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MEASURABLE DYNAMICS OF SIMPLE p-ADIC

POLYNOMIALS

JOHN BRYK AND CESAR E. SILVA

1. INTRODUCTION.

The p-adic numbers have many fascinating properties that are different
from those of the real numbers. These properties are a consequence of the
fact that the distance in the p-adics is measured using a non-Archimedian
absolute value or norm. In this article we study the dynamics of algebraically
defined transformations on the p-adics and see that there is a strong connec-
tion between the topological property of minimality, which is easy to check
for such transformations, and the measure-theoretic property of ergodicity.

We start with a section that introduces the p-adic numbers, including
their topology and the relevant measures on them, and then define the basic
notions from dynamics that we require. In section 4 we show that minimal
isometries on subsets of the p-adics are defined on finite unions of balls
and are never totally ergodic. In Theorem 4.4 we give a new short proof
that for an invertible isometry of a compact open subset of the p-adics
minimality implies unique ergodicity and that ergodicity implies minimality.
(As we discuss, this theorem is known in a more general context.) Thus
for isometries on compact open subsets of the p-adics, the properties of
minimality, ergodicity, and unique ergodicity are equivalent.

In later sections we study classes of transformations defined by multipli-
cation, translation, and monomial mappings. We demonstrate that they are
minimal (hence uniquely ergodic) on balls or, in some examples, spheres in
Qp. Many of these results are known, but we present a unified and different
treatment of them.

Dynamics on the p-adics has been the focus of several researchers recently.
While most of this work deals with topological or complex dynamical prop-
erties of the p-adics, for which the reader may refer to [1], [4], [13], [17], and
the references cited in these articles, measurable dynamics on the p-adics
has also received some exposure, particularly in [14], [2], [3] [12], [7], and [8].

2. THE p-ADIC NUMBERS.

Let p be a prime number. The construction of the field Qp of p-adic
numbers is analogous to that of the real number field R. However, whereas
R is constructed by completing the field Q of rational numbers with respect
to the usual absolute value, we construct the p-adic numbers by using the
p-adic norm. We start with an informal description that illustrates the
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main ideas. If n is a positive integer, then we can write n in the form
n =

∑N
i=0 cip

i, where the ci are unique integers in {0, . . . p− 1} and N ≥ 0.
We call this the p-adic representation of n. Suppose now that we wish
to extend this representation to any rational number. We start with an
example, considering the case of p = 5 and the rational number −3/20.
Then we can write

− 3

20
=

1

5
· 3

−4
=

1

5
· 3

1 − 5
=

3

5
· 1

1 − 5
=

3

5
(50 + 51 + 52 + · · · )

= 3 · 5−1 + 3 · 50 + 3 · 51 + 3 · 52 + · · · =

∞
∑

i=−1

3 · 5i.

At the moment we are not going to worry about issues of convergence but
just consider the sum in a formal way. (We used this example because
the formal expansion for 1/(1 − 5) is well known, but similar expansions
can be obtained for any rational number.) There are a couple of things
we notice from this example. First, to obtain “p-adic representations” of
rational numbers it seems that we need to allow infinite series of powers
of p, possibly starting at a negative power such as i = −1. Second, we
have to make sense of the infinite sum. In other words, we need to consider
some metric under which we can show convergence of the partial sums of
the infinite series, or more precisely, a metric under which the partial sums
form Cauchy sequences.

To continue our informal description we consider a set X consisting of all
formal sums x of the type

x =
∞
∑

i=k

cip
i,

where k is an integer, ci = ci(x) belongs to {0, 1, . . . p−1} for i = k, k+1, . . . ,
and ck 6= 0. Add to this set the point 0 represented as

∑∞
i=0 cix

i where ci = 0
for i ≥ 0. Using the formal manipulations illustrated by our example (with
a general prime p replacing 5) we can identity each rational number with
a unique element of X. A standard diagonalization argument shows that
the set X is uncountable, so it necessarily contains elements that do not
come from members of Q. To make sense of the infinite expansions we
introduce a notion of convergence in X motivated by the fact that we desire
sequences of partial sums of the form we have discussed to form Cauchy
sequences. We define a distance so that two infinite formal sums are “close”
if a “large” number of their initial terms are the same. More precisely,
define the distance between the formal sums

∑∞
i=k cip

i and
∑∞

i=ℓ dip
i to be

p−min{k,ℓ} if k 6= ℓ, and otherwise define it to be p−m, where m is the first
integer such that m ≥ k = ℓ and cm 6= dm (of course, the distance is 0
if cm = dm for all m). Then the distance between the partial sums Sn

and Sn+m (m > 0) is p−(n+1) (identifying the partial sum Sn =
∑n

i=−1 cip
i

with the series
∑∞

i=−1 cip
i in which ci = 0 when i > n and assuming that
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cn+1 6= 0). Therefore, under this distance the partial sums of our example
would form a Cauchy sequence.

We now change gears and formally define the p-adic metric on Q. The
obvious place to start is to define the p-adic norm |x|p of a rational number
x. To do this when x is nonzero, we write x in the form x = pα(r/s), where
p divides neither r nor s, and define

|x|p = p−α.

(And, of course, we set |0|p = 0.) In particular, if we express a natural

number n using its p-adic representation, n =
∑N

i=k cip
i where ck 6= 0, then

|n|p = p−k, which agrees with the distance we used for our example. One
can easily verify that |−x|p = |x|p and |xy|p = |x|p|y|p. The first interesting
property we notice about this norm is that it satisfies the strong triangle
inequality :

(1) |x+ y|p ≤ max{|x|p, |y|p},

with equality holding if |x|p 6= |y|p. Normed fields that satisfy inequality (1)
are called non-Archimedean. (It is not hard to see that the strong triangle
inequality implies that for any integer n different from 1 and any nonzero x
in Q it is the case that |nx|p ≤ |x|p, clearly contradicting the Archimedean
property of the reals.) An interesting consequence of the non-Archimedean
property is that a series of rational numbers

∑∞
i=0 ai converges in Qp if and

only if limi−→∞ |ai|p = 0 (for an explanation of this property and other
consequences the reader is referred to [6]). The p-adic metric is the metric
defined on Q by dp(x, y) = |x − y|p. This metric also satisfies the strong
triangle inequality. Given p, we can complete Q in the standard way to
arrive at a normed field (Qp, | · |p) such that Q is dense in Qp, | · |p extends
the p-adic norm from Q to Qp, and every Cauchy sequence in Qp (with
respect to | · |p) is convergent.

One can show that each nonzero x in Qp is uniquely representable in the
manner

x =
∞

∑

n=k

cnp
n,

where k is an integer, cn = cn(x) belongs to {0, 1, . . . , p− 1} for n = k, k +
1, . . . , ck 6= 0, and convergence is with respect to the p-adic norm. In
fact it is easy to see that |x|p = p−k. (Of course x = 0 admits a trivial
representation of this type, say with k = 0 and cn = 0 for n = 0, 1, . . . .)
Addition in Qp is defined termwise modulo p with a carry to the right. For
example, 1 + (

∑∞
i=0(p− 1) · pi) =

∑∞
i=0 p · pi = 0, so the additive inverse of

1 is
∑∞

i=0(p− 1) · pi. Multiplication is defined in a similar way.
One special subset of Qp that we shall consider quite often is the ring of

p-adic integers Zp = {x ∈ Qp : |x|p ≤ 1}. It is not difficult to see that Zp

is the closure of Z in Qp and consists of precisely those x in Qp admitting
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representations of the type

x =

∞
∑

n=0

cnp
n

with cn in {0, . . . , p − 1}. The ring Zp is not a field (p does not have a
multiplicative inverse in Zp), but it is an integral domain with a unique
prime ideal, namely, pZp. For each integer k we can talk about the factor

ring Zp/p
kZp, a ring that is isomorphic to Z/pkZ. If n satisfies gcd(n, p) = 1,

then [n] is a unit in Z/pkZ (here and later [x] signifies the equivalence
class in the relevant quotient structure of an element x). The set of all
units in Zp/p

kZp is a multiplicative group (Zp/p
kZp)

× that is isomorphic to

(Z/pkZ)×.
The topology of Qp is generated by the metric induced by the p-adic norm.

Given y in Qp and r ≥ 0, we define the closed ball Br(y) of radius r centered
at y by Br(y) = {x ∈ Qp : |x− y|p ≤ r}, the corresponding open ball B◦

r (y)
by B◦

r (y) = {x ∈ Qp : |x− y|p < r}, and the sphere of radius r centered at
y by Sr(y) = {x ∈ Qp : |x− y|p = r}.

Note that B1(0) = Zp. Moreover, observing that the image of Qp \ {0}
under the mapping x 7→ |x|p is the discrete subset {pn : n ∈ Z} of R, we see
that closed and open balls of positive radius are equivalent, in the sense that
Br(y) = B◦

r+ǫ(y) for all sufficiently small ǫ > 0. Thus, for the remainder of
the paper, whenever we say ball we mean a closed ball of positive radius.
Furthermore, we assume that any radius r that occurs has the form r = p−ℓ

for some integer ℓ, which we may do because Br(y) = Bp−ℓ(y) when p−ℓ ≤
r < p−ℓ+1. For the same reasons, Sr(y) is nonempty if and only if r = p−ℓ

for some ℓ. One can verify that spheres, as well as closed and open balls,
are both compact and open sets in the p-adic topology. (As in any metric
space, a set S is compact if every open cover of S has a finite subcover,
and S is locally compact if each point of S has a compact neighborhood.)
Finally, every point inside of a ball is a “center” of that ball—that is, if B
is a ball of radius r, then Br(x) = B for all x in B. It follows that if two
balls B and B ′ of equal radius have a nonempty intersection, then B = B ′,
a fact that we use in several of our proofs.

We conclude this section with a fascinating property of spheres that does
not hold in the case of the reals: any sphere in Qp can be written as a
finite union of pairwise disjoint balls! In fact, let x be in Qp and consider
the sphere S = Sr(x) of radius r = pn for some integer n. Clearly, S
is contained in Br(x). Let s = pn−1. We first show that Br(x) can be
written as the union of p disjoint balls of radius s. To see this note first that
Zp(= B1(0)) is the disjoint union of the p cosets that constitute Zp/pZp,
and it is easy to see that each of these cosets is a subball of Zp of radius
1/p. Since Br(x) = x + p−nZp, we find that Br(x) is the disjoint union of
p subballs of radius s—namely, the images of the cosets of pZp under the
same dilation and translation. Let the centers of these p disjoint balls be yi,
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with y1 = x. Consider the set B∗ = Br(x) \Bs(x). Then B∗ is the union of
the p− 1 pairwise disjoint balls Bs(yi) with yi not in Bs(x). Now we claim
that B∗ = Sr(x). Indeed, if y is in B∗, then |x − y|p ≤ r but |x − y|p > s.
Therefore |x− y|p = r and y is in Sr(x). For the converse, let y be a point
in Sr(x). Then y is in Br(x), but since |x − y|p = r > s, y is not in Bs(x).
Therefore y is in B∗ and Sr(x) = B∗, showing that Sr(x) is the finite union
of pairwise disjoint balls.

The p-adic numbers were introduced by Kurt Hensel in the late nine-
teenth century (1897) in order to study the properties of algebraic numbers.
Hensel’s original description of the p-adic numbers involved an analogy be-
tween the ring of integers and the ring of polynomials over the complex
numbers, the crux of which was the development of a representation of ratio-
nal numbers analogous to that of Laurent expansions of rational functions–
namely, the p-adic expansion. The p-adic numbers have played a fundamen-
tal role in number theory, and are now finding wider applications in science
(see, for example, [13]).

3. TOPOLOGICAL AND MEASURABLE DYNAMICS.

In its simplest form a (discrete time, abstract) dynamical system consists
of a set X and a map or transformation T : X −→ X. We will mainly be
interested in the case when the transformation T is invertible. In fact, we
mention only one example that is noninvertible (in section 4) and one lemma
(Lemma 4.5) that treats the noninvertible case. Thus absent an explicit
statement to the contrary, the reader may assume that any transformation
encountered in this paper is invertible.

One of the first objects of interest is the orbit of point a point x in X
under T , defined as {T n(x)}∞n=−∞ and denoted by O(x) (here T n denotes

the n-fold iterate of T , T n = T ◦ · · · ◦ T , with n factors, T 0 is the identity
mapping of X, and T−n = (T−1)n for a positive integer n).

To study properties of such iterations we impose some structure on the
space and the transformations. In topological dynamics we require X to
be a topological space and T to be a continuous transformation; in the
interesting cases we assume that X is compact. In the invertible case T is
assumed to be a homeomorphism. The important notion from topological
dynamics for us is minimality. A transformation T : X −→ X is minimal if
the orbit O(x) of each x in X is dense in X. It is clear from the definition
that a homeomorphism T is minimal if and only if

⋃∞
n=−∞ T n(U) = X for

each nonempty open set U in X. Using Zorn’s lemma, it can be shown that
for any homeomorphism T of a compact space X there exists a nonempty
closed subset E of X such that E is T-invariant (i.e., T (E) = E) and the
restriction of T to E is minimal. Minimal sets such as E were introduced in
1912 by Birkhoff in his study of the stability of dynamical systems [5, vol.
1, p. 660]. It is clear that a minimal homeomorphism is “indecomposable”
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in the sense that it does not admit any nonempty proper closed invariant
subset.

Before we can consider notions from measurable dynamics (or ergodic
theory), we need to introduce a measurable structure on Qp. For this we
first produce a (real-valued) measure µ on Qp. This measure is defined in a
way that is analogous to the definition of Lebesgue measure on R. We start
by declaring the measure of a ball to be equal to its radius. That is, we
define µ(Br(x)) = r for each x in Qp and r in {pn : n ∈ Z}. Mimicking what
happens in the real case, we define the outer measure µ∗(A) of any subset
A of Qp as one would expect:

(2) µ∗(A) = inf

{

∞
∑

n=1

µ(Bn) : A ⊂
∞
⋃

n=1

Bn

}

,

where the infimum is taken over all countable collections of balls {Bn}n∈N

covering A. It is an exercise to show that µ∗(B) = µ(B) for each ball B.
We say that a set A is measurable (or Lebesgue measurable) if for each

ǫ > 0 there exists an open set G containing A such that µ∗(G \ A) < ǫ. It
is clear that open sets are measurable, and one can show that the collection
of measurable sets is closed under the operations of taking countable unions
and complements, and hence forms a σ-algebra L of subsets of Qp. The outer
measure µ∗ when restricted to L is a translation invariant measure that we
denote by µ. (Those with some experience in the area will realize that
Lebesgue measure µ is nothing but Haar measure on the locally compact
group Qp.) The proofs of these properties are analogous to those in the case
of the development of Lebesgue measure in the reals as in, for example, [16].

Let X be a compact subset of Qp with µ(X) > 0 (while one may also
consider more general sets, such as infinite measure sets, our treatment
of ergodicity here is restricted to the compact case, so µ(X) < ∞). A
transformation T : X −→ X is said to be a measurable transformation
if T−1(A) belongs to L(X) = {E ∩ X : E ∈ L} whenever A does. Let
ν be a probability measure defined on L(X). (In all of our examples ν
will be normalized Lebesgue measure, i.e., ν(A) = µ(A)/µ(X) for all A in
L(X).) We say that T is measure-preserving for ν if T is measurable and
ν(A) = ν(T−1(A)) holds for all A in L(X). (In this case we also say that the
measure ν is invariant under T or T -invariant.) The transformations that
we consider (with the exception of the single Bernoulli example of section 4)
are, either by assumption or by construction, invertible with both T and
T−1 measurable and measure-preserving for the relevant measure.

To introduce relevant concepts from measurable dynamics we use the
simple notion of an invariant set. We note that the existence of a nonempty
proper invariant set A allows one to decompose the dynamics of T into
simpler systems, for T |A, the restriction of T to A, generates a dynamical
system in its own right. Now let ν be a probability measure defined on L(X),
and let T : X −→ X be a measure-preserving transformation with respect to
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ν. The transformation T is ergodic with respect to ν if ν(A) is 0 or 1 for any
T -invariant set A in L(X). (This notion was first called metrical transitivity
and was introduced in 1928 by Birkhoff and Smith [5, vol. 2, p. 380].)
From the point of view of measurable dynamics the ergodic transformations
are the “indecomposable” transformations. The reason that this notion is
important stems from the ergodic theorem, proved in 1931, first in the case
of mean convergence by von Neumann and then in the stronger case of
pointwise convergence by Birkhoff. (The reader may refer to [5, vol. 2, pp.
462-465] for a short history, to [22] for a modern account, and to [20] or
[21] for the proofs of these theorems.) The pointwise convergence version of
the ergodic theorem asserts that ergodicity is equivalent to the the property
that

lim
N−→∞

1

N

N−1
∑

n=0

IA(T n(x)) = ν(A)(3)

holds for each measurable set A in X and for each point x of X outside of
a set of measure zero (in general depending on A). (Here IA denotes the
characteristic function of the set A.) In the full statement of the theorem
IA is replaced by an integrable function f and ν(A) is replaced by

∫

A fdν;
however, this more general statement follows from (3) by standard approx-
imation results. The quantity on the left of (3) is clearly (the limit of) the
average number of times that images of x under iterates of T land in A. The
ergodic theorem then asserts that for any measurable set A and for any point
x outside some set E = E(A) of measure zero, the average number of times
that the forward orbit of x visits A tends to the measure of A or, in other
words, that the time-average is asymptotically equal to the space-average
for all points outside some set of measure zero. This theorem solved an im-
portant problem that came from statistical mechanics: to give a condition
under which the time-average and the space-average of a dynamical system
would agree. While verification of the ergodicity property for actual phys-
ical systems has proved to be difficult, the notion of ergodicity has found
numerous applications in mathematics. This is partly due to the fact that
every finite-measure-preserving transformation admits a decomposition into
“ergodic components.” Roughly stated, if ν is an invariant measure for a
transformation T , then ν can be written as an integral of measures each of
which is defined on some invariant subset of X and is ergodic with respect
to T . (For the case of some of our examples this decomposition is illustrated
in Figures 1, 2, and 3.) This theorem has a long history, starting with work
of von Neumann in 1932 and culminating with independent developments
by Maharam and Rohlin, for which the reader may refer to [15, sec. 8] and
[20, chap. 3], respectively.

We often use another condition equivalent to ergodicity that is easier to
check. Assume that T is invertible. Clearly the set

⋃∞
i=−∞ T i(A) is T -

invariant for any given subset A of X. Therefore, if A has positive measure
and T is ergodic, then ν(X \ ⋃∞

i=−∞ T i(A)) = 0. It follows that if T is
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ergodic, then for each pair of sets A and B of positive measure there exists
an integer n such that ν(T n(A)∩B) > 0 (i.e., sets of positive measure “hit”
other sets of positive measure under iteration by T ). Without too much
additional work the reader can show that the converse is also true and that
in fact n can be assumed to be positive. In general it does not follow from
the ergodicity of T that T 2 is also ergodic. If it happens that T n is ergodic
for all n different from 0 we say that T is totally ergodic.

One last notion of significance for what follows is that of “unique ergodic-
ity,” which we define only when X is a compact subset of Qp. A homeomor-
phism T : X −→ X is uniquely ergodic if there exists only one T -invariant
probability measure ν defined on L(X). (In all of our examples this measure
ν will be normalized Lebesgue measure on L(X).) Interestingly, this already
implies that T is ergodic with respect to ν. For if T were not ergodic with
respect to ν, one could construct another T -invariant probability measure
ν̄ different from ν. Indeed, suppose that Y were a T -invariant set in L(X)
with ν(Y )ν(Y c) > 0. Then the probability measure ν̄ defined on L(X) by
ν̄(A) = ν(A ∩ Y )/ν(Y ) would be a T -invariant probability measure differ-
ent from ν, a contradiction. Therefore T must be ergodic with respect to
ν. In the uniquely ergodic case one has a refinement of the ergodic theo-
rem. In fact, T is uniquely ergodic if and only for all continuous functions
f : X −→ R,

lim
N−→∞

1

N

N−1
∑

n=0

f(T n(x)) =

∫

fdν,(4)

where the convergence is uniform for all x in X (see [15, sec. 5.3]).

4. MINIMAL ISOMETRIES AND PERMUTATIONS ON BALLS.

All of the transformations T we consider have the property that

|T (x) − T (y)|p = |x− y|p
for all x and y in some compact subspace X of Qp with µ(X) > 0. (Any
such T is said to be an isometry with respect to | · |p.) For example, the
transformation T : Zp −→ Zp given by T (x) = x+ 1 is clearly an isometry.

Consider Br(x) for any x in Qp. If T is an invertible isometry, then y
belongs to Br(T (x)) if and only if T−1(y) lies in Br(x). It follows that
T (Br(x)) = Br(T (x)), so the image of a ball is a ball of equal size. This
implies that T is measure-preserving for Lebesgue measure.

An important property that will surface in all of our examples is mini-
mality. We warn the reader that there is another commonly used dynamical
concept that is related to but weaker than minimality—it is called topolog-
ical transitivity—where one requires only that the orbit of some point be
dense. However, as one might expect, an invertible isometry that is topo-
logically transitive turns out to be minimal [21, p. 131]. Since all of our
examples are invertible isometries, and since showing that they are minimal
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is in general no harder than showing that they are topologically transitive,
we discuss only minimality. The following has a simple proof, but we state
it as a theorem for future reference.

Theorem 4.1. If T : Zp −→ Zp is defined by T (x) = x + 1, then T is
minimal.

Proof. Since the class [1] generates each of the finite groups Zp/p
kZp, given

any ǫ > 0 and any points x and y of Zp we can find n such that |T n(x)−y|p =

|x+ n− y|p ≤ p−k < ǫ. �

We remark that while we proved that the forward orbit {T n(x)}∞n=0 (often
denoted O+(x)) of every point x is dense, this is no stronger than minimality
since for a homeomorphism T of a compact space X every orbit of T is dense
if and only if every forward orbit of T is dense [21, p. 129].

Now minimality turns out to be an extremely useful property for our
purposes: it is easy to verify for many algebraic transformations. In this
section we first show in Lemma 4.2 that, if T : X −→ X is a minimal
isometry of a subset X of Qp that contains a nonempty open set, then X
must be a finite union of balls, hence a compact open set. In particular, this
rules out minimal isometries T : X −→ X for subsets X of Qp that contain
open sets and have µ(X) = ∞. Because the transformations of interest to
us are algebraic, requiring that their domains of definition contain open sets
is not an unreasonable restriction.

Theorem 4.4 is the real engine of this paper. It states that for an invertible
isometry of a compact open subset of Qp minimality is equivalent to unique
ergodicity. Now, it is already well known that minimal isometries of compact
metric spaces must be uniquely ergodic (see [15, sec. 5.8]). However, our
proof of this fact for compact open subsets of Qp is much simpler than the
standard proof. Also, in our context, we give a short proof that ergodicity
implies minimality, hence unique ergodicity—a theorem also known in a
more general setting [15].

We note in passing that minimality and unique ergodicity are distinct
properties. For example, as shown by Furstenberg [9], there are minimal
homeomorphisms of the two-dimensional torus that are not uniquely ergodic.
Also, while a uniquely ergodic map is minimal on the support of its invariant
measure [15, sec. 5.2], there exist uniquely ergodic homeomorphisms (on
the unit circle in the complex plane for example) that are not minimal (see
[21]). Furthermore, it is easy to construct ergodic isometries that are neither
minimal nor uniquely ergodic. For example, let X = Sp(0) ∪ {0}, and let
T : X −→ X be defined so that the restriction of T to Sp(0) is any ergodic
isometry on Sp(0) (such as the maps of Theorem 7.2) and T (0) = 0. Let
ν be the probability measure defined on measurable subsets A of Sp(0) by
ν(A) = µ(A)/µ(Sp(0)) and extend ν to a measure onX by setting ν({0}) = 0
(i.e., ν(A) = ν(A∩Sp(0)). Then T is an ergodic isometry of X with respect
to ν that is not minimal and is not uniquely ergodic. (Note, however, that
ν is not positive on open sets of X, so does not satisfy Theorem 4.4(3).)
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We start with a lemma that is of independent interest.

Lemma 4.2. Let X be a subset of Qp, let T : X −→ X be an invertible
isometry, and let x be a point of X. If O+(x) is dense in X, then X is
contained in a finite union of balls, hence X is of finite µ-measure. Fur-
thermore, if X contains some ball B around x of positive radius r, then
X =

⋃n−1
i=0 T

i(B) for some n > 0; in particular, X is a compact open subset
of Qp.

Proof. Let r > 0. Then there exists a smallest n > 0 such that d(T n(x), x) <
r. Thus x lies in Br(T

n(x)) ∩ X and Br(T
n(x)) ∩ Br(x) 6= ∅. Therefore

Br(T
n(x)) = Br(x), which ensures that the set A =

⋃n−1
i=0 Br(T

i(x)) ∩X is
T -invariant. Certainly A is contained in X. If z were a point of X \A, then
d(T i(x), z) > r would hold for all nonnegative i, so z would not be a limit
point of the forward orbit of x. This would be a contradiction. We conclude
that X = A.

Now if B = Br(x) lies in X, then we have X =
⋃n−1

i=0 Br(T
i(x)). To

complete the proof we note that any two balls of equal radius must be
either disjoint or equal and that Br(T

i(x)) = T i(B). �

The reader may want to verify that every compact open subset of Qp is a
finite unions of balls. We do not need this fact explicitly. However, in what
follows one could substitute “compact open set” for “finite union of balls.”
We also obtain the following interesting corollary:

Corollary 4.3. Let X be a nonempty compact open set in Qp and let T :
X −→ X be a minimal invertible isometry. Then for any ball B of positive
radius contained in X there exists an integer n > 0 such that T n(B) = B.
Furthermore, if X = Bp−ℓ(a) for some a in Qp and ℓ in Z, then for each x in

Bp−ℓ(a) and each j with j > ℓ it is the case that T pj−ℓ
(Bp−j(x)) = Bp−j(x).

In particular, T is not totally ergodic for Lebesgue measure.

Proof. We prove only the second part. From the proof of Lemma 4.2 we
learn that there is an integer n such that

Bp−ℓ(x) = Bp−j(x) ∪ · · · ∪Bp−j (T n−1(x))(5)

and such that the balls in the union are pairwise disjoint. We infer that
T n(Bp−j (x)) = Bp−j(x), so T n is not ergodic. Using the fact that the sets

on each side of equation (5) have the same measure, we obtain p−ℓ = np−j

or, equivalently, n = pj−ℓ. �

We are now ready for the main theorem of this section.

Theorem 4.4. Let X be a nonempty compact open open set in Qp, and
let T : X −→ X be an invertible isometry. The following statements are
equivalent:

(1) T : X −→ X is minimal.
(2) T : X −→ X is uniquely ergodic.
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(3) T is ergodic for any T -invariant probability measure ν on L(X) that
is positive on nonempty open sets (such as normalized Lebesgue mea-
sure).

Proof. (1) ⇒ (2): Let µ̄ be the normalized Lebesgue measure on X. Since T
is an isometry, µ̄ is a T -invariant measure. Suppose now that T is minimal on
X, and let ν be any T -invariant probability measure on X. Consider a ball
B of positive radius r contained in X. By Lemma 4.2, X can be written in
the form X =

⋃n−1
i=0 T

i(B), where the sets in the union are pairwise disjoint
and n > 0 is an integer. Since µ̄ is a T -invariant probability measure, this
yields 1 = nµ̄(B). Similarly, 1 = nν(B). Then µ̄(B) = 1/n = ν(B). Thus µ̄
and ν agree on all balls contained in X and therefore ν = µ̄, showing that
T is uniquely ergodic. (The fact that ν = µ̄ can be seen by noting that any
such measure ν satisfies an equality similar to (2).)

(2) ⇒ (3): As we have already seen, if T is uniquely ergodic, then T is
ergodic with respect to its unique invariant probability measure on L(X).

(3) ⇒ (1): Suppose that T is ergodic on X with respect to a probability
measure ν that is positive on nonempty open sets. Let ǫ > 0, and consider
balls B1 = Br(x) and B2 = Br(y) in X with r < ǫ/2. As T is ergodic with
respect to ν, there exists n > 0 such that ν(T n(B1) ∩ B2) > 0. Since T is
an isometry, T n(B1) is a ball of radius r centered at T n(x). Thus by the
triangle inequality, |T n(x) − y|p ≤ 2r < ǫ. As this holds for all ǫ > 0, y is a
limit point of O+(x). Because x and y in X are arbitrary, this shows that
T is minimal. �

Theorem 3.2 holds in the more general setting where X is a compact
metric space (say with metric d) and T : X −→ X is an equicontinuous
map, as was pointed out to the authors by J. Auslander. (A map T is
said to be equicontinuous if for each ǫ > 0 there exists δ > 0 such that
d(T n(x), T n(y)) < ǫ holds for all n and for all x and y in X satisfying
d(x, y) < δ.) In this case the proof that (3) ⇒ (1) is the same as the
one given for Theorem 4.4, (2) ⇒ (3) is immediate, and the implication
(1) ⇒ (2) was demonstrated by Oxtoby [15, sec. 5.8]. Isometries are clearly
equicontinuous; furthermore, it can be shown that any equicontinuous map
T : X −→ X is an isometry for some metric on X that is topologically
equivalent to the given metric.

Once we have deduced that a map T is an invertible isometry on Qp,
it is simply a matter of finding the sets on which it is minimal (provided
they exist). Various criteria help us decide where to look. If it happens
that d(x, T (x)) = r for all x in Qp, then we focus on balls of radius r.
This is the case, for example, for the map T (x) = x + 1, where clearly
|x − T (x)|p = 1. Therefore we study this map on balls of radius 1, such
as Zp. On the other hand, if T has a fixed point y (i.e., T (y) = y), then
we have that |x − y|p = |T (x) − T (y)|p = |T (x) − y|p. In this case all the
points of the orbit of x are equidistant from y, so we focus our attention on
spheres around y. An example is given by the map Ma : Zp −→ Zp defined
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by Ma(x) = ax, which has a fixed point at 0. So if Ma is an isometry (which
is only possible if |a|p = 1), then we look at spheres around 0. In the end,
showing that T is minimal on any of these spaces relies on the algebraic and
number theoretic qualities of the p-adics. We intend to establish minimality
only for a few distinguished maps and then deduce minimality for other
maps using the notion of isomorphism that we study in section 5.

It is well known that isometries T : X −→ X on compact spaces X cannot
be weakly mixing [20, p. 54]. Recall that a transformation T preserving a
probability measure ν is weakly mixing if the product transformation T×T :
X×X −→ X×X is ergodic with respect to the product measure ν×ν. This
implies, in particular, that T is totally ergodic. It is interesting to note that,
in view of Corollary 4.3, a minimal isometry in Qp is not even totally ergodic
(with respect to its unique invariant measure). This leads to the question:
Can any probability-measure-preserving transformations on Qp defined by
rational polynomial functions be weakly mixing (or even mixing) on an
invariant subset of Qp having positive measure? In this context we note that
if we are willing to consider noninvertible transformations, one can easily
construct mixing, hence weakly mixing, examples on Zp. (A transformation
T that preserves a finite measure ν is mixing if for all measurable sets
A and B with ν(A) > 0 it is true that limn−→∞ ν(T−n(A) ∩ B)/ν(A) =
ν(B); in other words, the relative proportion of space that T −n(A) occupies
in an arbitrary set B is in the limit the measure of B.) These mixing
transformations are the analogues of the Bernoulli transformations and are
defined on Zp by T (0.c0c1c2 . . .) = 0.c1c2 . . .. (alternatively, by T (x) =
px−c0(x)p−1, where c0(x) is the coefficient of p0 in the representation of x.)
Then T is a noninvertible finite-measure-preserving transformation that can
be shown to be mixing by standard methods similar to those used to establish
mixing for the Bernoulli transformations on [0, 1). (The main part of the
argument is to verify that for any balls B1 = Bp−ℓ(c) and B2 = Bp−k(d) and

for any n > k it is the case that µ(T−n(B1) ∩B2) = µ(B1)µ(B2).)
This section concludes with a lemma that clarifies the role of invertibil-

ity in our presentation. In particular, it follows from the lemma that a
measure-preserving isometry on Zp must be invertible, that transformations
on Zp satisfying the Lipschitz condition in the lemma cannot be totally er-
godic when they are invertible (Corollary 4.3), and that any noninvertible
measure-preserving transformation on Zp must involve some sort of “expan-
sion” with respect to the p-adic distance (such as the Bernoulli example).
Lemma 4.5 is stated without proof in [3, Theorem 1.1], where the author
also studies in detail transformations satisfying the Lipschitz condition of
the lemma.

Lemma 4.5. Let T : Zp −→ Zp be a transformation satisfying a Lipschitz
condition with constant 1: |T (x) − T (y)|p ≤ |x − y|p for all x and y in Zp.
Then T is surjective if and only if T preserves Lebesgue measure, in which
case T is an invertible isometry.
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Proof. Suppose that T is surjective. Let n ≥ 0, let x be a point in Zp, and
write r = p−n. Clearly, T (Br(x)) ⊆ Br(T (x)). (This is a direct consequence
of the Lipschitz condition, since if z is in T (Br(x)), then z = T (a) for
some a in Br(x) and |z − T (x)|p = |T (a) − T (x)|p ≤ |a − x|p ≤ r.) Now
suppose that T (Br(x)) is properly contained in Br(T (x)), and let z be a
point of Br(T (x))\T (Br(x)). Since T is surjective, there exists a in Zp such
that T (a) = z. As T (a) is in Br(T (x)), Br(T (x)) = Br(T (a)). However,
because a is not in Br(x), it follows that Br(x) ∩ Br(a) = ∅. Now we can

write Zp as a union pairwise disjoint balls in the form Zp =
⋃pn

i=1Br(xi)
for some points xi in Zp, with x1 = x and x2 = a, say. Then the set

T (Zp) =
⋃pn

i=1 T (Br(xi)) =
⋃pn

i=1Br(T (xi)) must be contained in at most
pn − 1 balls of radius r (as the terms in the union corresponding to i = 1
and i = 2 are equal), contradicting the assumption that T is surjective.
Therefore T (Br(x)) = Br(T (x)). Because this is true for each x in X and
for r = p−n for each positive integer n, T is an isometry. Injectivity is an
immediate consequence of the fact that T is an isometry. It also follows that
T preserves Lebesgue measure.

For the converse suppose that T is not surjective. Then there exists x in
Zp \ T (Zp). Since T is measure-preserving,

µ(Zp \ T (Zp)) = µ(T−1(Zp \ T (Zp)) = µ(∅) = 0.

Therefore Zp \ T (Zp) does not contain any ball of positive radius. This
implies the existence of a sequence {xn} of points in T (Zp)) converging to
x. Select yn in Zp with T (yn) = xn. Taking a subsequence yni

converging
to some point y in Zp, we obtain T (y) = x (using the continuity of T ), a
contradiction. Therefore T is surjective. �

5. ISOMORPHISMS.

Let X1 and X2 be finite unions of balls in Qp. Let Ti : Xi −→ Xi (i = 1, 2)
be a continuous transformation. A map φ : X1 −→ X2 is called a topological
isomorphism of (X1, T1) and (X2, T2) if it is a homeomorphism ofX1 onto X2

and the equality φ(T1(x)) = T2(φ(x)) holds for all x in X1 (i.e., φ conjugates
the actions of T1 and T2). One can easily verify that minimality is preserved
under topological isomorphism.

If ν1 and ν2 are probability measures on L(X1) and L(X2), respectively,
a measurable isomorphism of the measurable dynamical systems (X1, T1, ν1)
and (X2, T2, ν2) is a map φ : X1 −→ X2 that is invertible and measure-
preserving (i.e., ν1(A) = ν2(φ(A)) for all sets A in L(X1)) and has the
property that φ(T1(x)) = T2(φ(x)) for all x in X1 outside a subset of X1 of
zero ν1-measure. Again, it is not hard to show that ergodicity is invariant
under measurable isomorphism.

Now, we observe that in our case any topological isomorphism is a mea-
surable isomorphism, so we henceforth refer to such maps simply as “iso-
morphisms.” In fact, as T1 and T2 are minimal isometries (hence, uniquely
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ergodic by Theorem 4.4), if ν1 and ν2 are their invariant probability mea-
sures on L(X1) and L(X2), respectively, and if φ : X1 −→ X2 is a topological
isomorphism, then the measure ν1 ◦ φ−1 is an invariant measure for T2. It
must therefore coincide with ν2. This shows that φ is measure-preserving,
making it a measurable isomorphism.

In our examples, the isomorphism property will follow from a standard
lemma whose proof we include for the sake of completeness.

Lemma 5.1. Let X1 and X2 be finite unions of balls in Qp, let T1 : X1 −→
X1 and T2 : X2 −→ X2 be continuous transformations, and let φ : X1 −→
X2 be a surjective map such that φ(T1(x)) = T2(φ(x)) for all x in X1. If
there is a constant C > 0 such that

(6) |φ(x) − φ(y)|p = C|x− y|p
for all x and y in X1, then φ is an isomorphism of (X1, T1) and (X2, T2).
Under these circumstances T1 is an invertible isometry if and only if T2 is
an invertible isometry, and T1 is minimal (hence, uniquely ergodic) if and
only if T2 is minimal (hence, uniquely ergodic).

Proof. It is easy to see that (6) implies that φ is one-to-one and continuous
and that (6) holds for φ−1 (with C−1 replacing C), so φ is an isomorphism.
Now, if T1 is an isometry, then

|T2(φ(x)) − T2(φ(y))|p = |φ(T1(x) − φ(T1(y))|p
= C|T1(x) − T1(y) = C|x− y|p
= CC−1|φ(x) − φ(y)|p = |φ(x) − φ(y)|p,

whence by the surjectivity of φ the map T2 is likewise an isometry. Noting
that T n

2 = φ−1 ◦ T n
1 ◦ φ completes the proof. �

6. TRANSLATIONS ON Qp.

We start our study of special maps by looking at the translation Tb :
Qp −→ Qp defined by Tb(x) = x+ b for fixed b in Qp. We first consider the
case when |b|p ≤ 1, in which event Tb : Zp −→ Zp. We later show that the
other cases can be reduced to this one using isomorphisms. (We note that
T1 : Z2 −→ Z2 is isomorphic to a well-known transformation, the so-called
dyadic odometer.) The reader is referred to Anashin [2], [3] for a study of
measure-preserving and ergodic maps on Zp.

Theorem 6.1. If b belongs to Zp and Tb : Zp −→ Zp is defined by Tb(x) =
x + b, then Tb is an invertible isometry. Furthermore, Tb is minimal and
uniquely ergodic on Zp if and only if |b|p = 1.

Proof. It is clear that Tb is invertible and is an isometry, for

|Tb(x) − Tb(y)|p = |x+ b− y − b|p = |x− y|p.
Assume that |b|p = 1 and define φ : Zp −→ Zp by φ(x) = bx. Then

φ(T1(x)) = φ(x+ 1) = b(x+ 1) = bx+ b = Tb(φ(x)).
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Also, |φ(x)−φ(y)|p = |b|p|x− y|p, which implies that φ satisfies an equation
of type (6). Finally, as |b|p = 1, b is invertible in Zp (see, for example, [18,
p.5]) and therefore φ is surjective. Combining Theorems 4.1 and 4.4 with
Lemma 5.1, we conclude that Tb is minimal and uniquely ergodic on Zp.

For the converse, assume that Tb is minimal but that |b|p < 1. Write

b = pℓc, where |c|p = 1 and ℓ > 0. Then by the first part of the proof Tc is
minimal on Zp. By Corollary 4.3,

T pℓ

c (Bp−ℓ(0)) = Bp−ℓ(0).

On the other hand, T pℓ

c (x) = x + pℓc = x + b, which contradicts the mini-
mality of Tb. Therefore |b|p = 1. �

Corollary 6.2. If p and q are different primes, b is in Zp, and c is in Zq,
then (Zp, Tb) is not isomorphic to (Zq, Tc).

Proof. From Theorem 6.1 it follows that T p
b = Tpb is not minimal on Zp,

whereas T p
c = Tpc is minimal on Zq. Therefore the two systems are not

isomorphic. �

Z3

B3(0)

B32 (0)

Figure 1. Ergodic decomposition of Tb (|b|3 = 1) on Q3.

We now characterize translations Tb : X −→ X for subsets X of Qp and
b in Qp. We consider only the case when X contains an open set and Tb

is minimal on X. Invoking Lemma 4.2, we write X as a pairwise disjoint
union of balls X = Br(a) ∪ · · · ∪ Br(T

n−1
b (a)) for some a in X, with n ≥ 1

and r > 0. Next consider the ball Bs(a) of radius s = |b|p and observe that
Bs(a) is a Tb-invariant set. If it were the case that r < s, then Bs(a) would
be properly contained in Br(a), contradicting the minimality of T . Hence
we may assume that r ≤ s. Now if it were the case that s < r, then Bs(a)
would contain Br(a), and again as it is Tb-invariant, it would have to contain
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X. Finally we observe that Corollary 6.3 shows that Tb is minimal on Bs(a).
Since X is T -invariant, this will imply that X is equal to Bs(a). Thus it
suffices to analyze Tb on balls of radius s = |b|p. We use isomorphisms again
to obtain our next result, which together with Corollary 4.3 can be used to
obtain the ergodic decomposition illustrated in Figure 1.

Corollary 6.3. If b in Qp has |b|p = p−ℓ (ℓ ∈ Z) and Tb is defined by
Tb(x) = x + b, then for each a in Qp the map Tb : Bp−ℓ(a) −→ Bp−ℓ(a) is
an invertible isometry. Furthermore, Tb is minimal and uniquely ergodic on
Bp−ℓ(a).

Proof. We define a map φ : Zp −→ Bp−ℓ(a) by φ(x) = bx+ a. It is easy to
see that this map is invertible, and we have

|φ(x) − φ(y)|p = |bx+ a− by + a|p = |b|p|x− y|p.
Moreover,

φ(T1(x)) = φ(x+ 1) = b(x+ 1) + a

= bx+ a+ b = φ(x) + b = Tb(φ(x)),

showing that φ satisfies the hypotheses of Lemma 5.1. By Theorem 4.1 T1

is minimal, and uniquely ergodic, on Zp. Lemma 5.1 asserts that Tb is an
invertible isometry that is minimal and uniquely ergodic on Bp−ℓ(a). �

It is interesting to compare translations on Zp with their real analogs.
Translations on the entire real line are plainly not ergodic with respect to
Lebesgue measure. Translations by rational numbers on, say, [0, 1) with
endpoints identified (i.e., on R/Z, the reals modulo 1) are periodic and not
ergodic. On the other hand, translations on R/Z by irrational numbers are
totally ergodic and minimal (see, for example, [20] or [21]). This stands in
sharp contrast to the situation in Qp, where all translations are ergodic on
certain subsets of Qp, but none are totally ergodic.

7. MULTIPLICATION IN Qp.

While the first polynomials we have considered have direct analogs in the
reals as minimal transformations, the ones we consider for the remainder of
this article take advantage of special properties of Qp. In this section we
consider the transformation Ma : Qp −→ Qp defined by Ma(x) = ax for
some fixed member a of Qp, a multiplication (or dilation) by an element of
Qp.

The first study of ergodic properties of transformations on the p-adics
that we are aware of is in [14], where Oselies and Zieschang considered the
continuous automorphisms of the group Zp. These automorphisms are of
the form Ma with a in S1(0), and in [14] Oselies and Zieschang obtained
their ergodic decomposition on Zp. The multiplication transformations Ma

acting on the group of units S1(0) were first studied by Coelho and Parry
in [7]. In particular they proved that Ma is ergodic on S1(0) if and only
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if a is a primitive root modulo p and ap−1 6≡ 1 (mod p2). This is similar
to Theorem 7.2, but we note that for ℓ 6= 0 the spheres Sp−ℓ are not mul-
tiplicative groups. The motivation of Coelho and Parry was to use these
transformations to obtain information on the distribution of sequences such
as the Fibonacci sequence, which we describe later in this section.

To make Ma a measure-preserving transformation, and in fact an isome-
try, it is clear that we require |a|p = 1.

One difference between these last two sections and the previous sections
is that we now demonstrate minimality of our transformations on spheres
rather than on balls. However, we briefly return to balls in Theorem 8.5.

In any metric space an isometry with a fixed point defines a dynamical
system on spheres centered at this point, for these spheres are invariant sets
for the isometry. For example, because 0 is a fixed point of Ma,

|Ma(x) − 0|p = |ax|p = |a|p|x|p = |x− 0|p,
so we see that Ma is a well-defined bijective transformation of the spheres
Sp−ℓ(0) for each integer ℓ. In contrast with the real case, where spheres in
Rn have measure zero with respect to n-dimensional Lebesgue measure, in
the case of the p-adics spheres have positive measure—in fact, a sphere of
radius r about a point x has measure greater than or equal to the open ball
of radius r centered there. Thus we can use the Lebesgue measure that we
defined for the p-adics to analyze dynamical systems on these spheres.

We observe immediately that there are certain choices of a that guarantee
that Ma is not minimal on any sphere. For example, when p ≥ 3 the ring Zp

contains the (p− 1)th roots of unity, so M p−1
a is the identity transformation

for each such root a. This means that Ma is periodic and thus minimal only
on finite sets. Also, recall that for p = 3 we may write the sphere S1(0) as a
disjoint union of balls S1(0) = B1/3(1) ∪ B1/3(2). Consider Ma : Z3 −→ Z3

with a in B1/3(1). Then a has the form a = 1 · p0 + c1 · p+ c2 · p2 + · · · for
some c0, c1, . . . . If x is a point in B1/3(1), then it is straightforward to verify
that ax is also in B1/3(1). It follows that B1/3(1) (and, likewise, B1/3(2))
is an invariant set under Ma, so Ma is not minimal on S1(0). (In this case
we could refine our analysis to treat subsets of spheres, as illustrated in
Figure 2, but we will deal here only with transformations that are ergodic
on spheres. For a complete classification of the ergodic decomposition of
Ma, consult [7].)

To see what restrictions we need on a we focus on S1(0) for the moment.
If Ma is minimal on this sphere, then every integer that is not divisible by p
is a limit point of the orbit of 1, the set {an}∞n=0. Let ǫ = p−k with k in N,
and let x in Z be such that p does not divide x. Thus there must exist n ≥ 0
such that |an − x|p < p−k or, in other words, such that an ≡ x (mod pk)

(i.e, an − x is in pkZp). Since this holds for every x in Z not divisible by

p, we see that [a] generates the multiplicative group of units (Zp/p
kZp)

×

for each k in N. In fact, this is exactly the property that we want a to
satisfy. Furthermore, there is an easy way to characterize the a that enjoy
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Z3

S1(0)

S3 1 (0)

S3 2 (0)

Figure 2. Ergodic decomposition of Ma on Q3.

this property using the following well-known lemma from group theory (for
a proof of the first part the reader may refer to [19, Theorem 6.7], and for
the second part to [19, Theorem 5.44]).

Lemma 7.1. Let p be an odd prime, and let a be a member of Zp. Then [a]

generates the group of units (Zp/p
kZp)

× for each k in N if and only if [a]

generates the group of units (Zp/p
2Zp)

×. Furthermore, (Z2/2
kZ2)

× is not
cyclic when k ≥ 3.

Notice that Lemma 7.1 implies that Ma can never be minimal (hence
never uniquely ergodic) on the sphere S1(0) of Z2. Thus we bid farewell to
the even prime and consider only odd primes p for the rest of this paper.
We are now ready for our characterization of the minimality of Ma. As
mentioned earlier, a theorem similar to Theorem 7.2 (for ℓ = 0) was proved
in [7].

Theorem 7.2. Let p be an odd prime, let a in Qp have |a|p = 1, and let
Ma : Sp−ℓ(0) −→ Sp−ℓ(0) with ℓ in Z be defined by Ma(x) = ax. Then [a]

generates (Zp/p
2Zp)

× if and only if Ma is minimal and uniquely ergodic on
Sp−ℓ(0).

Proof. Assume initially that [a] generates (Zp/p
k−ℓZp)

×. Fix x in Sp−ℓ(0).
We want to show that, for any y in Sp−ℓ(0) and any ǫ > 0, there exists
n such that |Mn

a (x) − y|p = |anx − y|p < ǫ. Since ℓ is fixed, we may

assume that ǫ ≤ p−ℓ. Choose k such that p−k < ǫ. Then k > ℓ, so k −
ℓ > 0. Note that |anx − y|p = |x|p|an − yx−1|p for all n. The fact that
|yx−1|p = |y|p/|x|p = 1, shows that yx−1 lies on S1(0). Thus [yx−1] belongs

to (Zp/p
k−ℓZp)

×. Since [a] generates (Zp/p
2Zp)

×, by Lemma 7.1 [a] must

generate (Zp/p
k−ℓZp)

×, meaning that there exists a positive integer n such
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that an ≡ yx−1 (mod pk−ℓ) or, stated differently, that |an − yx−1|p < pℓ−k.
This leads to the conclusion that

|Mn
a (x) − y|p = |x|p|an − yx−1|p < p−ℓpℓ−k = p−k < ǫ.

Therefore Ma is minimal and, by Theorem 4.4, uniquely ergodic on Sp−ℓ(0).

For the converse, suppose that [a] does not generate (Zp/p
2Zp)

×. Then
there exists b in (Zp/p

2Zp)
× such that an is not congruent to b modulo p2

for any integer n. Now let x = pℓ and y = bpℓ with ℓ in Z. Clearly x and y
are points of Sp−ℓ(0), as |b|p = 1. Also Mn

a (x) = anpℓ. We have

|Mn
a (x) − y|p = |anpℓ − bpℓ|p = p−ℓ|an − b|p ≥ p−ℓ−1

for each nonnegative integer n, revealing that y is not a limit point of the
orbit of x. Since x does not have a dense orbit in Sp−ℓ(0), Ma is not minimal
on this space. �

A theorem equivalent to Theorem 7.2 is used in an intriguing way in [7]
to give the distribution in Zp of the Fibonacci sequence. We outline the
main ideas to give a flavor of the argument in [7] . We consider only the
case when

√
5 is an element of Zp (which, by quadratic reciprocity and a

direct application of Hensel’s lemma, which is stated in section 8, occurs
when p ≡ 1 or 4 (mod 5); when 5 is not a square modulo p one considers as
in [7] an appropriate subgroup of Zp[

√
5]). Now let {fn} be the Fibonacci

sequence (i.e., fn+1 = fn−1 + fn, f0 = 0, f1 = 1). The idea is to find a
function f and a number α in S1(0) so that the sequence fn can be expressed
in the form fn = f ◦Mn

α (1). Once this is achieved it is possible to apply
the ergodic theorem to the function f and the transformation Mα. In the
case of the Fibonacci sequence we obtain α from Binet’s formula: it is well
known that fn = (1/

√
5)[αn − (−1/α)n] for α = (1 +

√
5)/2. The required

function f is defined by f(z) = (1/
√

5)[z −N(z)/z], where N(z) = 1 if z is
a square modulo 5 and N(z) = −1 otherwise. One can verify that indeed
fn = f(αn) = f ◦Mn

α (1). We further assume that Mα is ergodic (if it is
not ergodic, one must deal with the ergodic decomposition of Mα, which is
described in [7]). Using the fact that Mα is uniquely ergodic on S1(0), we
conclude that for any open and closed subset A of Zp,

lim
N−→∞

1

N

N
∑

n=0

IA(fn) = lim
N−→∞

1

N

N
∑

n=0

IA(f ◦Mn
α (1))

= lim
N−→∞

1

N

N
∑

n=0

If−1(A)(M
n
α (1))

=

∫

If−1(A)dµ = µ(f−1(A)),

which gives us the distribution of the Fibonacci sequence mod pk in terms
of the measure µ ◦ f−1. In [7] the authors discuss this measure in detail.
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The next natural transformation we consider is the affine mapping Ta,b :
Qp −→ Qp defined by Ta,b(x) = ax + b for a and b in Qp with |a|p = 1
and b 6= 0. The first thing to notice is that this transformation has a fixed
point (assuming a 6= 1: when a = 1 these transformations are translations,
which we covered earlier) at c = b/(1 − a). Thus we analyze the dynamical
properties of Ta,b on the spheres Sp−ℓ(c) centered at c. We start by showing
that affine transformations are in fact isomorphic to the multiplications we
have already discussed and then obtain information on the dynamics of Ta,b.

Theorem 7.3. Let p be an odd prime, and let a and b be points of Qp

such that |a|p = 1 but a 6= 1. If Ta,b and Ma are transformations defined
by Ta,b(x) = ax + b and Ma(x) = ax, respectively, and if c = b/(1 − a)
is the fixed point of Ta,b, then (Sp−ℓ(c), Ta,b) is isomorphic to (Sp−ℓ(0),Ma)
for each integer ℓ. Furthermore, Ta,b : Sp−ℓ(c) −→ Sp−ℓ(c) is minimal and

uniquely ergodic on Sp−ℓ(c) if and only if [a] generates (Zp/p
2Zp)

×.

Proof. Define φ : Sp−ℓ(c) −→ Sp−ℓ(0) by φ(x) = x− c. This map is certainly
invertible. Furthermore, if x is a point of Sp−ℓ(c), then

Ma(φ(x)) = ax− ac = ax− ab/(1 − a)

= ax− (ab− b)/(1 − a) − b/(1 − a) = ax+ b− c

= φ(Ta,b(x)).

Finally, it is clear that |φ(x) − φ(y)|p = |x − y|p. An appeal to Lemma 5.1
shows that the two dynamical systems in question are isomorphic. To com-
plete the proof we apply Theorem 7.2 . �

We note that an interesting property of the p-adic numbers follows from
Theorem 7.3.

Corollary 7.4. Let [a] generate (Zp/p
2Zp)

×, where a is an element of Qp

with |a|p = 1 but a 6= 1, let b be a point of Zp, and let c = b/(1 − a). If x
lies on S1(c), then the set

{

anx+ b
n−1
∑

i=0

ai

}∞

n=0

has exactly pk−1(p− 1) distinct elements modulo pk, and it is equal to S1(c)
modulo pk.

Proof. The hypotheses ensure that a 6≡ 1 (mod p). Therefore |1 − a|p = 1,
c belongs to Zp, and S1(c) is contained in Zp. We invoke Theorem 7.3 to
complete the proof. �

8. SIMPLE POLYNOMIAL TRANSFORMATIONS IN Qp.

For our last examples we restrict attention to the monomial mappings
Ma,n : Qp −→ Qp defined by Ma,n(x) = axn for n in N. (These are simple
generalizations of the maps ψn(x) = xn that are studied in [12]). We assume
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in addition that p is an odd prime, a lies in Bp−1(1), and n 6≡ 1 (mod p).
The reasons for imposing these restrictions will soon become apparent.

We first note that, although 0 is a fixed point of Ma,n, it is immediate
that we do not want to consider the action of Ma,n on arbitrary spheres
centered at 0. If |x|p < 1, then M i

a,n(x) −→ 0 as i −→ ∞, so Ma,n cannot
be an isometry on any space containing two such points. If |x|p > 1, then
|M i

a,n(x)|p −→ ∞ as i −→ ∞, so any invariant set containing a ball around x
must have infinite measure. If Ma,n were to be isometric, this would prevent
Ma,n from being minimal.

However, S1(0) is an invariant subspace, since for all x in S1(0)

|Ma,n(x)|p = |axn|p = |a|p|x|np = 1.

Furthermore, we can show that, modulo certain restrictions on n, Ma,n is
an isometry on this sphere.

Our approach is to use isomorphisms to reduce Ma,n to a map that we
have already considered. In order to do this we first use Hensel’s lemma to
establish the existence of a fixed point for Ma,n. Hensel’s lemma is one of the
early results in p-adic analysis and can be viewed as a version of Newton’s
method (for a proof the reader may consult [11] or [18]).

Lemma 8.1 (Hensel’s Lemma). Let f(x) belong to Zp[x]. Suppose that
there exists α0 in Zp such that |f(α0)|p < |f ′(α0)|2p, where f ′(x) signifies
the formal derivative of f(x). Then there exists a unique α in Zp such that
f(α) = 0 and |α− α0|p = |f(α0)|p/|f ′(α0)|p.
Lemma 8.2. Let p be an odd prime, let n be a positive integer such that
n 6≡ 1 (mod p), and let a be a point of Bp−1(1). If Ma,n : Qp −→ Qp is
defined by Ma,n(x) = axn, then there exists a unique point x0 of Bp−1(1)
such that Ma,n(x0) = x0.

Proof. Consider the polynomial f(x) = axn − x in Zp[x]. Its formal deriv-
ative is given by f ′(x) = naxn−1 − 1. We want to apply Lemma 8.1 with
α0 = 1. We see that f(1) = a− 1, |a− 1|p ≤ p−1, and f ′(1) = na− 1. Since
na 6≡ 1 (mod p), |na− 1|p = 1. Thus

|f(1)|p ≤ p−1 < 1 = |f ′(1)|2p,
so by Hensel’s lemma there exists a unique x0 in Zp such that f(x0) = 0
(in other words, such that Ma,n(x0) = axn

0 = x0) and such that |x0 − 1|p =
|f(1)|p/|f ′(1)|p ≤ p−1. Therefore x0 is the unique fixed point of Ma,n in
Bp−1(1). �

We next show that Ma,n is isomorphic to Tn,a′ for a value of a′ to be
specified later. The isomorphism that we use is the p-adic logarithm, which
can be defined by its power series expansion:

logp x =

∞
∑

i=1

(−1)i+1

i
(x− 1)i,
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where convergence is with respect to | · |p. The region of convergence of the
series is Bp−1(1). (We note that since Bp−1(1) = 1 + pZp, it follows that

Bp−1(1) is a multiplicative subgroup of Z×
p = {x ∈ Zp : |x|p = 1}.) The p-

adic logarithm retains some of the properties of its real analog: logp(xy) =
logp(x) + logp(y) and logp(x

n) = n logp x for all x and y in Bp−1(1) and all
integers n. We will also use the fact that logp : Bp−1(1) −→ Bp−1(0) is a
bijective isometry (see [18, sec. 4.4.2], [12]). We chose a in Bp−1(1) and
study the action of Ma,n on spheres in Bp−1(1).

Lemma 8.3. Let p be an odd prime, let n be a nonnegative integer such that
n 6≡ 1 (mod p), and let a be a point of Bp−1(1). If x0 is the unique fixed point
of Ma,n in Bp−1(1), then (Sp−ℓ(x0),Ma,n) is isomorphic to (Sp−ℓ(logp x0), Tn,logp a)

for ℓ = 1, 2, . . . . In particular, Ma,n is an invertible isometry on Sp−ℓ(x0).

Proof. Consider logp : Sp−ℓ(x0) −→ Sp−ℓ(logp x0). This is a bijective isome-
try (i.e.,

| logp(x) − logp(y)|p = |x− y|p,
for x and y on Sp−ℓ(x0)). Now consider Tn,logp a : Sp−ℓ(logp x0) −→ Sp−ℓ(logp x0).

For x on Sp−ℓ(x0) we compute

logp(Ma,n(x)) = logp(ax
n) = n logp x+ logp a = Tn,logp a(logp x).

By Lemma 5.1, logp is an isomorphism. �

The following theorem, including the equivalence of minimality, ergodic-
ity, and unique ergodicity, was proved by Gundlach, Khrennikov, and Lin-
dahl [12] for the case of the transformation M1,n (i.e., a = 1, x0 = 1). As
also noted in [12], it is interesting to observe that the spheres Sp−ℓ(x0) are
not multiplicative groups.

Theorem 8.4. Let p be an odd prime, let n be a nonnegative integer such
that n 6≡ 1 (mod p), let a be a point of Bp−1(1), and let x0 be the unique
fixed point of Ma,n in Bp−1(1). Then for ℓ = 1, 2, . . . the transformation
Ma,n : Sp−ℓ(x0) −→ Sp−ℓ(x0) is minimal and uniquely ergodic if and only if

[n] generates (Zp/p
2Zp)

×.

Proof. Using the isomorphism from Lemma 8.3 in Lemma 5.1, it follows that
Ma,n is an invertible isometry on Sp−1(x0). Furthermore, Ma,n is minimal
and uniquely ergodic if and only if Tn,logp a is minimal and uniquely ergodic,

which by Theorem 7.3 occurs if and only if [n] generates (Zp/p
2Zp)

×. �

While we do not discuss this in detail, the ergodic decomposition ofMa,n is
illustrated in Figure 3. In closing, we discuss briefly the case when Ma,n has
at least one other nonzero fixed point, call it x1. Then x1 is a point of S1(0),
for |x1|p = |axn

1 |p = |a|p|x1|np = 1. One can use an isomorphism to show
that Ma,n is ergodic on the spheres centered at x1 that are contained within
Bp−1(x1). Indeed, an isomorphism φ : Sp−ℓ(x1) −→ Sp−1(x0) is defined by

φ(x) = xx0x
−1
1 . It is also possible to use isomorphisms to characterize Ma,n
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Z3

S1(1)

S3 1 (1)

S3 2 (1)

Figure 3. Ergodic decomposition of Ma,n (a = 1) on Z3.

on spheres around other fixed points for the case of values of a outside the
ball Bp−1(1).

We conclude with a result about the minimality of Ma on balls (rather
than on spheres), remarking that it holds without requiring the condition
(as in Theorem 7.2) that [a] generate (Zp/p

2Zp)
×.

Theorem 8.5. Let p be an odd prime number. If a is a point of Bp−1(1), ℓ

is an integer satisfying | logp(a)|p = p−ℓ, and c is a point of Qp, then Ma is
minimal and uniquely ergodic on Bp−ℓ(c).

Proof. By the proof of Lemma 8.3, Ma acting on Bp−ℓ(c) is isomorphic to
Tlogp a acting on Bp−ℓ(logp a). By Corollary 6.3, Ma is minimal on Bp−ℓ(c).

�
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