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Planning, control, perception, and learning are current research challenges in multi-robot

systems. The transition dynamics of the robots may be unknown or stochastic, making it difficult

to select the best action each robot must take at a given time. The observation model, a function

of the robots’ sensor systems, may be noisy or partial, meaning that deterministic knowledge

of the team’s state is often impossible to attain. Moreover, the actions each robot can take may

have an associated success rate and a probabilistic completion time. Regardless of the control

scheme, planning, or learning algorithms used for a specific problem, robots designed for real-

world applications require careful consideration of such sources of uncertainty. Understanding

the underlying mechanisms of planning algorithms can be challenging due to the latent variables

they often operate on. When performance-testing such algorithms on hardware, simultaneous

use of the debugging and visualization tools available on a workstation can be difficult. This

transition becomes especially challenging when experiments need to replicate some feature of the

software toolset in hardware, such as simulation of visually-complex environments. This article
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details a robotics prototyping platform, called Measurable Augmented Reality for Prototyping

Cyber-Physical Systems (MAR-CPS), which directly addresses this problem, allowing real-time

visualization of latent state information to aid hardware prototyping and performance-testing of

algorithms.

Hardware-in-the-loop experiments are a key step for transitioning the implementation of

planning and learning algorithms from simulations to real-world systems. They are not only

important for verification of an algorithm’s performance in a real-world setting, but also for

conveying behavioral characteristics of algorithms to researchers and other observers. They

allow determination of an algorithm’s robustness to uncontrollable factors such as environmental

uncertainty and sensor noise, which need to be verified before deployment onto consumer-level

platforms. Operation of experimental hardware in an outdoor environment may be disfavored,

in some instances, due to safety, cost, or regulatory concerns. For instance, although Federal

Aviation Administration (FAA) regulations have allowed limited testing of Unmanned Aircraft

Systems (UAS) in outdoor spaces, several regulatory constraints are in place which affect rapid

prototyping of such systems, including required registration of UAS and operator certification

[1].

During the execution of planning and learning algorithms, numerous latent variables

such as probability distributions over the system state, predicted agent trajectories, and transition

probabilities are manipulated in software, but are difficult to convey on hardware testbeds. In

frameworks designed for planning under uncertainty, which in a general form can be described as

Partially Observable Markov Decision Processes (POMDPs) [2], agents operate in belief space
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(the space of probability distributions over states) rather than state space. Though hardware

experiments enable spectators to observe the performance of planning algorithms in the real

world, it is difficult to simultaneously convey latent information such as an agent’s belief state

alongside physical platforms. The perceived performance of algorithms can, therefore, suffer due

to this complexity not being appropriately conveyed to spectators.

MAR-CPS (illustrated in Fig. 1) is an experimental architecture that enables controlled

testing of planning and learning algorithms in an indoor setting which closely emulates outdoor

conditions. The presented architecture leverages motion capture technology with edge-blended

multi-projection displays to improve state-of-the-art indoor testing facilities by augmenting them

with interactive, dynamic, partially unknown simulated environments.

This article discusses related CPS prototyping environments and presents the system

architecture for MAR-CPS. Technical features of MAR-CPS are then outlined, providing

details of high-level system capabilities. An ‘Application Focus’ section presents a tutorial-

style discussion of the improvements MAR-CPS provides for two example experiment domains

(high-speed quadrotor maneuvering and multi-agent intruder monitoring) from both researcher

and spectator perspectives. Step-by-step descriptions of each mission, visualization elements,

and associated benefits provided to researchers and spectators are provided. Finally, a sequence

of higher-level case studies demonstrating remaining capabilities are presented, with a focus

on planning, perception, and learning algorithms for autonomous single-robot and multi-robot

systems which actively sense and interact with the augmented laboratory space.
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Framework for Prototyping Autonomous Vehicles

The ancestor of MAR-CPS, referred to as Real-time indoor Autonomous Vehicle test

ENvironment (RAVEN), was designed to facilitate rapid prototyping of autonomous vehicle

systems through modular mission, task, and vehicle components [3]. The inherent flexibility in

the architecture enables system managers to easily change mission specifications such as high-

level goals or the number/type of vehicles involved in tasks. With the combination of both air and

ground vehicles it is possible to create scenarios that stress test a variety of planning and learning

algorithms, although it is typically difficult to generate hardware environments that are complex

and time-varying enough to performance-test the vehicles’ onboard perception systems. RAVEN

can be outfitted with physical obstacles and target vehicles to test algorithms for a target-tracking

scenario, but such a domain is fixed for the duration of the experiment. Motivated by the goals

of increasing domain complexity and enabling the possibility that it be time-varying (possibly

the output of a dynamic simulation) this article presents an extension of RAVEN to include

augmented reality. The approach taken maintains the modularity of the original design in that

the software and hardware required for the augmented reality architecture are decoupled from

the rest of the mission, allowing experiments to be conducted even when the projection system

is offline.

The primary contribution of this work is an augmented reality system architecture that can

be implemented in research laboratories to transform barren indoor flight spaces into dynamic

interactive environments that are more representative of the outside world.
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Related Work

Various prototyping environments for CPS have been developed in the past [3]–[9], but

the addition of augmented visualization capabilities to indoor platforms is of ongoing interest.

For example, display of dynamically changing events using projectors for hardware experiments

involving quadrotors has been investigated [10]. Specifically, reward and damage information

for quadrotors involved in an aerial surveillance mission was displayed in real time, although

simulation of complex mission scenarios, measurement of the augmented environment using

onboard sensors, and display of state transition and observation probability distributions were

not demonstrated. Also, [8] utilized physical props (small blocks) as surrogates of building

components enabling the construction of small-scale structures.

An investigation of augmented reality for multi-robot mission scenarios has also been

conducted [11], including applications in pedestrian perception and tracking of swarm robotics.

However, their applications are limited to display of this information in software only, and

integration of the data into a physical laboratory space was not conducted.

Onboard projection systems have also been investigated for human-robot interaction

situations [12], with applications in robot training demonstrated, though the projection footprints

are limited. Due to increasing affordability of virtual reality headsets, such as the Oculus VR

[13] and SteamVR [14], their usage in a CPS-prototyping setting may be possible. Usage of

virtual reality head-mounted displays to superimpose mission data over a live camera feed has

previously been investigated [15], with applications to intruder monitoring in swarm robotics.

5



For demonstrations involving many spectators, virtual reality headsets are typically infeasible due

to the large amount of hardware and supporting infrastructure required. Information displayed

in a virtual reality headset is also not measurable using onboard sensors on a vehicle, whereas

projected images are physically visible in a lab and can be directly measured.

MAR-CPS leverages the emergence of motion capture technology as well as multi-

projection systems to change the state-of-the-art for CPS prototyping. MAR-CPS not only

allows display of latent state information, but also enables hardware-level interaction of vehicles’

sensor systems with augmented, customizable mission domains of arbitrary complexity with little

hardware overhead. Previous work on virtual and augmented reality interfaces is additionally

extended by demonstrating that measurement of projected environments using noisy hardware

sensors is a useful validation tool in situations where outdoor testing is infeasible.

System Architecture

Fig. 2 illustrates the system architecture. The system has several components: i) a high-

level mission manager, ii) autonomous vehicles (each with access to a planning, control, and

perception CPU) equipped with onboard sensors, iii) motion capture system, and iv) projection

system.

The central mission planner coordinates high-level tasks for the vehicles, given the

mission objective. For instance, in a multi-robot package delivery scenario, the central planner

assigns packages and delivery destinations to individual vehicles. In a partially-observable

domain, where the vehicle state is not known deterministically, this planner could be assigning
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tasks based on each vehicle’s belief of its state. This architecture can be extended to decentralized

systems where each vehicle chooses its own tasks based on local observations.

Each vehicle communicates with a designated CPU for planning, perception, and low-

level control. Given a task, the planning CPU defines a valid trajectory for the vehicle. The

trajectory is relayed to a control CPU, which defines low-level control inputs to the vehicle using

feedback from the motion capture system. Note that the planning CPU also has knowledge of

the controllability of the vehicle in question, and its role can be combined with the control CPU

if desired.

The vehicle can simultaneously perceive or measure the projected virtual environment

and convert these observations to useful features using its perception CPU. The perception CPU

can process still images from a camera sensor to find objects of interest, which can then be

tracked using the planning and control CPUs. The perception CPU has the additional task of

performing state estimation using motion capture data, which is done by Kalman Filtering the

raw position and orientation data provided by the motion capture system for each vehicle.

The capability to perceive the projected augmented reality environment allows replication

of outdoor test environments in a controlled, indoor space. Sensor systems used in outdoor

environments can be used within MAR-CPS to obtain noisy measurements, allowing tests of

complex domains with noisy observation models. The modular architecture of MAR-CPS allows

tests in a variety of simulated environments to be conducted with low overhead.

7



Hardware

Fig. 3 illustrates a hardware overview for MAR-CPS. The visualization system is

implemented in MIT Aerospace Controls Laboratory’s RAVEN [3] indoor flight testbed. This

system uses 18 Vicon T-Series motion capture cameras allowing tracking of heterogeneous teams

of autonomous vehicles [16]. A unique pattern of reflective motion capture markers is affixed

to each vehicle, allowing the motion capture system to determine the position and orientation

of the vehicles, as seen in Fig. 3.

State and latent information for the team is published to the laboratory network using

Robot Operating System (ROS) [17], allowing feedback control of the vehicles, as well as a

computer dedicated to visualization-rendering to package this information in an intuitive format

for researchers. The visualization is then projected onto the experiment area using 6 ceiling-

mounted Sony VPL-FHZ55 ground projectors, with latent data animations and physical systems

being run synchronously. This augmented reality interface allows designers and spectators to

observe hardware while simultaneously gaining an intuitive understanding of decisions made by

the planning and learning algorithms.

A primary challenge in implementing this system was to ensure that the footprint of the

experiment testbed would not be downsized. The 1200-plus square foot RAVEN laboratory space

is used for experiments involving a variety of ground and air vehicles, therefore restricting its

size to be equal to the footprint of a single projector is infeasible. Two solutions are presented

for this. First, the projected area can be treated as a window into the underlying belief space.
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Though the hardware itself may run in a larger physical space, visualization can be presented

only for specific sub-regions of this space, providing observers an understanding of the decision-

making scheme used by the algorithm, allowing them to extend its behavior to regions with no

visualization. Second, the projected area is not necessarily constrained to the size of a single

projector. Instead, multiple projectors are combined to increase the overall visualization footprint.

Additional hardware can be appended to MAR-CPS to simulate outdoor environments

more realistically. Fig. 4 shows usage of an industrial fan for simulating turbulent wind conditions

while testing a UAS in a forest firefighting experiment.

Multi-Projection System Calibration

MAR-CPS uses a multi-projector system for data visualization in the physical lab space.

Misalignment of the projectors’ mountings requires careful treatment, as it may cause affine

warping and distortions in these visualizations. It is infeasible to permanently align the edges

of the projected images in hardware due to ground vibrations moving the projectors over time,

resulting in overlapping or gaps in the images.

To counter this, a software calibration scheme was implemented in collaboration with

Scalable Display Technologies, a company specializing in multi-projector displays [18]. Driver-

level customizations on a computer running NVIDIA Mosaic-capable K5000 graphics cards allow

edge-blending of projector displays, as well as de-warping of images in the lab environment. The

result is a seamlessly blended projection region with the majority of affine distortions removed.

Note that during the calibration phase, the placement of the camera is important for reducing
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warping near the edges of the projections. Specifically, the calibration camera orientation must

be such that the angle between the projection plane normal vector (for all projection surfaces)

and the camera image plane normal vector is not highly oblique. Otherwise, warping of the

projected image occurs in certain regions.

Additional calibration is required for the mapping between the pixel space and the

physical (Vicon) space so that visual elements such as markers and trajectories align with the

physical counterparts which they represent. Since the canvas in the pixel space is rectangular but

the projection footprints might not be due the placement of projectors and the edge blending,

the calibration is non-trivial. Piecewise-linear mappings on Delaunay triangulation are used to

transform coordinates between the pixel space and the physical space. The calibration procedure

for the mappings is described as follows. Markers are generated on a regular grid in the pixel

space and projected onto the floor. The markers’ positions in the physical space are measured

by the Vicon system as shown in Fig. 5. To map the pixel space to the Vicon space, a Delaunay

triangulation is constructed in the pixel space using the markers. Two piecewise-linear surfaces

are constructed on top of the Delaunay triangulation with the height of the surface at each marker

set to the x and y coordinates of the marker in the physical space respectively. A point in the

pixel space can then be mapped to the Vicon space efficiently by querying the two piecewise-

linear surfaces. Mapping from the Vicon space to the pixel space can be handled with the same

approach.
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Technical Features

MAR-CPS includes several features that extend prototyping of autonomous systems in

traditional laboratory spaces, as well as debugging and demonstration of planning and learning

algorithms in real-time. These features are outlined in the following sections.

Rapid Prototyping in Simulated Environments

The modular architecture of MAR-CPS is focused on minimization of logistics for

autonomous vehicle research labs, allowing new vehicles and software capabilities to be added

on-the-fly. MAR-CPS provides visual awareness of both high and low-level information from

software and hardware platforms, making it an efficient testbed for rapid prototyping of

autonomous vehicles. If desired, MAR-CPS can be designed to be disjoint from experiments,

allowing it to be “turned off” without affecting vehicle behavior or performance of the

experiments conducted.

Traditionally, testing an algorithm’s performance in simulation and on physical systems

has been disjointed. A typical framework for development of algorithms for autonomous vehicles

involves initial experimentation in simulation and a subsequent transfer to physical platforms

(either in an indoor or outdoor environment). This transfer may cause problems such as

discrepancies between models used in simulation and real-world models (of sensors, actuators,

and environment), including miscalibrations. In particular these discrepancies in complex physical

systems consisting of several interacting vehicles can make it difficult to understand the behavior
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of algorithms or root causes of performance problems.

Traditional debugging schemes for such scenarios are iterative, requiring update of

software, verification in simulation, and testing in hardware [19]. Specifically, software debugging

requires extracting and understanding low-level system information while experiments are

conducted. MAR-CPS alleviates this time-exhaustive process by allowing display of such

information in real time. Information regarding the location and velocity of vehicles can

be visually shown next to them in the physical space, allowing immediate identification of

discrepancies between hardware sensors and software variables.

MAR-CPS is a platform designed to transform indoor laboratories into controlled

simulations of outdoor environments in which experiments involving autonomous vehicles can be

conducted prior to real-world deployment. This technology provides researchers an inexpensive

pathway to field testing, which is distinct from traditional testing in simulations or indoor

environments. Specifically, visual presence of obstacles, environmental conditions such as varying

terrain type or wind velocity vector fields, and presence of restricted regions in a mission scenario

can be implemented and visualized using MAR-CPS. Fig. 22 indicates trajectories as well as

detected obstacles in a self-driving vehicle scenario.

Vehicles used in MAR-CPS are subject to lower levels of wear-and-tear and unforeseen

environmental factors that may damage them during a field test, leading to increased lifespans

and less effort spent by researchers on re-calibration or troubleshooting of hardware. Debugging

of software issues in the simulated MAR-CPS environment is also eased, as full access to

laboratory resources (which may be too costly or difficult to transport outdoors) is maintained.
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Finally, in situations where physical vehicles are expensive, use of real-time projection

in MAR-CPS allows integration of virtual vehicles in experiments. Physical and virtual vehicle

interactions can be modeled in software, allowing inexpensive testing of complex, multi-agent

mission scenarios. Fig. 23 illustrates a path-planning with obstacle avoidance demonstration

involving 2 physical and 2 virtual quadrotors, a scenario in which vehicle collisions may be

expected during early phases of testing and debugging. Using MAR-CPS, virtual vehicles can

be incrementally replaced with physical counterparts as the collision avoidance algorithm is

made more robust. Thus, physical-virtual vehicle interactions can be leveraged to reduce the risk

associated with the hardware-in-the-loop debugging process.

Window into Belief Space

Application of planning and learning algorithms in real-world settings often requires

handling of stochasticity in the environment. In such scenarios, each vehicle constructs a

“belief” or probability distribution over the state space, using it to decide its next best action.

Decisions made by planning algorithms may be counter-intuitive to human observers if a thorough

representation of a vehicle’s perception of the environment is not conveyed.

In the planning under uncertainty problem for an autonomous agent, the agent operates

in a partially observable domain and takes a series of actions (with stochastic outcome) in order

to achieve a set of tasks. This problem can be formulated as a Partially Observable Markov

Decision Process (POMDP) [20].

In partially-observable domains, since the state is not explicitly known, decision-making
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is performed in belief space. Belief b(s) is a probability distribution over state s of the agent

[20], where b(s) = P (s). Given current belief b(s), action a, and observation o, the agent

transitions to a new belief b′(s′). POMDPs and their multi-agent counterpart, Decentralized

POMDPs, have been applied to networking, multi-robot exploration, and surveillance problems

[21], [22]. Though agents in the POMDP framework operate in belief space, no prototyping or

debugging hardware architecture exists for visualizing the agent belief b(s) as it propagates over

time. While visualizations of state transition probabilities P (s′|s, a) and observation probabilities

P (o|s′, a) in a hardware prototyping setting would be useful aids in understanding the sources

of uncertainty in the problem domain, no means of doing so exist. Note that these needs are not

specific to the POMDP problem, and that a similar gap in debugging hardware exists for other

planning and learning frameworks which operate on latent variables.

In certain scenarios, once experimental data is gathered, latent or belief information can

be visualized through simulation software. But it can be difficult for observers to synchronously

monitor behavior in the simulator and on the physical platform, especially in the case of real-

time algorithms. It is beneficial to augment the experiment area with real-time visualization of

this data, allowing direct perception of the progress of the planning and learning algorithm.

Visualization of such information, specifically the level of uncertainty in a vehicle’s

perceived state, aids researchers’ understanding of the behavior of the algorithms. In the past,

conveying this information in real time has been difficult. MAR-CPS uses ceiling-mounted

projectors to show latent information about an autonomous agent, such as its perception of its own

location, nearby obstacles, future trajectories, failure states, battery levels, and communication
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links with other teammates.

Fig. 6 shows an example of belief space visualization for robot localization. In such

domains, robots observe features of their surroundings in order to determine their location.

However, observations are typically made using noisy sensors, leading to a posterior distribution

on the robot’s location. MAR-CPS allows visualization of this distribution. In Fig. 6, regions

with high posterior probability for the robot’s location are highlighted in red. The robot in Fig. 6

uses a Gaussian mixture model to represent belief on its location, and MAR-CPS prominently

indicates the underlying multi-modal belief state. Using MAR-CPS, spectators can visualize and

intuitively understand the concept of ‘belief space’. They can also see the transformation of

the robot’s belief state in real-time (and with the correct scale in the laboratory) as it performs

actions and gathers observations.

In Fig. 7a, a second example of belief visualization in MAR-CPS is shown. In this

domain, a quadrotor maintains a belief over its health state, which is partitioned into low,

medium, and high health. As the quadrotor executes its mission, it uses noisy observations from

a health sensor to update its health belief, which is projected underneath it as a donut chart. The

visualization follows the quadrotor and is dynamically updated as the mission progresses. Such

a visualization is important, in this context, since the actions of the quadrotor are associated

with its belief over health. When the quadrotor believes it is in low health, it temporarily halts

its mission and performs a ‘repair’ action. As the quadrotor increases and decreases altitude, the

donut chart expands and shrinks, indicating the field of view of the downward-facing camera

onboard the vehicle. This dynamic resizing of the health belief visual also ensures that it is never
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observed by the quadrotor’s onboard camera, and does not corrupt the vehicle’s observations of

its environment. Fig. 7b illustrates the full mission domain with 4 quadrotors, each with an

associated health belief. Also indicated are the planned paths for each vehicle, as well as labeled

locations where each vehicle can perform specific tasks. Although the monitoring of belief and

path-planning information for a single quadrotor may be possible using conventional methods,

MAR-CPS has been found to be indispensable for real-time understanding of complex scenes

involving many dynamic elements.

Measurable Augmented Reality: Perception and Interaction in Simulated Environments

The quality of outdoor environment simulations is heightened by enabling perception

of the projected imagery, closing the loop on the simulation architecture. More specifically,

the combination of a projected simulated environment and sensors observing it creates a lab

environment which is essentially a replacement for the outdoor world. Using MAR-CPS, noisy

observations of the state space can be obtained and state observation probabilities P (o|s′, a)

can be modeled directly in the lab space, as seen in Fig. 8. Since MAR-CPS uses real-time

projections in the laboratory space, simultaneous perception of physical as well as virtual agents

and environmental features is possible.

Communication and Teaching Tool for Spectators

Conveying valuable information about autonomous vehicle algorithms is not only useful

for researchers, but for spectators outside the research field as well. In some scenarios, even
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high-level descriptions of algorithms may prove difficult for spectators to understand. Though

display of visual information or explanatory animations on a computer monitor may be effective,

it can also detract from the experience of spectators as they must divide their attention between

computer displays and physical experiments.

MAR-CPS is capable of showing latent or meta-information during demonstrations to

spectators, which can be especially useful for transferring an intuitive understanding of the

specific topic of research or specific mission scenarios. Information regarding a given vehicle’s

overall objective or messages declaring each vehicle’s current task can be projected in MAR-CPS.

Vehicle Safety

MAR-CPS allows implementation of useful safety features for testing autonomous

vehicles, and can aid compliance to regulatory restrictions placed on research institutions.

In scenarios where interaction of humans and autonomous hardware is dangerous (such as

flight of high-speed quadrotors in an enclosed environment), physical barriers provide a means of

protection for operators and spectators. However, minimization of vehicle crashes and collisions

due to software or hardware failures is also desirable. Though planned trajectories and health

states [23] of vehicles can be visualized on a computer display, it may be difficult for researchers

to monitor such information while simultaneously observing the vehicles themselves. Using

MAR-CPS, the above information can be projected directly on the vehicle testbed, allowing

researchers to observe and even predict dangerous behavior and react accordingly with fast

response time. Fig. 9 illustrates a scenario where a vehicle undergoes actuator damage and must
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leave the mission premise until it is repaired. Using MAR-CPS, observers gain an understanding

of such events without need for additional explanation.

The combination of motion capture technology and the visualization system also allows

safe interaction of humans with robots in the augmented reality workspace. Fig. 10 shows

a demonstration of multi-vehicle path-planning with humans present in the domain. In this

demonstration, a team of quadrotors plan paths to randomly-generated goal destinations while

avoiding collisions with each other and with a human wearing a motion-capture helmet. Using

this setup, the perceived position of humans in the experiment domain can be directly projected

underneath them, allowing safe interaction with the quadrotors.

Regulations

In some scenarios, experiments involving autonomous vehicles cannot be conducted in a

public or outdoor setting, due to regulatory restrictions. For instance, although FAA regulations

allow limited testing of UAS in outdoor settings, imposed requirements such as operator

UAS certification may be over-constraining in some cases [1]. Using MAR-CPS, institutions

can instead leverage existing private, indoor laboratory spaces to conduct simulated outdoor

experiments without violating regulations.
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Application Focus

This section details two robotics domains where MAR-CPS increases understanding of

complex planning and control algorithms. The first domain involves a high-speed quadrotor per-

forming difficult maneuvers, and presents a researcher perspective on the algorithm prototyping

advantages offered by MAR-CPS. The second domain is a multi-agent decision-making system

situating teams of competing robots in a surveillance environment. This example focuses on

challenges in demonstrating complex robotics algorithms to spectators with limited background

in this research field.

Researcher Focus: Algorithm Insights using Augmented Visualization

Sustained high-speed flight of quadrotors has not been extensively studied because

of outdoor flight regulations and indoor space limitations. A thorough understanding of how

aerodynamic effects and large attitudes impact the flight controller’s performance is important

since many of the projected applications of these vehicles place them within the high-speed flight

regime. In MAR-CPS, some of the challenges of aggressive turning at high-speeds are addressed

by studying the vehicle’s performance during a 1 m radius circular trajectory at speeds greater

than 4 ms−1. There were two main contributions of this work which benefited from the MAR-CPS

visualization architecture. First, an improved nonlinear cascade-feedback control architecture that

generated desired angular rates that were not dependent on small angle approximation [24] or

hand-tuned gains [25] was shown to greatly enhance flight performance. Second, the vehicle’s

response was greatly enhanced by using a drag model and the geometric properties of a desired
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trajectory for the feedforward command.

A major challenge in conducting controls experiments is concisely displaying data and

error in real-time. For instance, Fig. 11 shows the vehicle banking at 60◦ during an aggressive

turn. For high-speed maneuvers, it is difficult for researchers to extract information about position

and altitude error in real-time, while simultaneously observing vehicles.

Traditionally, additional plots showing position, velocity, and attitude tracking would

supplement the previous figure. However, MAR-CPS can display real-time flight data and thus

provide all the necessary information to evaluate the vehicle’s performance. Fig. 12a defines the

visual elements used in the subsequent subplots. The blue circle is the desired position, the red

circle is the actual position, the red arrow protruding from the red circle is desired heading, and

relevant flight data is shown in the center. Fig. 12b shows the vehicle’s poor performance when

pure feedback control is used. The vehicle has a notable pitch of 30.2◦ because the lag between

its actual and desired position is significant, shown by the offset between the blue and red circle.

Further, the circular contours beneath the quadrotor indicate the history of its trajectory. Without

MAR-CPS, it would be difficult to convey this error in real-time on the experiment platform.

When the feedforward model is added to the controller, the previous position lag is non-

existent and the required pitch angle is reduced, as shown in Fig. 13a. A decrease in throttle is

also observed, leading to an increase in control authority. Throttle is lowered since the vehicle

no longer needs a large pitch. Note that for both experiments a steady-state roll angle greater

than 50◦ is achieved. Lastly, Fig. 13b shows the vehicle can still track a desired trajectory near

its maximum throttle setting.
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The ability to display real-time data during control experiments with MAR-CPS is a

valuable tool. It provides a gateway into what the vehicle is doing without having to analyze

numerous plots. Researchers can use this as a debugging tool and also easily compare the results

of different experiments. Display of such visuals also reduces the post-processing time following

an experiment.

Spectator Focus: Aiding Understanding of Complex Missions

Due to its modular nature, MAR-CPS can be used in large-scale multi-agent planning

problems. An example application is intruder monitoring using a team of quadrotors [26]. In this

problem, a team of autonomous ground vehicles attempts to reach a goal location in a discretized

world while a competing team of quadrotors attempts to push or “herd” them away.

In this problem domain, the quadrotors solve a planning problem where they first

locate ground vehicles using a simulated radar system, use the stochastic state transition model

P (s′|s, a) to predict each ground vehicle’s most likely next state, and use this information to

choose which ground vehicles to focus their efforts on. Joint actions involving 2 quadrotors

herding ground agents are more effective, but consume resources. Decisions related to health

management (such as refueling or requests for repair) are also made autonomously by the

quadrotors.

MAR-CPS is used as a visualization platform in this application. Fig. 14a illustrates the

domain with no projected visualizations, with a team involving 1 physical and 1 virtual quadrotor.

Without use of MAR-CPS, only the physical quadrotor is visible to spectators, making it difficult
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to understand the underlying decision-making sequence. In this setting, the target destination for

the ground vehicles is not visible (although could be indicated by a physical marker in the

scene). Finally, there is no indication of the task each vehicle is conducting, nor any indication

of whether the ground vehicles have been detected by the quadrotors. The experiment domain

makes no indication of whether the planning algorithm is running in a continuous or discrete state

space. This view provides spectators with a limited, high-level understanding of the experiment.

For deeper understanding, underlying domain mechanisms must be explicitly conveyed to each

spectator, as well as step-by-step descriptions of each vehicle’s actions over the course of the

experiment.

Next, the domain is incrementally augmented with elements enhancing both visual

complexity as well as improving spectator understanding. Since the state of ground vehicles

is initially unknown to the quadrotors, satellite imagery is projected to convey a sense of

‘camouflaged ground intruders’ to spectators (Fig. 14b). This imagery could be modified to

highlight pathways of interest or varying terrain types as well.

In many experiments, the vehicle must localize itself within an unknown environment.

Thus, the physical state of the vehicle does not always match its ‘perceived’ state. In MAR-

CPS, the perceived state of the vehicle (or mean of the belief state) can be projected directly in

the hardware domain to indicate discrepancies with actual vehicle location. This is done using

projected crosses underneath vehicles in Fig. 15a. An additional benefit of this visual element is

that virtual vehicles can also be indicated, as shown in the center of Fig. 15a. Now, the domain

which spectators initially perceived to include only 1 quadrotor has transformed to include an
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additional virtual agent. Actions involving cooperation between quadrotors make intuitive sense

to spectators as a result. Another advantage of MAR-CPS is that existing visual elements can

be leveraged to efficiently convey additional latent information in the experiment. The crosses

in Fig. 15a not only indicate position, but also the health state of each quadrotor. One of the

arms of the virtual quadrotor is red, indicating low health. The color of the crosses also indicate

the current task for each quadrotor (yellow indicating surveillance, blue indicating a “herding”

task). Therefore, by looking at a given quadrotor’s cross, spectators can quickly infer the vehicle’s

perceived location, health state, and current task.

The sensor footprint of a given vehicle can be visualized as seen in Fig. 15b, which adds

the radar footprint of the physical quadrotor. This visual also adds the underlying discretized

state space of the domain using grid cells. Grid cells which have been visited by a surveying

quadrotor are removed, with the remaining represented as foggy regions. A yellow grid square is

also added to indicate the goal destination of the ground vehicles. Using these visuals, spectators

gain an understanding of the competing decisions made by the aerial and ground teams.

Fig. 16a adds a visual element indicating tracking of ground vehicles. A ground vehicle

which has been previously detected by a surveillance quadrotor is given a highlighted color. This

creates an easily-discernible contrast between detected and undetected ground vehicles.

The effectiveness of the quadrotors’ planning algorithm is also indicated in real-time using

MAR-CPS. As Fig. 16b illustrates, green arrows protruding from each ground vehicle indicate

their most likely next state, while black arrows indicate their most likely next-next state had

the quadrotors not been there. Likewise, white arrows indicate their next-next most likely state
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given the quadrotors’ current positions (Fig. 16b). These serve as real-time visualizations for the

transitions of vehicle state, P (s′|s, a), giving spectators an immediate and intuitive understanding

of the impact of the quadrotors’ actions on the overall objective of keeping the ground vehicles

away from their target destination.

Figures 17a-17c indicate various stages of the full experiment as it would appear to

spectators. In Fig. 17a, the experiment begins with 2 physical quadrotors and 1 virtual quadrotor

taking off and initiating surveillance. In Fig. 17b, the quadrotors have surveyed most of the

domain and detected the top-left ground vehicle (in purple). Finally, in Fig. 17c, the experiment

nears conclusion with all quadrotors performing “herding” of the ground vehicles away from

their target destination (yellow square).

Using MAR-CPS, visual elements representing various aspects of the mission domain can

be incrementally added to the laboratory space. The result is an easy-to-understand representation

of the complex underlying domain for spectators.

Additional Case Studies

This section presents a selection of additional case studies which demonstrate benefits of

MAR-CPS in research and communication settings. MAR-CPS was designed to be generalizable

enough to be applicable to a variety of research topics and experiments, such that it can be

a standardized testing and prototyping environment for CPS. Numerous experiments running

autonomous teams of ground and air vehicles have already been conducted in MAR-CPS.

The system has been tested in scenarios such as forest fire management (Fig. 18) and multi-
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agent intruder monitoring (Fig. 17). In each case, the projector visualization is used to improve

understanding of underlying behaviors using information such as vehicle position, health state,

and viability of future actions.

Visualization and Perception of a Dynamic Forest Fire

MAR-CPS allows researchers to construct dynamic mission environments, visualize them

in a laboratory, use onboard sensors for perception of environment features, and validate complex

planning algorithms.

The above capabilities were demonstrated in a heterogeneous multi-agent learning setting,

with an application to forest fire management [27]. In this work, a discretized 12 × 30 forest

environment consisting of varying terrain and vegetation types (such as trees, bushes, rocks)

was constructed and projected in MAR-CPS. A particle system was used to simulate fires, with

OpenGL blending functions used to render dynamic fire effects. Seed fires of varying intensities

were initiated on the terrain. A fire propagation model (from [28]) was used for dynamically

updating the intensities and distribution over the terrain. A quadrotor used an onboard camera

(Sony 700 TVL FPV Ultra Low Light Mini Camera) to wirelessly transmit analog video frames

to a perception CPU, which created a segmented panorama of the complete forest environment.

Fig. 18 shows a perspective view of the MAR-CPS environment, as well as associated image

capture obtained from the quadrotor. The radio transmitter used to stream the onboard camera

frames added noise and transmission artifacts to the resulting images, which in this case was

desirable since noisy measurement models were being investigated. If a more robust image
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transmission scheme, such as Wi-Fi, was utilized, then artificial noise could be injected either

directly into the projection or during post-processing.

Hue-saturation values of the images were used for classification of fire intensities

throughout the environment, resulting in an intensity matrix. Repeated applications of this

process produced spatio-temporally varying intensity matrices, from which state transitions of fire

intensity distributions were modeled. This information was used to predict future fire propagation,

allowing targeting of firefighting efforts on more constructive regions of the environment.

This experiment highlights the use of MAR-CPS to create dynamic counterparts of real-

world situations in an augmented reality environment, where noisy measurement systems can be

used to assess the real-world effectiveness of CPS prior to deployment.

Real Time Vision-based Path Planning

MAR-CPS allows testing of machine vision systems using noisy data obtained from real-

world sensors, enabling numerical modeling of observation noise. This feature of the augmented

reality laboratory space distinguishes it from previous work in this field. This capability was

demonstrated in a multi-agent planning experiment, shown in Fig. 19.

In this scenario, a ground vehicle navigates a stochastic obstacle course while a quadrotor

provides overhead reconnaissance. The ground vehicle traverses over various grids in the domain,

each dictating different dynamical model constraints, while planning a minimum-time path to

a goal destination. The vehicle speed is nominal on white grids, 200% of nominal on green
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grids, 50% speed of nominal on red grids, and 5% of nominal on black grids. On blue grids, the

vehicle loses turning capability. All sensing capabilities are provided by the quadrotor, which

has an onboard camera. Photographs of the grids are taken by the quadrotor and a belief-map

of the world state is compiled, allowing real-time path planning for the ground agent.

Experiments conducted in this domain highlight the advantage of using MAR-CPS for

doing data processing on noisy, real-world measurements. Visualizations were restricted to simple

color grids to allow better analysis of the impact of camera noise on the perceived world map.

Despite the grid colors being discrete and easily distinguishable by the human eye, analyzing

hue-saturation-value plots revealed a notable level of noise in the data (Fig. 20) due to lighting

condition and sensor noise. Calibrations similar to those which would need to be done in an

outdoor flight test were conducted using these noise statistics, improving the accuracy of the

perceived map.

Modeling Dynamic Agents

In many applications, autonomous vehicles operate in dynamic environments that are

populated with other mobile agents, such as pedestrians, cyclists, and automobiles. For safe

navigation in such environments, it is important to understand the other agents’ intentions; that

is, to predict their future behavior patterns (trajectories). These behavior patterns can be learned

from past observations (a set of trajectories) by statistical inference, such as using Gibbs sampling

on a Dirichlet Process Gaussian Process (DPGP) mixture model [29].

More precisely, in a set of N trajectories, each trajectory ti is a sequence of position
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measurements {(x1, x2), . . . , (xl, yl)} taken at fixed time interval ∆t. There exist M behavior

patterns, bm, unknown a priori and modeled as pairs of Gaussian Processes (GPs), which specify

the 2D velocity flow fields for predicting an agent’s future motion (speed and trajectory). Each

behavior pattern consists of two GPs (for each trajectory dimension, x and y), characterized by

observations {tk} (a subset of trajectories from the dataset) and hyperparameters θGP
xm , θGP

ym . The

following generative model specifies the probability of generating a trajectory ti from the m-th

behavior pattern,

l(bm; t
i) = p

(

ti|zi = m, bm
)

= p

(

∆x1:l

∆t

∣

∣

∣

∣

{tk : zk = j}, θGP
xm

)

p

(

∆y1:l

∆t

∣

∣

∣

∣

{tk : zk = j}, θGP
ym

)

, (1)

where the cluster assignment zk ∈ {1, . . . ,M} is a categorical random variable specifying

which behavior pattern k-th trajectory belongs to. The terms on the right of Eq. (1) are the GP

likelihoods [30], with other trajectories currently assigned to this behavior pattern as observations.

Further, a Dirichlet Process prior is placed on the cluster assignments,

p(zi = j|z−i, α) =
nj

N − 1 + α
(2)

p(zi = M + 1|z−i, α) =
α

N − 1 + α
, (3)

where nj =
∑

k,k 6=i 1(zk = j), is the number of trajectories currently assigned to cluster j, N

is the number of trajectories in the dataset, and α is a concentration parameter [29]. Eq. (2)

is the probability of assigning label i to an existing cluster j, and Eq. (3) is the probability of

assigning label i to a new cluster. Combining Eq. (1) and Eq. (2), the probabilities of assigning
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a trajectory ti to an existing motion pattern bm and a new motion pattern bM+1 are

p
(

zi = m|ti, α, bm
)

= l(bm; t
i)p(zi = j|z−i, α) (4)

p
(

zi = M + 1|ti, α, bm
)

=

∫

l(bm; t
i)dθGP

x , dθGP
y p(zi = M + 1|z−i, α). (5)

The goal of the inference process is to find the number of clusters M , the cluster assignments

zi for each of the N trajectories, and the hyperparameters θGP
xm , θGP

ym for each of the M behavior

patterns. This learning process is typically carried out off-line using Gibbs sampling.

During the online planning phase, upon detecting a mobile agent in the environment, the

autonomous vehicle can predict the mobile agent’s intention by (i) determining which behavior

pattern the mobile agent is currently following, and (ii) predicting the mobile agent’s future

trajectory using the GP model. Step (i) can be computed in a probabilistic sense using Eq. (5).

More sophisticated methods have also been developed to detect changes in an agent’s intention

[31]. Step (ii) can be carried out by propagating the current observation forward in time using

the GP model, thus generating a trajectory into the future.

Fig. 21 illustrates a hardware demonstration of the above process, involving a ground

agent (circled in green) planning a trajectory to a goal destination (yellow circle projected on the

floor) while avoiding collisions with two pedestrian vehicles. Trajectories protruding from the

pedestrian vehicles indicate projected paths that the ground agent believes they might take. This

can be interpreted as the belief of paths they plan on taking (although not in the POMDP sense).

In Fig. 21a, the ground vehicle plans a short trajectory (shown as a green line), terminating before

the goal destination because the agent’s belief in the pedestrians’ future trajectories indicates
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that a collision may occur if it continues a path towards the goal. After the agent waits several

seconds, it obtains further observations of the pedestrians, allowing it to modify its belief of

their paths and plan a trajectory to the goal (Fig. 21c).

Through trajectory and belief information (as in Fig. 21b and Fig. 21d), MAR-CPS

allows real-time visualization of planning algorithms directly on the hardware testbed. In this

specific instance, the experiments conducted also reveal the usefulness of MAR-CPS for hardware

debugging. Prior to MAR-CPS, trajectory validation was being conducted separately from the

hardware testbed, on a monitoring computer. For some time, the performance on hardware was

found to be notably lower than simulated performance. Upon visualization using MAR-CPS, the

cause was found to be a hardware calibration issue causing pedestrian vehicles to not follow

trajectories accurately. The simultaneous visualization of planned and executed trajectories on

hardware test-beds are highly useful for debugging such issues.

Motion Planning Under Uncertainty

Robot motion planning is the problem of navigating a moving robot from a start location

to a goal location. In real-world applications, often a robot’s motion and its sensory measurements

are subject to noise. To plan motions for a robot under uncertainty, the current configuration of

the robot based on noisy measurements needs to be inferred. The result of such an inference is

a probability distribution over all possible configurations of the robot, which is captured by the

belief state b(s) [32]. With MAR-CPS, these probability distributions can be projected on the

physical environment alongside the robots. Moreover, the “intent” of the robot (the trajectory it
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decides to follow or the task it aims to complete) can be projected to the physical environment.

Usage of MAR-CPS in a motion planning under uncertainty domain has been demon-

strated [31]. Fig. 22 includes a few photographs of this demonstration. A chance-constrained

rapidly exploring random tree (CC-RRT) method is used to plan the robot’s motion from its

current location to goal (shown in yellow) in the presence of moving obstacles (people or

smaller robots such as iRobot Creates). The robot’s perception of these moving/static obstacles

is projected onto the ground in purple. The generated tree for planning is also projected in green,

where the best trajectory is highlighted. This application demonstrates usage of MAR-CPS in an

autonomous driving scenario, where visualization of planned paths are useful for debugging and

calibration purposes. By visualizing all the considered paths of the robot, MAR-CPS provides

researchers insight into the reasoning behind the robot’s executed trajectory. The contrast between

planned and executed trajectories is especially useful in chance-constrained path planning, since

the robot considers uncertainty in obstacle positions while simultaneously choosing a reasonably

short path. Details involved in this consideration may be difficult to understand on a computer

monitor, since the observer must perform a mental transformation of the display onto the space

of the hardware experiment. With MAR-CPS, no such mental transformation is required, as the

projected visual is automatically-aligned onto the hardware domain.

A multi-agent sequential convex path planning algorithm has also been implemented in

MAR-CPS [33]. Planned paths for a team of two physical and two virtual quadrotors were

visualized using the projection system, with the vehicles’ states being displayed and updated

in real-time (Fig. 23). Comparisons between planned and actual vehicle trajectories are made
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easier using the augmented reality space, which is especially useful for large teams of high-speed

vehicles.

Human-Robot Interactivity

Taking advantage of the motion capture system used in MAR-CPS, human-robot

interactivity can also be demonstrated. Specifically, tracking sensors can be placed on a human

to allow interaction with autonomous vehicles from a safe distance. Props can be used for

representation of objects within the simulated world. One demonstration involves a quadrotor

landing due to a simulated onboard fire (see Fig. 24a), and a human operator subsequently using

a water spout prop to quench the vehicle (see Fig. 24b). Simultaneously, the projection system in

MAR-CPS displays both fire and water animations using a particle system, conveying the impact

of the interactive process to spectators. Another example involves human spectators with motion

capture helmets ‘intruding’ a domain where virtual vehicles plan paths around them (Fig. 10b).

This allows path-planning in uncertain environments, while guaranteeing no danger of collisions

with the human obstacles. Such examples of human-robot interactivity allow demonstrations of

scenarios which would otherwise not be possible to perform in an enclosed laboratory space.

Visualizing Multi-agent Communication Links

A domain involving visualization of communication links in a multi-agent setting has

been developed (Fig. 25a). In this experiment, a ground vehicle (the ‘leader’) contains a

communications beacon that can be used to assign tasks to a fellow agent (a ‘follower’). Task
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assignment only occurs when the agents are within the beacon’s communication range. MAR-

CPS allows visualization of this range, as well as the moment at which the communication

link-up occurs (Fig. 25b). After link-up, the ‘follower’ agent immediately begins its assigned

task (for instance, movement to a target destination).

Task allocation using the Hybrid Information and Plan Consensus algorithm [34] has been

visualized in MAR-CPS (Fig. 26). In this demonstration, 6 agents are servicing tasks (shown

as colored crosses in Fig. 26) throughout the domain. Orange lines indicate local information

being shared between agents, and purple lines indicate the communication network. Once a

task has been serviced, its indicator is made transparent. Using this visualization, spectators can

easily observe previously-serviced tasks at a glance, while also being informed of communication

and decision-making networks amongst teams of agents. Such information would otherwise be

invisible to spectators.

Challenges and Limitations

In practice, certain domains may require special consideration when integrated into MAR-

CPS. Domains which require visual feedback of the simulated environment from onboard vehicle

cameras must be careful not to corrupt this data by including latent state information in the

image frame. In such a case, the vehicle state with respect to the ground can be obtained using

motion capture tracking and combined with the camera intrinsic parameter matrix to calculate

the camera’s field of view in real-time. This field of view is then used to define a ‘no-state-

visualization’ zone within MAR-CPS. All latent state or belief visualizations are then displayed
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outside this footprint. Fig. 7a shows an example of this type of visualization, where the vehicle

health belief is shown as a donut chart, allowing the center of the camera frame to observe the

simulated environment underneath the quadrotor.

The above method was found to work well for sparse visuals which follow the vehicles.

This idea can be modified for denser visuals, such as a particle field atop a simulated environment,

using a layered visualization approach. To do so, the environment layer is rendered underneath

the particle field layer, and the camera footprint is used to mask the particle layer out of the

final rendered image. For domains where this is not possible (specifically, when environment

visualization is needed for the entire laboratory space), one alternative is to run experiments

with the state visualization layer disabled, record vehicle trajectories using the motion capture

system, and then re-run the experiment using the recorded trajectories (but this time with

state visualization enabled). Another idea for future consideration is the use of dual polarized

projectors, with opposite-handed polarized lenses used for vehicle cameras and spectators,

respectively. This would allow simultaneous display of simulated environments for vehicle

cameras, while allowing display of high-density state information for spectators.

Another class of challenges stems from the transfer of outdoor experiments to indoor

laboratories, where sources of uncertainty present in outdoor settings must be simulated indoors.

Position estimation of an outdoor vehicle using GPS can be replicated indoors by injecting

artificial noise into the motion capture system’s measurements. This requires careful modeling

of noise in the outdoor system, which may not be possible in some scenarios. A similar challenge

occurs for vision-based systems. The close vicinity of vehicles to the MAR-CPS floor typically

34



results in fairly high-resolution photographs of the projected environment using onboard cameras.

On real systems, photographs of distant objects can suffer from blur and noise. Some domains,

therefore, might require modeling of such sources of uncertainty and artificial injection of blur

and noise into the final projected environment.

Conclusion

Measurable Augmented Reality for Prototyping Cyber-Physical Systems (MAR-CPS) is

an indoor architecture for testing and debugging of autonomous vehicles by providing a window

into the underlying decision-making space. This work combines a motion capture system, ground

projectors, autonomous vehicle platforms, and a communications network to allow researchers

to gain a low-level understanding of the performance of perception, planning, and learning

algorithms in real time. The work extends previous capabilities of MIT’s RAVEN testbed to allow

display of latent information and uncertainty, allow sensor-perception of simulated environments,

and serves as a communication and teaching tool for spectators. Various experiments have been

conducted using MAR-CPS, including forest fire management, planning for large-scale multi-

agent systems, motion planning under uncertainty, and visualization of communication links

between vehicles. Future work includes further investigation of applications in human-robot

interactivity, as well as more complex applications in real-time perception and learning of the

augmented reality environment.
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Figure 1: Components of Measurable Augmented Reality for Prototyping Cyber-Physical

Systems (MAR-CPS). MAR-CPS includes physical vehicles and sensors such as cameras, a

motion capture technology, a projection system, and a communication network. The role of the

projection system is to augment a physical laboratory space with 1) autonomous vehicles’ beliefs

and 2) a simulated mission environment, which in turn can be measured by physical sensors on

the vehicles.
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Figure 2: Architecture overview for MAR-CPS, for a mission involving both ground and air

vehicles. Each vehicle communicates with a designated CPU for planning, perception, and low-

level control. Given a task, the planning CPU defines a valid trajectory for the vehicle. The

trajectory is relayed to a control CPU, which defines low-level control inputs to the vehicle using

feedback from the motion capture system. Note that the planning CPU also has knowledge of

the controllability of the vehicle in question, and its role can be combined with the control CPU

if desired. The Control, Planning, and Perception CPU can be moved onboard vehicles.
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Figure 3: Hardware overview for MAR-CPS, involving autonomous vehicles, a motion capture

system, and a ceiling-mounted projection system. The visualization system is implemented in

MIT Aerospace Controls Laboratory’s Real-time indoor Autonomous Vehicle test ENvironment

(RAVEN) [3] flight testbed. This system uses 18 Vicon T-Series motion capture cameras allowing

tracking of heterogeneous teams of autonomous vehicles [16]. A unique pattern of reflective

motion capture markers is affixed to each vehicle, allowing the motion capture system to

determine the position and orientation of the vehicles, as seen in Fig. 3. The motion capture

system transfers each vehicle’s pose to a projection processing CPU, which augments the

laboratory space with environmental and mission information.
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Figure 4: Props in MAR-CPS. Usage of physical props, such as fans, allows simulation of

environmental factors within MAR-CPS.
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(a) Pixel space to Vicon space mapping is performed using

a reference wand to map a calibration grid’s vertices to

motion-capture coordinates. Delaunay triangulation is then

used to perform the mapping.

(b) Calibration grid with reference wand coordinates pro-

jected.

Figure 5: Multi-projection system coordinate transform calibration. To map the pixel space to

the Vicon space, a Delaunay triangulation is constructed in the pixel space using motion capture

markers. Two piecewise-linear surfaces are constructed on top of the Delaunay triangulation with

the height of the surface at each marker set to the x and y coordinates of the marker in the

physical space respectively. A point in the pixel space can then be mapped to the Vicon space

efficiently by querying the two piecewise-linear surfaces.
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Figure 6: Belief space visualization for robot localization. In such domains, robots observe

features of their surroundings in order to determine their location. However, observations are

typically made using noisy sensors, leading to a posterior distribution on the robot’s location.

MAR-CPS allows visualization of this distribution. In the above, regions with high posterior

probability for the robot’s location are highlighted in red. The robot in this figure uses a Gaussian

mixture model to represent belief on its location, and MAR-CPS prominently indicates the

underlying multi-modal belief state. Using MAR-CPS, spectators can visualize and intuitively

understand the concept of ‘belief space’. They can also see the transformation of the robot’s

belief state in real-time (and with the correct scale in the laboratory) as it performs actions and

gathers observations.
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(a) In this domain, a quadrotor maintains a belief over its health state, which

is partitioned into low, medium, and high health. As the quadrotor executes its

mission, it uses noisy observations from a simulated health sensor to update its

health belief, which is projected underneath it as a donut chart. The visualization

follows the quadrotor and is dynamically updated as the mission progresses.

(b) Full mission domain with 4 quadrotors, each with an associated health belief.

Also indicated are the planned paths for each vehicle, as well as labeled locations

where each vehicle can perform specific tasks.

Figure 7: Quadrotor health belief visualization in MAR-CPS.
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Figure 8: Closed-loop vision feedback in MAR-CPS. The combination of a projected simulated

environment and sensors observing it creates a lab environment which is essentially a replacement

for the outdoor world. Using MAR-CPS, noisy observations of the state space can be obtained

and state observation probabilities P (o|s′, a) can be modeled directly in the lab space. In this

demonstration, a quadrotor provides vision information to a ground robot navigating an obstacle

course (note that the yellow field-of-view cone for the quadrotor camera was added in post-

processing).

48



Figure 9: Vehicle health monitoring messages in MAR-CPS. The cross projected under each

quadrotor indicates its pose. One of the arms of each cross is dedicated for representing vehicle

health state (red for low health, in this example). In the above scenario, a vehicle undergoes

actuator damage and must leave the mission premise until it is repaired. Using MAR-CPS,

spectators gain an understanding of such events without need for additional explanation.
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(a)

(b)

Figure 10: Human-robot interaction in MAR-CPS. A team of virtual quadrotors plan paths to

randomly-generated goal destinations while avoiding collisions with each other and with a human

wearing a motion-capture helmet.
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(a)

(b)

Figure 11: Photographs of quadrotor banking 60◦ during aggressive turn. For high-speed

maneuvers, it is difficult for researchers to extract information about position and altitude error

in real-time, while simultaneously observing vehicles.
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(a)

(b)

Figure 12: Photographs of MAR-CPS displaying real-time data during aggressive turn experi-

ments. The blue circle is the desired position, the red circle is the actual position, the red arrow

protruding from the red circle is desired heading, and relevant flight data is shown in the center.
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(a)

(b)

Figure 13: Photographs of MAR-CPS displaying real-time data during aggressive turn experi-

ments. The vehicle has a notable pitch of 30.2◦ because the lag between its actual and desired

position is significant, shown by the offset between the blue and red circle. Further, the circular

contours beneath the quadrotor indicate the history of its trajectory. Without MAR-CPS, it would

be difficult to convey this error in real-time on the experiment platform.
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(a) The domain with no projected visualizations, with a team involving 1 physical and 1 virtual quadrotor. Without

use of MAR-CPS, only the physical quadrotor is visible to spectators, making it difficult to understand the underlying

decision-making framework.

(b) Since the state of ground vehicles is initially unknown to the quadrotors, satellite imagery is projected to convey

a sense of ‘camouflaged ground intruders’ to spectators.

Figure 14: Sequential addition of visualization elements in multi-agent intruder monitoring

domain.
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(a) The perceived state of the vehicle (or mean of the ‘belief’ state) can be projected directly in the hardware domain

to indicate discrepancies with actual vehicle location. This is done using projected crosses underneath vehicles.

(b) The sensor footprint of a given vehicle can be visualized as seen above, where the radar footprint of the physical

quadrotor is indicated. This visual also adds the underlying discretized state space of the domain using grid cells.

Grid cells which have been visited by a surveying quadrotor are removed, and the remaining are represented as

foggy regions. A yellow grid square is also added to indicate the goal destination of the ground vehicles.

Figure 15: Sequential addition of visualization elements in multi-agent intruder monitoring

domain.
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(a) A ground vehicle which has been previously detected by a surveillance quadrotor is given a highlighted color.

This creates an easily-discernible contrast between detected and still-camouflaged ground vehicles.

(b) Green arrows protruding from each ground vehicle indicate their most likely next state, while black arrows

indicate their most likely next-next state had the quadrotors not been there. Likewise, white arrows indicate their

next-next most likely state given the quadrotors’ current positions. These serve as real-time visualizations for the

transitions of vehicle state, P (s′|s, a), giving spectators an immediate and intuitive understanding of the impact of

the quadrotors’ actions on the overall objective of keeping the ground vehicles away from their target destination.

Figure 16: Sequential addition of visualization elements in multi-agent intruder monitoring

domain.
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(a) Initiation of planning problem, with quadrotors

using radar surveillance to detect ground vehicles.

(b) Detection of a ground vehicle by the quadrotor

in the top left corner of the image.

(c) Quadrotors can work cooperatively (right) or

individually (top) to herd away ground vehicles.

Figure 17: Multi-agent intruder monitoring mission in MAR-CPS. A team of autonomous ground

vehicles attempts to reach a goal location in a discretized world while a competing team of

quadrotors attempts to push or “herd” them away.
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(a) Perspective view (b) Onboard camera view

Figure 18: Quadrotor firefighting demonstration in MAR-CPS. A discretized 12 × 30 forest

environment consisting of varying terrain and vegetation types (such as trees, bushes, rocks)

was constructed and projected in MAR-CPS. Seed fires of varying intensities were initiated

on the terrain, with a fire propagation model used for dynamically updating the intensities and

distribution over the terrain. A quadrotor used an onboard camera (Sony 700 TVL FPV Ultra

Low Light Mini Camera) to wirelessly transmit images to a perception CPU, which created a

segmented panorama of the complete forest environment.
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(a) Ground agent attempts to navigate a stochastically-

changing environment projected in MAR-CPS.

(b) Noisy images from quadrotor-mounted camera provide

an estimated environment map to the ground agent.

Figure 19: Real-time vision-based planning under uncertainty in MAR-CPS. A ground vehicle

navigates a stochastic obstacle course while a quadrotor provides overhead reconnaissance.

Specifically, the ground vehicle traverses over various grids in the domain, each dictating different

dynamical model constraints, while planning a minimum-time path to a goal destination.
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Figure 20: Noisy hue-saturation-value image dataset captured in MAR-CPS for real-time closed-

loop perception planning domain (shown in Fig. 19). Grid cells which appear a uniform color

to the human observer appear as noisy clusters when captured by a quadrotor-mounted camera.

Using MAR-CPS, indoor calibration of sensor systems and robustness against noise can be

conducted prior to outdoor flight tests.
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(a) A ground agent (highlighted in green)

maintains a “belief” of the future trajectories

of two other vehicles (pedestrians) as it tries to

reach a goal destination (yellow circle in the

top-left). The agent plans a trajectory (shown

in green) up to the point where a collision may

be imminent.

(b) Overhead visualization of the scenario on

left. In this view, the brown circle represents

the ground agent, while the pink circles rep-

resent pedestrian vehicles. The goal region is

shown in yellow. Trajectories protruding from

the pedestrian vehicles indicate projected paths

that the ground agent believes they plan on

taking. This can be interpreted as the belief of

paths they plan on taking (although not in the

POMDP sense).

(c) As the vehicles traverse the environment,

the ground agent’s perception of the 2 pedes-

trian agents dynamically updates. Once its

belief of the pedestrians confirms no collisions

are imminent, it plans a direct path to its goal.

(d) Overhead visualization of the left experi-

ment domain.

Figure 21: A ground agent (circled in green) plans a trajectory to a goal destination (yellow

circle projected on the floor) while avoiding collisions with two pedestrian vehicles.
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(a) A ground agent’s planned trajectory based on perception of obstacles is

projected and updated in real-time.

(b) Detection of human pedestrians for self-driving cars is visualizable in real-

time using MAR-CPS.

(c) MAR-CPS enables visualization of complex scenarios such as path planning

in multi-pedestrian environments.

Figure 22: Demonstration of motion planning under uncertainty in MAR-CPS.
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Figure 23: Multi-agent path planning implemented in MAR-CPS. The planned trajectory for each

vehicle is projected as a color-coded path in real-time. In situations where physical vehicles are

expensive, use of real-time projection in MAR-CPS allows integration of virtual vehicles in

experiments. Physical and virtual vehicle interactions can be modeled in software, allowing

inexpensive testing of complex, multi-agent missions.
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(a) Visualization of quadrotor on fire

using a particle simulator and projec-

tion system.

(b) Use of a water spout motion

capture prop to quench fire is visu-

alizable in MAR-CPS.

(c) MAR-CPS allows supports imple-

mentation of interesting human-robot

interactivity demonstrations.

Figure 24: Human-robot interactivity using motion capture props in MAR-CPS. Tracking sensors

can be placed on a human to allow interaction with autonomous vehicles from a safe distance.

Props can be used for representation of objects within the simulated world. This demonstration

involves a quadrotor experiencing a simulated onboard fire.
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(a) A “leader” agent’s radius of communication is indi-

cated by a green circle surrounding it.

(b) When agents are within each other’s communication

radius, a link between them is established, and informa-

tion transfer is visualized in MAR-CPS.

Figure 25: Visualization of communication networks in multi-agent systems. In this demonstra-

tion, a ground vehicle (the “leader”) contains a communications beacon that can be used to

assign tasks to a fellow agent (a “follower”). Task assignment only occurs when the agents are

within the beacon’s communication range. MAR-CPS allows visualization of this range, as well

as the moment at which the communication link-up occurs. Images courtesy of Melanie Gonick,

MIT News.
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Figure 26: Multi-agent path planning implemented in MAR-CPS. The planned trajectory for

each vehicle is projected as a color-coded path in real-time. In this demonstration, 6 agents are

servicing tasks (shown as colored crosses above) throughout the domain. Orange lines indicate

local information being shared between agents, and purple lines indicate the communication

network. Once a task has been serviced, its indicator is made transparent. In these scenarios,

MAR-CPS enables visualization of key mission features such as communication networks, which

would be otherwise invisible to spectators.
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