.2 Masking details
	6.3 Side-channel discussion
	6.4 Implementation aspects

	7 Instantiation
	7.1 Meas-v1
	7.2 Meas-v2

	8 Implementation
	8.1 Platform
	8.2 Memory layout
	8.3 Address translation
	8.4 MEAS pipeline
	8.4.1 Data flow
	8.4.2 Re-keying

	9 Evaluation
	9.1 Security properties
	9.2 Parallelizability
	9.3 Memory overhead
	9.4 Memory overhead with masking
	9.5 Randomness
	9.6 Implementation results
	9.6.1 Memory bandwidth
	9.6.2 Latency
	9.6.3 Resource utilization
	9.6.4 Discussion

	10 Conclusion
	Acknowledgements
	Appendix A: Authentication trees
	A.1 Merkle trees spMerkle80
	A.2 Parallelizable authentication trees sacryptHallJ05
	A.3 Tamper evident counter trees chesElbazCLTSG07

	References

