
Measurability and Safety Verification for
Stochastic Hybrid Systems

Martin Fränzle
Carl von Ossietzky University, Germany

Ernst Moritz Hahn
Saarland University, Germany

Holger Hermanns
Saarland University, Germany

Nicolás Wolovick
National University of Córdoba, Argentina

Lijun Zhang
Technical University of Denmark

ABSTRACT

Dealing with the interplay of randomness and continuous
time is important for the formal verification of many real
systems. Considering both facets is especially important for
wireless sensor networks, distributed control applications,
and many other systems of growing importance. An impor-
tant traditional design and verification goal for such systems
is to ensure that unsafe states can never be reached. In the
stochastic setting, this translates to the question whether
the probability to reach unsafe states remains tolerable. In
this paper, we consider stochastic hybrid systems where
the continuous-time behaviour is given by differential equa-
tions, as for usual hybrid systems, but the targets of dis-
crete jumps are chosen by probability distributions. These
distributions may be general measures on state sets. Also
non-determinism is supported, and the latter is exploited in
an abstraction and evaluation method that establishes safe
upper bounds on reachability probabilities. To arrive there
requires us to solve semantic intricacies as well as practical
problems. In particular, we show that measurability of a
complete system follows from the measurability of its con-
stituent parts. On the practical side, we enhance tool sup-
port to work effectively on such general models. Experimen-
tal evidence is provided demonstrating the applicability of
our approach on three case studies, tackled using a proto-
typical implementation.

Categories and Subject Descriptors: I.6.4 [Computing
Methodologies]: Simulation and Modelling - Model Valida-
tion and Analysis; C.1.m [Computer Systems Organization]:
Processor Architectures - Hybrid Systems; G.3 [Mathemat-
ics of Computing]: Probability and Statistics
General Terms: Reliability, Verification.

1. INTRODUCTION
In many modern application areas of hybrid systems, ran-

dom phenomena occur. This is especially true for wireless
sensing and control applications, where message loss prob-
abilities and other random effects (node placement, node

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’11, April 12–14, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0629-4/11/04 ...$10.00.

failure, battery drain, measurement imprecision) turn the
overall control problem into a problem that can only be man-
aged with a certain, hopefully sufficiently large, probability.
The need to integrate probabilities into hybrid systems for-
malisms has led to several different notions of stochastic hy-
brid systems, each from a distinct perspective [2, 3, 9, 22].
They differ in the point of attack where to introduce ran-
domness. One option is to replace deterministic jumps by
probability distributions over deterministic jumps. Another
option is to generalise the differential equation components
inside a mode by a stochastic differential equation com-
ponent. More general models can be obtained by blend-
ing the above two choices, and by combining them with
memoryless timed probabilistic jumps [8], and with non-
determinism. Piecewise-deterministic Markov processes [12]
are a prominent example, constituting deterministic hybrid
system models augmented with memoryless timed proba-
bilistic jumps.

An important problem in hybrid systems theory is that
of reachability analysis. In general terms, a reachability
analysis problem consists in evaluating whether a given sys-
tem will reach certain unsafe states, starting from certain
initial states. This problem is associated with the safety
verification problem: if the system cannot reach any un-
safe state, then the system is declared to be safe. In the
probabilistic setting, the safety verification problem can be
formulated as that of checking whether the probability that
the system trajectories reach an unsafe state from its initial
states can be bounded by some given probability threshold.

Recently [23], we have introduced a technique that pig-
gybacks a quantitative probabilistic reachability analysis for
probabilistic hybrid automata on a qualitative reachability
checker for non-probabilistic hybrid automata. It does so
to compute upper bounds on maximal reachability proba-
bilities, but is restricted to probability distributions with
finite support. In this paper, we extend the approach to
stochastic hybrid automata which feature continuous mea-
sures over states, for instance given by a density function,
as well as non-deterministic behaviour. We show that the
well-definedness of the individual automata parts leads to
the well-definedness of the model semantics, such that we
can define meaningful probabilities when resolving the non-
determinism. For this we harvest recent results on non-
deterministic labelled Markov processes [11] to overcome in-
tricate measurability issues. To handle reachability prob-
lems for this model class, we over-approximate the stochastic
hybrid automaton by a probabilistic hybrid automaton, in
which the probability to reach unsafe states can not be lower

than in the original model. Because this transformation is
done on the high-level description of the automata, we can
combine it with our previous bounding technique and algo-
rithmic implementation. We are thus able to tackle a broad
class of stochastic hybrid systems. Due to the presence of
continuous non-determinism, but absence of diffusion in the
differential equation components, the model is distinguished
from more classical stochastic hybrid systems representa-
tions for which reachability computations have been tackled
in different ways [1, 2, 9, 19, 20]. Among them, grid-based
methods [1] are a promising approach with some similari-
ties to our work. In contrast to those, we do not compute
a fixed state-space abstraction prior to the actual analysis.
Instead, an abstraction is computed by a solver for reach-
ability in a non-probabilistic version of the hybrid systems
under consideration. From the abstraction obtained this
way, we compute a probabilistic model which faithfully over-
approximates the actual maximal reachability probability.

The paper is organised as follows: Section 2 describes the
model which will later on form the semantics of stochas-
tic hybrid automata. Then, in Section 3, we give the high-
level specification model of stochastic hybrid automata. Af-
terwards, in Section 4 we describe how to compute over-
approximating reachability probabilities in an abstracted
model of the automata. The practical applicability of the
method is demonstrated in Section 5. Finally, we conclude
the paper in Section 6.

2. SEMANTIC MODELS
We define non-deterministic Markov processes, which

shall later appear as the semantics of stochastic hybrid au-
tomata. Subsequently, we show how to abstract these mod-
els, which potentially feature continuous measures, to prob-
abilistic automata with measures of only finite support. For
the specification of these models, we need some preliminary
definitions of measure theoretic concepts.

Measure Theory Background.
A family Σ of subsets of the set S is a σ-algebra provided

it is closed under complement and σ-union (denumerable
union), a set A ∈ Σ is then called measurable. We denote
by σ(A) the smallest σ-algebra containing the sets of A, and
it is said to be generated by this set. The Borel σ-algebra
over R is generated by intervals of rational endpoints, and
it is denoted B(R) := σ({[p, q) | p, q ∈ Q}). For dimen-
sions greater than one, it is generated by rectangles with
rational endpoints and denoted by B(Rn). The pair (S,Σ)
is called a measurable space, and where convenient we will
use (Rn,B(Rn)) to denote the particular Borel case.

Given two measurable spaces (S0,Σ0), (S1,Σ1), the prod-
uct space is given by (S0 × S1,Σ0 ⊗Σ1), where the product
σ-algebra is generated by rectangles A0 ×A1, with Ai ∈ Σi.
Given M ∈ Σ0 ⊗Σ1, the section at s0 is the measurable set
M|s0 := {s1 | (s0, s1) ∈ M}.

A function µ : Σ → [0, 1] is called σ-additive if
µ(
⊎

i∈I Ai) =
∑

i∈I µ(Ai) for countable index sets I . We
speak of a probability measure if µ(S) = 1. The sup-
port of a measure Supp(µ) is a measurable set A such that
µ(S \A) = 0, and for the Borel σ-algebra there is a (unique)
smallest closed set C0 with this property. The Dirac prob-
ability measure δs is 1 only in {s}. A function is measur-
able, denoted f : (R,B(R)) → (R,B(R)) in the real-valued
case, if every backwards image of a generator is measurable,

f−1([p, q)) ∈ B(R) for all rational p and q. The indicator
function χA : S → {0, 1} is χA(x) := 1 iff x ∈ A, and it is
measurable if A ∈ Σ. A function f is simple if it is of the
form f(x) =

∑n

i=1 ciχAi
(x), and if ci ∈ R and Ai ∈ Σ then

f is also measurable. Without loss of generality, we can as-
sume pairwise disjoint Ai. The set of probability measures
∆(S) on (S,Σ) can be endowed with σ-algebra ∆(Σ) [14]
generated by the set ∆>q(A) := {µ | µ(A) > q}, i.e. the mea-
sures such that when applied to A ∈ Σ give a value greater
than q ∈ Q ∩ [0, 1]. In order to define measurable functions
f : S → ∆(Σ), we need to define the σ-algebra on ∆(Σ). We
use [11] H(∆(Σ)) := σ({HΦ | Φ ∈ ∆(Σ)}), where the hit set
is HΦ := {ξ ∈ ∆(Σ) | ξ∩Φ 6= ∅}, such that f is measurable if
f−1(HΦ) ∈ Σ, and we write f : (S,Σ) → (∆(Σ), H(∆(Σ))).

We let ∆f (S) denote the set of finite measures, which
contains all µ such that |Supp(µ)| < ∞. For a singleton set
{a} ∈ Supp(µ) we write a ∈ Supp(µ), µ(a) = µ({a}), and
so on.

We can now define our stochastic models.

Definition 1. A non-deterministic Markov process
(NMP) M is a tuple (S,Σ, Init ,Steps ,UnSafe) where

• S denotes the (possibly uncountable) set of states,

• Σ is a σ-algebra on S. We use the subset Init ∈ Σ to
specify the set of initial states and UnSafe ∈ Σ for the
set of unsafe states.

• Steps : (S,Σ) → (∆(Σ), H(∆(Σ))) is a measurable
transition function. We require that Steps(s) 6= ∅ for
all s ∈ S.

A probabilistic automaton (PA) is an NMP where transition
functions are restricted to finite support measures, Steps :
S → 2∆f (S). For PA, measurability considerations are not
needed to specify meaningful probabilities.

This definition is essentially the same as the one of
D’Argenio et al. [11], with the difference that we do not
use action labels, as they are not needed in our setting. If
µ ∈ Steps(s), we call µ a successor probability measure of s.
Measurability considerations are indeed necessary for gen-
eral NMP, as we demonstrate in the following example.

Example 1. Let (S,B(S), {s0}, Steps , {sb}) be an NMP
with S := {s0} ⊎ [0, 1] ⊎ {sb}. We define Steps(s0) :=
{µ}, where µ is the uniform distribution on [0, 1], and let
Steps(sb) := {δsb}. Further, for s ∈ V we let Steps(s) :=
{δsb} and for s /∈ V we define Steps(s) := {δs}, where
V ⊂ [0, 1] is a Vitali set, which is known not to be Borel-
measurable. All Steps(·) are singleton sets, so there is no
non-determinism in the example. Thus, the probability to
reach sb from s0 should be uniquely defined. However, this
probability does not exist, because it depends on the measure
of the non-measurable Vitali set. Discrete measures (which
are the only ones allowed in PA) eliminate the Vitali set
problem, since they discard all but a finite set of points out
of it. For instance, if instead of using the uniform distribu-
tion we set µ(s1) = µ(s2) = µ(s3) = 1

3
for s1, s2 ∈ V and

s3 /∈ V and µ(·) = 0 else, we can specify the reachability
probability as 2

3
, although formally the model still does not

fulfil the measurability requirements.

PAs have been introduced by Segala and Lynch [21]. For
PAs, we can always assign a probability larger than zero

to each individual state which is possibly chosen as succes-
sor. This is not the case for general NMPs: all individual
probabilities of moving to a successor state may be zero.

For an NMP M = (S,Σ, Init ,Steps ,UnSafe), we specify
the maximal n-step probability to reach the unsafe states,
starting in a state s ∈ S, as ReachM

≤0(s) = 1 if s ∈ UnSafe
and 0 else,

ReachM
≤n+1(s) :=

{

1 if s ∈ UnSafe,
supµ∈Steps(s)

∫

ReachM
≤n(s

′) dµ(s′) else,

where
∫

denotes Lebesgue integration. For a PA M =
(S,Σ, Init ,Steps ,UnSafe), we can simplify the latter for-
mula to

ReachM
≤n+1(s) =

{

1 if s ∈ UnSafe,
supµ∈Steps(s)

∑

s′∈Supp(µ)

ReachM
≤n(s

′)µ(s′) else.

The maximal unbounded reachability probability is

ReachM(s) := lim
n→∞

ReachM
≤n(s).

These definitions indeed define functions in n and s:

Lemma 1. Let M be an NMP. Then ReachM
≤n(s) is well-

defined for all non-negative n, as is ReachM(s).

We now specify approximations between general NMPs
and PAs operating on the same state set.

Definition 2. Let Mc = (S,Σ, Initc,Stepsc,UnSafec)
be an NMP, and Mf = (S,Σ, Initf ,Stepsf ,UnSafef) be a
PA. We say Mf is an abstraction of Mc, if Initc ⊆ Initf ,
UnSafec ⊆ UnSafef , and moreover, for each s ∈ S and
µc ∈ Stepsc(s),

• there exist pairwise disjoint A1, . . . , An ∈ Σ such that
µc(
⋃n

i=1 Ai) = 1, and

• in the PA, for each (s1, . . . , sn) ∈ A1 × · · · × An there
exists µf ∈ Stepsf (s) such that µf (si) = µc(Ai) for all
1 ≤ i ≤ n.

We write Mc �cf Mf if Mf is an abstraction of Mc.

Notably, and in contrast to related abstraction meth-
ods [1], we do not fix a representative of the probability mea-
sure, but instead introduce uncountable non-determinism
over the possible successors. While this may seem unfa-
miliar and impractical, indeed it is not. The models under
consideration may anyway have an uncountably large state-
space, such that a direct analysis is impossible. Later on,
semantics of stochastic hybrid automata will be given as un-
countably large NMPs. However, we will show how to com-
pute abstractions of the semantics directly from the high-
level description of the model. Thereby, we will construct
a finitely large state-space, and represent the uncountable
non-determinism by a finite number of transitions.

For PAs, simulation preorders have been introduced [21],
and subsequently exploited [23], to analyse safety properties.
When restricted to this subclass, our notion of abstraction
establishes a special case of such simulation preorders.

Applying the abstraction from Definition 2 does not de-
crease the maximal reachability probability.

Lemma 2. Let Mc = (S,Σ, Initc,Stepsc,UnSafec) be an
NMP and Mf = (S, Initf ,Stepsf ,UnSafef) be a PA such

that Mc �cf Mf . For all s ∈ S and all non-negative n, we
have

ReachMc

≤n (s) ≤ Reach
Mf

≤n (s)

and

ReachMc (s) ≤ ReachMf (s).

Thus, if we can show that reachability probabilities in Mf

are below a certain threshold, this is also the case in Mc.

3. STOCHASTIC HYBRID AUTOMATA
In this section, we provide definitions for the fragment of

stochastic hybrid automata addressed in this paper. We de-
fine the underlying semantics of these high-level models in
terms of the models of Section 2 and show that the mea-
surability of the semantics of a complete automaton follows
from the measurability of its constituent parts.

3.1 Model Description
Probabilistic hybrid automata as considered in our pre-

vious work [23] require probability measures to have finite
support and also require that only a finite number of non-
deterministic choices occurs in each state. In the following,
we describe an extension to stochastic hybrid automata, in
which we allow continuous probability distributions and un-
countable non-determinism in discrete assignments, yet not
over continuous distributions.

Let m denote a variable ranging over a finite set of modes
M := {m1, . . . ,mn}, and let x := (x1, . . . , xk) be a vector
of variables ranging over real numbers R. For denoting the
derivatives of x we use ẋ := (ẋ1, . . . , ẋk), ranging over R

correspondingly. With m′ and x
′ := (x′

1, . . . , x
′
k) we denote

primed versions of m and x respectively, as subsequently
used to specify values resulting from discrete jumps of a
hybrid automaton.

Later on, S := M × Rk will denote the state-space of the
semantics of the hybrid automaton. We let Σ := B(S) de-
note the Borel σ-algebra on the state-space. Further, let
H(Σ) denote the σ-algebra generated by all HA := {B ∈
Σ | A ∩ B 6= ∅} where A ∈ Σ. (This construction is similar
to the ones used in non-probabilistic NLMP [10].) A state-
space constraint is a constraint s ⊆ M× Rk over modes and
variables. A flow constraint is a constraint f ⊆ M×Rk ×Rk

over the variables m, x, ẋ.
A probabilistic guarded command c shall be defined as

condition → p1 : update1 + . . .+ pn : updaten

where n ≥ 1 denotes the cardinality of the probabilistic
branching of c with pi > 0 for i = 1, . . . , n and

∑n

i=1 pi = 1.
We demand that condition ∈ Σ is a measurable constraint
over (m,x), and that update i : (S,Σ) → (Σ, H(Σ)) is a
measurable function denoting a reset mapping for m and
x for all i = 1, . . . , n. Observe that for different i 6= j, it
could be the case that update i(m,x) ∩ update j(m,x) 6= ∅.
In our notation, if we do not mention a variable in a guarded
command, it remains unchanged.

Example 2.

m = m1 → 0.2 : m′ = m2 ∧ x′
1 ≤ x2 − 0.84

+ 0.2 : m′ = m2 ∧ x2 − 0.85 ≤ x′
1 ≤ x2 − 0.25

+ 0.2 : m′ = m2 ∧ x2 − 0.26 ≤ x′
1 ≤ x2 + 0.26

+ 0.2 : m′ = m2 ∧ x2 + 0.25 ≤ x′
1 ≤ x2 + 0.85

+ 0.2 : m′ = m2 ∧ x′
1 ≥ x2 + 0.84

is a probabilistic guarded command. It can be executed when
being in mode m1. With probability 1, we move to mode
m2. With a probability of 0.2 each, a certain interval is
chosen, and the variable x1 is non-deterministically set to
an arbitrary value within this interval. The endpoints of the
intervals depend on the value of x2. Other variables remain
unchanged.

While previously [23] we restricted to commands where
the updates update i map a state to a unique successor, we
here allow the updates to be predicates over successor states.
This leads to a possibly uncountable non-determinism, as in
Example 2.

To model continuous measures, we introduce an additional
form of guarded commands. Let M : (S,Σ) → (∆(S),∆(Σ))
be a measurable function mapping states to probability mea-
sures. A stochastic guarded command is of the form

condition → M.

Example 3. We specify M(m1, x1, x2, . . . , xn) as

M(m1, x1, x2, . . . , xn)

(

{m2} × [a, b]×
n

×
i=2

{xi}
)

:=
1√
2π

b
∫

a

exp

(

−1

2
(x− x2)

2

)

dx,

with the unique extension of this measure to other Borel sets.
Then m = m1 → M is a stochastic guarded command, which
we denote by c. It can execute under the same conditions
as the probabilistic guarded command from Example 2, and
has the same target mode. However, x1 is set according to
the normal distribution N (x2, 1) with expected value x2 and
standard deviation 1. Due to the properties of the normal
distribution, such a command is suited to set a variable ac-
cording to a probability distribution which is centred around
an ideal value from which the variable may deviate into both
directions. In practice, such perturbations arise from inex-
act measurements, deviations of production parameters in a
production line, etc.

With these preparations, we can define stochastic hybrid
automata.

Definition 3. A stochastic hybrid automaton is a tuple
H = (M,x, Init ,Flow , C,UnSafe) where

• M is a finite set of modes and x is a set of k variables,

• Init ⊆ M× Rk is a constraint on the initial states,

• UnSafe ⊆ M× Rk describes the unsafe states,

• Flow ⊆ M× Rk × Rk is a flow constraint and

• C denotes a finite set of guarded commands. We denote
the subset of probabilistic guarded commands as Cf and
the subset of stochastic guarded commands as Cc.

We require Flow to be measurable in the following sense: for
each m ∈ M, the pre-post-relation T :=

(x,y) ∈ R
k × R

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃e ≥ 0, f : [0, e] → Rk differentiable :

f(0) = x

∧ f(e) = y

∧∀t ∈ [0, e] :

(m,f(t), ḟ(t)) ∈ Flow

m1

ẋ1 = 0∧ẋ2 = 1
m2

ẋ1 = 0∧ẋ2 = 0

m3

ẋ1 = 0∧ẋ2 = 0
UnSafe

m1 → M(s) 0 ≤ x1 ≤ 0.5 → x′
i = xix2 = 0

Figure 1: Example stochastic hybrid automaton.
Here, M(s) with s = (m,x1, x2) is a Dirac distribu-
tion with respect to x2 and a normal distribution
over x1, combined such that x2 keeps its value while
x1 has expected value x2 with standard deviation 1.

mediated by the continuous flow is a measurable set in
B(Rk × Rk), and we require postm(x) := T|x to be measur-

able, i.e. postm : (Rk,B(Rk)) → (B(Rk),H(B(Rk))). Fur-
thermore, we require Init and UnSafe to be measurable sets.

Measurability of most of the above model constituents can
be guaranteed by considering o-minimal definable sets. Gen-
eral results connecting o-minimal definability with measur-
ability [6, 7] show that a sufficient criterion for the above
pre-post relation T being Borel-measurable is that it is de-
finable in some o-minimal theory over the reals. In prac-
tice, this holds for the pre-post relations manipulated by
hybrid model checkers, as all current hybrid model check-
ers tackle differential equations by providing descriptions or
approximations of their reach set and thus of the above pre-
post relation via sets definable in o-minimal theories over
the reals, such as finite unions of rectangular boxes, zono-
topes, polyhedra, ellipsoids, or by differential invariants. In
a nutshell, the general results connecting o-minimality with
measurability considers the standard parts [6] of o-minimal
theories and shows them to be Borel measurable. This, to-
gether with the fact that the standard part st(A) satisfies
st(A) = A provided A ⊆ Rk [7] implies that relations de-
finable by o-minimal theories over the reals are Borel mea-
surable [6]. Hence, T is Borel measurable if described in
some o-minimal theory. The function postm [16] is defined
as section of relation T . Although this definition ensures
that postm(x) gives measurable sets for every x, it does not
imply measurability of postm itself, which is why we need to
require it.

We talk of a probabilistic hybrid automaton if Cc = ∅. We
still allow uncountable non-determinism for this model class.
In this subclass, measurability restrictions are not needed to
guarantee that probability measures are well-defined in the
low-level semantical model.

Example 4. Consider the model in Figure 1. We assume
that µ is the normal distribution of the command c from
Example 3. We are interested in the maximal probability
to finally reach the target mode m3. To obtain the maximal
probability, we wait in m1 until x2 = 0.25. Then, we jump to
m2. Let f(x) be the density of N (0.25, 1). With probability
∫ 0.5

0
f(x) dx ≈ 0.197 we can finally jump from m2 to m3.

3.2 Semantics of Stochastic Hybrid Automata
The semantics of a stochastic hybrid automaton

H = (M,x, Init ,Flow , C,UnSafe) is the tuple Sem(H) :=
(S,Σ, Init,Steps ,UnSafe) where S := M × Rk, Σ := B(S)
and we define Steps as the union of two transition relations
StepsT ,StepsJ : S → ∆(Σ). The semantics of timed steps
is defined as

StepsT ((m,x)) := {δ(m,x′) | x′ ∈ postm(x)}.

Now we define the semantics of guarded commands. To
start with, we define the semantics of a probabilistic guarded
command c = con → p1 : u1+. . .+pn : un by: Steps

c
(s) := ∅

if s 6∈ con , and otherwise

Steps
c
(s) :=

{

n
∑

i=1

piδsi |(s1, . . . , sn)∈u1(s)× · · · × un(s)

}

.

Inside the above formula, we have weighted sums of Dirac
probability measures. A step induced by a probabilistic
guarded command has as successors all measures, such that
with probability pi we choose a state of the ith update. For
measures in which we have a state which is the successor
of different updates, the probabilities of these updates are
added up.

Next, for a stochastic guarded command c = con → M
we define

Steps
c
(s) :=

{

{M(s)} if s ∈ con,
∅ else.

Then for s ∈ S, we let

StepsJ (s) :=
⋃

c∈C

Steps
c
(s)

and

Steps(s) :=

StepsT (s) ∪ StepsJ (s),
if StepsT (s) ∪ StepsJ (s) 6= ∅,

{δs} else.

The possible steps in the semantics are thus all possible tran-
sitions induced by jumps or timed transitions. The self-loops
introduced using Dirac distributions are necessary to guar-
antee that each state has at least one successor measure.

It remains to show that the semantics is well-defined. Be-
cause of this, for s ∈ S it must be the case that Steps(s) is
an element of ∆(Σ) and that Steps is a measurable function.
If this holds, then Sem(H) is indeed an NMP.

Lemma 3. Let Sem(H) = (S,Σ, Init ,Steps ,UnSafe) be a
tuple that is the semantics of a stochastic hybrid automaton
H. Then, Steps : (S,Σ) → (∆(Σ),H(∆(Σ))) is a mea-
surable function mapping states to elements of ∆(Σ). In
turn, Sem(H) is an NMP. In case H is purely probabilistic,
Sem(H) is a PA.

4. OVER-APPROXIMATING STOCHAS-

TIC HYBRID AUTOMATA
Over-approximation of the semantics of a probabilistic hy-

brid automaton H by a finite PA M with an abstract state-
space, written M ∈ Absf (H), implies that the reachabil-
ity probability of unsafe states in M is no lower than in
H [22,23].

Now we describe how we can over-approximate a stochas-
tic hybrid automaton by a probabilistic hybrid automaton.
At first, we describe how to abstract a single stochastic
guarded command into a probabilistic command.

Definition 4. Consider a stochastic guarded command
c defined by condition → M . Fix pi ∈ [0, 1] such that
∑n

i=1 pi = 1. Let ĝ1, . . . , ĝn : S → Σ be functions such
that M(s)(ĝi(s)) = pi, and M(s)

(
⋃n

i=1 ĝi(s)
)

= 1, for all
s ∈ S. Further, we require the sets ĝ1(s), . . . , ĝn(s) to be

N (x2, 1)

a1∈x2+
[−0.85,
−0.84]

a2∈x2+
[−0.26,
−0.25]

x2

a3∈x2+
[+0.25,
+0.26]

a4∈x2
[+0.84,
+0.85]

=0.2 =0.2 =0.2 =0.2 =0.2

.

Figure 2: Normal distribution for Example 5.

pairwise disjoint. Let g1, . . . , gn : S → 2S be functions satis-
fying ĝi(s) ⊆ gi(s), for all s ∈ S. We define the probabilistic
guarded command Absc(c, g1, . . . , gn, p1, . . . , pn) as

condition → p1 : g1 + . . .+ pn : gn,

and call gi abstraction functions.

By abstracting a command this way, we may introduce un-
countable additional non-determinism. Overlapping sets
gi(s), gj(s), i 6= j are allowed. This feature can be used
for instance, if the exact ĝi(s), ĝj(s) corresponding to prob-
abilities pi, pj cannot be computed. As already stated in
Section 2, this is no drawback of our method. In the final
abstraction that we compute, the non-determinism will be
over-approximated by a finite number of transitions. Notice
that the abstraction of a single command is done symboli-
cally in the high-level description of the probabilistic hybrid
automaton instead of the low-level model, as in grid-based
methods.

Example 5. Consider the stochastic guarded command
from Example 3. Let p1 := . . . := p5 := 0.2 and consider
a1 ∈ x2 + [−0.85,−0.84], a2 ∈ x2 + [−0.26,−0.25], a3 ∈
x2 + [0.25, 0.26], a4 ∈ x2 + [0.84, 0.85]. We define

I1 := {m2} × (−∞, a1]×
n

×
i=2

{xi},

I2 := {m2} × (a1, a2]×
n

×
i=2

{xi},
. . . .

Assume that by a precomputation (which will later on be
described in Subsection 4.1) we known that for states s =
(m1, x1, . . . , xn) it is

M(s) (I1) = M(s) (I2) = M(s) (I3) = . . . = pi = 0.2,

as illustrated in Figure 2. For each point s′ of the support
of M(s), we have at least one Ii which contains s′. We also
know that M(s)({m2} × (−∞,∞)××

n

i=2
{xi}) = 1. Thus,

we can define

ĝ1(s) := {m2} × (−∞, a1]×
n

×
i=2

{xi}

⊆ g1(s) := {m2} × (−∞, x2 − 0.84] ×
n

×
i=2

{xi},

ĝ2(s) := {m2} × (a1, a2]×
n

×
i=2

{xi}

⊆ g2(s) := {m2} × [x2 − 0.85, x2 − 0.25] ×
n

×
i=2

{xi},
. . . .

Because of this, the probabilistic guarded command of
Example 2 is an abstraction of the stochastic guarded com-
mand of Example 3.

m1

ẋ1 = 0∧ẋ2 = 1
m2

ẋ1 = 0∧ẋ2 = 0

m3

ẋ1 = 0∧ẋ2 = 0
UnSafe

m1 → 0.2 :
x′
1 ≤ x2−0.84 . . .

0 ≤ x1 ≤ 0.5
→ x′

i = xix2 = 0

Figure 3: Probabilistic hybrid automaton abstrac-
tion of the stochastic hybrid automaton of Figure 1.

In the abstraction of a complete stochastic hybrid au-
tomaton, all stochastic guarded commands are abstracted
by probabilistic guarded commands.

Definition 5. Let H = (M,x, Init ,Flow , C,UnSafe) be a
stochastic hybrid automaton, and consider a family of ab-
straction functions F = ((gc,1, . . . , gc,n), (pc,1, . . . , pc,n))c∈Cc

with corresponding probabilities. Then we define the proba-
bilistic hybrid automaton abstraction of H as

Absc(H, F) := (M,x, Init,Flow ,Absc(C),UnSafe)

where Absc(C) := Cf ∪ {Absc(c, gc,1, . . . , gc,n, pc,1, . . . , pc,n) |
c ∈ Cc}.

We state the correctness of the over-approximation.

Lemma 4. Consider a stochastic hybrid automaton H
and a family F of abstraction functions with corresponding
probabilities. Then Sem(H) �cf Sem(Absc(H, F)).

Example 6. In Figure 3 we give a possible over-
approximation of the automaton of Figure 1. We use
the abstraction from Example 2 (denoted c

′) of the stochas-
tic guarded command of Example 3 (denoted by c) (see
Example 5) for the only stochastic guarded command in
this model. In the abstraction, the reachability probability
is higher than it was originally. If in m1 we wait until
x2 = 0.2, for two branches of c′ we may enter m3, thus the
reachability probability is 2 · 0.2 = 0.4. By splitting M into
more equidistant parts, we could decrease this probability.

4.1 Obtaining Abstraction Functions
For the abstraction to be applicable in practice, it is cru-

cial to compute the family of abstraction functions. As there
exist quite diverse forms of random variables, we cannot give
an algorithm to handle all cases. Instead, we sketch how to
obtain over-approximation functions for certain classes of
random variables.

At first, consider a probability measure µ : B(R) → [0, 1]
given by a density function f(x), for instance the normal
distribution. Using numerical methods, we can then com-
pute bounds for ai such that µ((−∞, a1]) = p1, µ((a1, a2]) =
p2, . . . , µ((an−1,∞)) = pn, for some fixed p1, . . . , pn. Fol-
lowing Example 5, for N (0, 1) and n = 5, pi = 0.2, we
could obtain a1 ∈ [−0.85,−0.84], a2 ∈ [−0.26,−0.25],
We transform the random variable to get state-dependent

intervals. For the example, we use that N (x, y) = N (0,1)−x

y
.

Thus, we can transform corresponding interval endpoints bi
to bi(x, y) = bi(0, 1) · y + x. When setting x = x2, y = 1, we
obtain the same intervals as given in Example 5.

If the cumulative distribution function F (x) of a ran-
dom variable is known and we can compute a closed-form
of F−1, we can use a method similar to the inverse trans-
form method. Consider the exponential distribution with

H G Ind(G)

Absn(Ind(G))

Sem(H) Sem(G) Absf (G)

ReachH ReachG ReachAbsf (G)

�cf �ff

≤ ≤
Figure 4: Scheme of abstraction. G denotes the ab-
straction Absc(H, F) and Absn(.) denotes abstraction
of a non-probabilistic hybrid automata, and �ff de-
notes the simulation relation on PAs [21].

state-dependent λ. We have that if Fλ(ai) = pi then
ai = − ln(1 − pi)

1
λ
. We can then obtain adjoint in-

tervals which have a certain probability by precomputing
[bi, b

′
i] ∋ − ln(1−pi) and thus we specify command branches

pi :
bi−1

λ
≤ x ≤ b′i

λ
.

For probability measures in two variables, we consider
f(·, (−∞,∞)) first, and then split each f([ai, ai+1], ·) again.
This technique extends to any finite number k of variables.
If we split each of them into a number of n parts, the support
of the abstracting distribution has a size of nk. Thus, the
worst-case complexity of this method is rather bad. How-
ever, the case that only one or few variables change appears
to be the practically relevant case for us. It occurs in settings
where the environment can be observed only with limited
accuracy, as the ones discussed in Section 5.

4.2 Finite Abstractions
In the previous sections, we have seen that a stochastic hy-

brid automaton can be abstracted by a probabilistic hybrid
automaton with uncountably many states and transitions.
To effectively obtain probability bounds, we abstract this au-
tomaton by a finite state probabilistic automaton, which can
then be submitted to a probabilistic model checker for fur-
ther analysis. We can do so by harvesting previous work [23],
which proceeds via a non-probabilistic version Ind(G) of the
original probabilistic hybrid automaton G to arrive at a finite
abstraction Absf (G). A slight adaptation is needed since we
thus far did not consider non-determinism within one com-
mand, which we now require in order to over-approximate
stochastic guarded commands. Nevertheless, the correct-
ness proofs stay unchanged when allowing it. Due to space
limitations, we cannot give a complete description of the
previous work here.

An overview of the entire approach is depicted in Figure 4.
The computation of maximal reachability probabilities in
the resulting finite-state PA is done via well-established nu-
merical recipes, and is the capstone ingredient in this effec-
tive computation of safe upper bounds for reachability prop-
erties for this general class of stochastic hybrid automata.

5. EXPERIMENTS
We experiment with the approach outlined thus far us-

ing the tool ProHVer (probabilistic hybrid automata ver-
ifier) [23] on a selection of stochastic hybrid automata case
studies. In each case, we first abstract stochastic guarded
commands (so far manually) to probabilistic guarded com-
mands, which ProHVer can handle. Thus, we obtain a

Tank Controller

Off
dw
dt

= off f

On
dw
dt

= on f

on? off ? UnSafe

w > max u
∨w < min u

w > max u
∨w < min u

Wait
dc
dt

= 1
c ≤

wait t

React
dc
dt

= 1
dm
dt

= 0
c ≤

react t

c ≥ wait t ⇒ c′ = 0
∧m′ = N (w, 1)

c ≥ react t

⇒ c′ = 0

m ≤ min s
⇒ off !
m ≥ max s
⇒ on!

init fill = 6.5l, wait t = 1s, react t = 0.1s, off f = 1 l
s
,

on f = −2 l
s
, max s = 8l, min s = 5l, max u = 12l,

min u = 1l

w = init fill

c = 0

Figure 5: Water level control with perturbed mea-
surements, modelling measurement deviation by
normal distribution N (w, 1).

probabilistic hybrid automaton which over-approximates the
original stochastic hybrid automaton. Then, our tool uses
a modified version of PHAVer [13] to obtain the transition
relation of a finite-state abstraction of a non-probabilistic
projection of the hybrid automaton. ProHVer then rein-
troduces the probabilities to this abstraction and constructs
a corresponding finite-state Markov decision process. The
maximal reachability probabilities we can obtain herein
over-approximate the ones which can be obtained in the se-
mantics of the original stochastic hybrid automaton.

To show the applicability of our approach, we applied
ProHVer on three case studies, which are small but di-
verse in the nature of their behaviour. In the examples
considered, we focus on reachability probabilities with up-
per time bounds (obtained by using an additional clock to
measure time), because these correspond to very natural
verification problems for the settings considered. Notably,
our method is not restricted to time-bounded reachabil-
ity. Actually, time-unbounded problems are simpler (be-
cause no additional clock is needed). In the examples con-
sidered, time-unbounded reachability probabilities would al-
ways be 1. Experiments were run on a Pentium 4 with 2.67
GHz and 4 GB RAM. Models and tools can be found on
http://depend.cs.uni-saarland.de/tools/prohver/.

5.1 Water Level Control
We consider a model of a water level control system (ex-

tended from the one of Alur et al. [4] and our previous pa-
per [23]). In particular, we use this case study to demon-
strate the influence which different abstractions of the same
continuous stochastic command have. A water tank is filled
by a constant stream of water, and is connected to a pump
which is used to avoid overflow of the tank. A control system
operates the pump in order to keep the water level within
predefined bounds. The controller is connected to a sensor
measuring the level of water in the tank. A sketch of the
model is given in Figure 5. The state“Tank”models the tank
and the pump, and w is the water level. Initially, the tank
contains a given amount of water. Whenever the pump is
turned off in state “Off”, the tank fills with a constant rate

Temperature Controller

Heat
dT
dt

= 2
◦C
s

Cool
dT
dt

= −T 1
s

cool? heat? UnSafe

T > max u
∨T < min u

T > max u
∨T < min u

Wait
dc
dt

= 1
c ≤

wait t

React
dc
dt

= 1
dm
dt

= 0
c ≤

react t

c ≥ wait t ⇒ c′ = 0
∧m′ = N (T, 0.25)

c ≥ react t

⇒ c′ = 0

m ≤ min s
⇒ heat !
m ≥ max s
⇒ cool !

init t = 8◦C, wait t = 1s, react t = 0.1s, max s = 9◦C,
min s = 6◦C, max u = 12◦C, min u = 3◦C

T = init t

c = 0

Figure 6: Temperature control with perturbed mea-
surements, a variant of the model from Figure 5 ex-
hibiting more complex continuous dynamics.

due to the inflow. Conversely, more water is pumped out
than flows in when the pump is on.

The controller is modelled by automaton “Controller”. In
state “Wait”, the controller waits for a certain amount of
time. Upon the transition to “React”, the controller mea-
sures the water level. To model the uncertainties in mea-
surement, we set the variable m to a normal distribution
with expected value w (the actual water level) and standard
deviation 1. According to the measurement obtained, the
controller switches the pump off or on.

We are interested in the probability that within a given
time bound, the water level leaves the legal interval. In
Table 1, we give upper bounds for this probability for dif-
ferent time bounds as well as the number of states in the
abstraction computed by PHAVer and the time needed for
the analysis. For the stochastic guarded command simulat-
ing the measurement, we consider different abstractions by
probabilistic guarded commands of different precision, for
which we give the abstraction functions in the table cap-
tion. When we refine the abstraction A to a more precise B,
the probability bound decreases. If we introduce additional
non-determinism as in abstraction C, probabilities increase
again. If we refine B again into D, we obtain even lower
probability bounds. The price to be paid for increasing pre-
cision, however, is in the number of abstract states computed
by PHAVer as well as a corresponding increase in the time
needed to compute the abstraction.

Manual analysis shows that in this case study, the over-
approximation of the probabilities only results from the ab-
straction of the stochastic guarded command into a prob-
abilistic guarded command and is not increased further by
the state-space abstraction.

5.2 Temperature Control
We consider a temperature control system extended from

a previous case study [23], originally studied by Alur et
al. [5]. In Figure 6 we depict the system structure. We ask
whether using an air conditioning control system we are able
to keep the temperature of a room within a certain range. In
contrast to the water level case, the model features dynamics
governed by linear rather than piecewise constant ODE, and

http://depend.cs.uni-saarland.de/tools/prohver/

time
bound

Abstraction A Abstraction B Abstraction C Abstraction D

prob. build (s) states prob. build (s) states prob. build (s) states prob. build (s) states
20s 0.1987 3 999 0.0982 3 1306 0.1359 3 1306 0.0465 5 1920
30s 0.2830 6 2232 0.1433 8 2935 0.1870 8 2935 0.0693 15 4341
40s 0.3580 16 3951 0.1860 18 5212 0.2547 18 5212 0.0916 47 7734
50s 0.4250 34 6156 0.2264 42 8137 0.3024 43 8137 0.1134 108 12099
60s 0.4848 67 8847 0.2647 86 11710 0.3577 85 11710 0.1347 219 17436

Table 1: Water level control results. We round probabilities to four decimal places. Abstractions used are
A = w + {[−2, 2], (−∞, 1.9] ∪ [1.9,∞)}, B = w + {[−2, 2], (−∞, 1.9], [1.9,∞)}, C = w + {[−2.7, 2.7], (−∞, 1.2), [1.2,∞)},
D = w + {[−1.5, 1.5], [−1.5,−2], [1.5, 2], (−∞, 1.9), [1.9,∞)}.

instead of varying the splitting of the normal distribution,
we vary the refine interval used by PHAVer to analyse such
systems. Smaller intervals lead to more precise abstractions.

In Table 2, we give probability bounds and performance
statistics. We used a refine interval on the variable T which
models the temperature. The interval lengths are given in
the table. For all instances there is an interval length small
enough to obtain a probability bound that is the best pos-
sible using the given abstraction of the normal distribution.
Smaller intervals were of no use in this case. The drastic
discontinuities in probability bounds obtained are a conse-
quence abstraction by PHAVer.

5.3 Moving-block Train Control
As a more complex example of a hybrid system imple-

menting a safety-critical control policy, we present a model
of headway control in the railway domain (Figure 7). A
more extensive description of the setting plus a closely
related case study containing a sampling-related bug not
present in the current model appeared in a different publi-
cation [17]. In contrast to fully automated transport, which
is in general simpler to analyse (as the system is completely
under control of the embedded systems) our sample system
implements safe-guarding technology that leaves trains un-
der full human control provided safety is not at risk. It
is thus an open system, giving rise to the aforementioned
analysis problems.

Our model implements safe interlocking of railway track
segments by means of a “moving block” principle of opera-
tion. While conventional interlocking schemes in the railway
domain lock a number of static track segments in full, the
moving block principle enhances traffic density by reserving
a “moving block” ahead of the train which moves smoothly
with the train. This block is large enough to guarantee safety
even in cases requiring emergency stops, i.e. has a dynami-
cally changing block-length depending on current speed and
braking capabilities. There are two variants of this principle,
namely train separation in relative braking distance, where
the spacing of two successive trains depends on the current
speeds of both trains, and train separation in absolute brak-
ing distance, where the distance between two trains equals
the braking distance of the second train plus an additional
safety distance (here given as sd = 400m). We use the sec-
ond variant, as also employed in the European Train Control
System (ETCS) Level 3.

Our simplified model consists of a leader train, a follower
train, and a moving-block control regularly measuring the
leader train position and communicating a related move-
ment authority to the follower. The leader train is freely
controlled by its operator within the physical limits of the

train, while the follower train may be forced to controlled
braking if coming close to the leader. The control principle
is as follows:

1. 8 seconds after communicating the last movement au-
thority, the moving-block control takes a fresh mea-
surement m of the leader train position sl. This mea-
surement may be noisy.

2. Afterwards, a fresh movement authority derived from
this measurement is sent to the follower. The move-
ment authority is the measured position m minus the
length l of the leader train and further reduced by the
safety distance sd . Due to an unreliable communi-
cation medium, this value may reach the follower (in
which case its movement authority auth is updated to
m − l − sd) or not. In the latter case, which occurs
with probability 0.1, the follower’s movement author-
ity stays as is.

3. Based on the movement authority, the follower con-
tinuously checks the deceleration required to stop ex-
actly at the movement authority. Due to PHAVer

being confined to linear arithmetic, this deceleration
is conservatively approximated as areq = v·vmax

2(s−auth)
,

where v is the actual speed, vmax the (constant) top
speed, and s the current position of the follower train,
rather than the physically more adequate, yet non-

linear, areq = v2

2(s−auth)
of the original model [17].

4. The follower applies automatic braking whenever the
value of areq falls below a certain threshold bon. In
this case, the follower’s brake controller applies max-
imum deceleration amin, leading to a stop before the
movement authority as amin < bon. Automatic braking
ends as soon as the necessary deceleration areq exceeds
a switch-off threshold boff > bon. The thresholds bon
and boff are separate to prevent the automatic braking
system from repeatedly engaging and disengaging in
intervals of approximately 8 seconds when the leading
train is moving.

We consider the probability to reach the state “Crash” in
which the follower train has collided with the leader train.
In Table 3, we give probability bounds and performance re-
sults. We modelled the measurement error using a normal
distribution with expected value sl, i.e. the current position
of the leader train. In the table, we considered different
standard deviations of the measurement. The abstraction
used for each of them can be obtained using structurally
equal Markov decision processes, only with different proba-
bilities. Thus, we only needed to compute the abstraction

time
bound

interval length ∞ interval length 2 interval length 1 interval length 0.5

prob. build (s) states prob. build (s) states prob. build (s) states prob. build (s) states
2s 1 0.03 7 0 0.17 16 0 0.21 21 0 0.30 31
4s 1 0.05 23 1 1.26 269 0.284643 1.61 316 0.284643 2.97 546
6s 1 0.07 39 1 5.79 1518 0.360221 8.66 2233 0.360221 17.39 3797
8s 1 0.10 55 1 19.27 4655 1 35.62 8261 0.488265 81.39 16051
10s 1 0.12 71 1 53.25 10442 1 119.33 20578 0.590683 507.12 44233

Table 2: Temperature control results. To abstract N (T, 0.25), we used T + {[−0.25, 0.25], (−∞,−0.25], [0.25,∞)}.

AutoBrake

Crash
Idle

FreeRun FreeRun

0.9

Send

0.1

s = 200m, v = 0m
s

v ∈ [0m
s , vmax]

ds
dt = v

dv
dt = a

a = amin

v · vmax ≥ 2boff (s − auth)

sl = 1400m, vl = 0m
s

auth = 800m

c′ = 0
auth′ = m − l − sd

dc
dt = 1
c ≤ 8

v · vmax ≥
2bon(s − auth)

v · vmax

≤ 2boff (s − auth)

Follower

v ∈ [0m
s , vmax]

ds
dt = v

dv
dt = a

v · vmax ≤ 2bon(s − auth)

vmax = 83.4m
s , l = 200m, sd = 400m, amin = −1.4 m

s2
, amax = 0.7 m

s2
, bon = −0.7 m

s2
, boff = −0.3 m

s2

s ≥
sl − l

s ≥
sl − l

a ∈ [amin, amax]

vl ∈ [0m
s , vmax]

Leader

al ∈ [amin, amax]

dsl
dt = vl

dvl
dt = al

Moving Block

c′ = 0

dc
dt = 1

dm
dt = 0

c ≥ 8
m′ = N (sl, σ)

c ≤ 8

c ≥ 8

Figure 7: Moving-block train distance control with perturbed measurement of leader train position (using
normal distribution N (sl, σ) centred around actual value, with standard deviation σ) and unreliable commu-
nication of resultant movement authorities (failure probability 0.1). “Crash” represents collision of trains.

once for all deviations, and just had to change the transition
probabilities before obtaining probability bounds from the
abstraction. It was sufficient to split the normal distribu-
tion into two parts. Depending on where we set the split-
point, we obtained probability bounds of different quality.
Although this hybrid automaton is not piecewise constant,
such that PHAVer needs to over-approximate the set of
reachable states, we are still able to obtain useful proba-
bility bounds when using an adequate abstraction, without
refine intervals.

The graph in Figure 8 reveals the expected positive cor-
relation between measurement error and risk, but also the
effectiveness of the fault-tolerance mechanism handling com-
munication loss. We see that crashes due to communication
losses are effectively avoided, rooted in the principle of main-
taining the last received movement authority whenever no
fresh authority is at hand. In fact, risk correlates negatively
with the likelihood of communication loss. The function cor-
relating risk to measurement error and probability of com-
munication loss has been computed by the tool Param [15].

6. CONCLUSION
In this paper, we have defined a notion of stochastic hybrid

systems which supports both non-determinism and continu-
ous probability distributions in discrete jumps. We have dis-
cussed well-definedness of the semantics and have developed

0
0.1

0.2
0.3

0.4
17

17.5

18

0.5

1

·10−6

p

σ

R
ea
ch

Figure 8: Bounds for probability of crash as a func-
tion of probability of movement authority loss p and
standard deviation σ of distance measurement. A
time bound of 100s and Abstraction A was used.

means to safely over-approximating reachability probabili-
ties for such systems. As the underlying state-space abstrac-
tion which we exploit for computing probabilities is the one
computed with the help of model checkers for non-stochastic
hybrid systems, improvements in efficiency of such tools di-
rectly carry over to the technique we describe. The applica-

time
bound

Abstraction A Abstraction B

probability (σ = 10, 15, 20) build (s) states probability (σ = 10, 15, 20) build (s) states
60s 7.110E-19 6.215E-09 2.141E-05 65 571 1.806E-06 2.700E-03 3.847E-02 62 571
80s 1.016E-18 8.879E-09 3.058E-05 201 1440 2.580E-06 3.855E-03 5.450E-02 183 1440
100s 1.219E-18 1.066E-08 3.669E-05 470 2398 3.096E-06 4.624E-03 6.504E-02 472 2392
120s 1.524E-18 1.332E-08 4.587E-05 1260 4536 3.870E-06 5.777E-03 8.063E-02 1210 4524
140s 1.727E-18 1.509E-08 5.198E-05 2541 6568 4.386E-06 6.544E-03 9.088E-02 2524 6550
160s 2.031E-18 1.776E-08 6.116E-05 5764 10701 5.160E-06 7.695E-03 1.060E-01 5700 10665

Table 3: Train control results. For abstraction A we use a division of the normal distribution into sl +
{(−∞, 91], [89,∞)}. For B, we split the distribution into sl + {(−∞, 51], [49,∞)}. We give probabilities for
different values σ of the standard deviation of the measurement.

bility of our approach has been demonstrated on three case
studies, tackled using a prototypical implementation.

As future work, we want to extend our techniques to rea-
son about the loss of precision introduced by the abstraction
and consider the question how to split continuous distribu-
tions in an optimal way. We have assumed a finite number
of modes and commands. Using additional abstractions [18]
for the discrete part, our technique can be extended to mod-
els which have a very large or infinite number of modes.

Acknowledgements. This work was supported by the
SFB/TR 14 AVACS, by ANPCyT PICT 02272, by SeCyT-
UNC 2010-2011, by the VKR Centre of Excellence project
MT-LAB, the DAAD-MinCyT project QTDDS, FP7-ICT
MoVeS and FP7-ICT Quasimodo.

We would like to thank Pedro Sánchez Terraf from the
National University of Córdoba and Stefan Ratschan from
the Academy of Sciences of the Czech Republic for fruitful
discussions on the measurability problems.

7. REFERENCES
[1] A. Abate, J. Katoen, J. Lygeros, and M. Prandini.

Approximate model checking of stochastic hybrid
systems. European Journal of Control, 2010.

[2] A. Abate, M. Prandini, J. Lygeros, and S. Sastry.
Probabilistic reachability and safety for controlled
discrete time stochastic hybrid systems. Automatica,
44(11):2724–2734, 2008.

[3] E. Altman and V. Gaitsgory. Asymptotic optimization
of a nonlinear hybrid system governed by a Markov
decision process. SIAM Journal of Control and
Optimization, 35(6):2070–2085, 1997.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. A.
Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. TCS, 138:3–34, 1995.

[5] R. Alur, T. Dang, and F. Ivancic. Predicate
abstraction for reachability analysis of hybrid systems.
ACM Transactions on Embedded Computing Systems,
5(1):152–199, 2006.

[6] Y. Baisalov and B. Poizat. Paires de structures
o-minimales. J. Symb. Log., 63(2):570–578, 1998.

[7] A. Berarducci and M. Otero. An additive measure in
o-minimal expansions of fields. The Quarterly Journal
of Mathematics, 55(4):411–419, 2004.

[8] H. Blom and J. Lygeros. Stochastic Hybrid Systems:
Theory and Safety Critical Applications, volume 337 of
LNCIS. Springer, 2006.

[9] M. L. Bujorianu. Extended stochastic hybrid systems
and their reachability problem. In HSCC, pages
234–249, 2004.

[10] P. R. D’Argenio, P. S. Terraf, and N. Wolovick.
Bisimulations for nondeterministic labeled Markov
processes. Math. Struct. in Comp. Science, 2010.
Under consideration for publication.

[11] P. R. D’Argenio, N. Wolovick, P. S. Terraf, and
P. Celayes. Nondeterministic labeled Markov
processes: Bisimulations and logical characterization.
In QEST, pages 11–20. IEEE Computer Society, 2009.

[12] M. H. A. Davis. Piecewise-deterministic Markov
processes: A general class of non-diffusion stochastic
models. Journal of the Royal Statistical Society,
46(3):353–388, 1984.

[13] G. Frehse. PHAVer: Algorithmic verification of hybrid
systems past HyTech. In HSCC, pages 258–273, 2005.

[14] M. Giry. A categorical approach to probability theory.
In Categorical Aspects of Topology and Analysis, pages
68–85. Springer, 1982.

[15] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang.
PARAM: A model checker for parametric Markov
models. In CAV, pages 660–664, 2010.

[16] T. A. Henzinger. The theory of hybrid automata. In
LICS, pages 278–292, 1996.

[17] C. Herde, A. Eggers, M. Fränzle, and T. Teige.
Analysis of hybrid systems using HySAT. In ICONS,
pages 196–201. IEEE Computer Society, 2008.

[18] M. Kwiatkowska, G. Norman, and D. Parker. A
framework for verification of software with time and
probabilities. In FORMATS, volume 6246 of LNCS,
pages 25–45. Springer, 2010.

[19] S. Prajna, A. Jadbabaie, and G. J. Pappas. A
framework for worst-case and stochastic safety
verification using barrier certificates. IEEE TAC,
52(8):1415–1429, 2007.

[20] M. Prandini and J. Hu. A stochastic approximation
method for reachability computations. In Blom and
Lygeros [8], pages 107–139.

[21] R. Segala and N. Lynch. Probabilistic simulations for
probabilistic processes. NJC, 2(2):250–273, 1995.

[22] J. Sproston. Decidable model checking of probabilistic
hybrid automata. In FTRTFT, pages 31–45, 2000.

[23] L. Zhang, Z. She, S. Ratschan, H. Hermanns, and
E. M. Hahn. Safety verification for probabilistic
hybrid systems. In CAV, pages 196–211, 2010.

	Introduction
	Semantic Models
	Stochastic Hybrid Automata
	Model Description
	Semantics of Stochastic Hybrid Automata

	Over-approximating Stochastic Hybrid Automata
	Obtaining Abstraction Functions
	Finite Abstractions

	Experiments
	Water Level Control
	Temperature Control
	Moving-block Train Control

	Conclusion
	References

