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Abstract
Given an action of a group Γ on a measure space Ω, we provide a sufficient

criterion under which two sets A,B ⊆ Ω are measurably equidecomposable, i.e., A
can be partitioned into finitely many measurable pieces which can be rearranged
using some elements of Γ to form a partition of B. In particular, we prove that every
bounded measurable subset of Rn, n > 3, with non-empty interior is measurably
equidecomposable to a ball via isometries. The analogous result also holds for some
other spaces, such as the sphere or the hyperbolic space of dimension n > 2.

Keywords. Banach-Tarski Paradox, finitely additive mean, local spectral gap, mea-
surable equidecomposition

1 Introduction
In this paper, we present a general sufficient criterion for equidecomposing a given pair
of sets using measurable pieces. In order to state quickly some concrete results obtainable
by our method, we discuss first the Euclidean space Rn, which is probably the most
important special case.

1.1 Euclidean space Rn

Let us call two subsets A and B of Rn (set-theoretically) equidecomposable if it is pos-
sible to find a partition of A into finitely many pieces and rearrange these pieces using
orientation-preserving isometries to form a partition of B. The most famous result about
equidecomposable sets is known as the Banach-Tarski paradox: in R3, the unit ball and
two disjoint copies of the unit ball are equidecomposable. It is a special case of the fol-
lowing theorem.
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Theorem 1.1 (Banach and Tarski [2]). When n > 3, any two bounded subsets ofRn with
non-empty interiors are equidecomposable.

An earlier result of Banach [1] gives that, when n 6 2, equidecomposable subsets
of Rn which are measurable have the same Lebesgue measure. In view of this, Tarski
[44] formulated the following problem, known as Tarski’s circle squaring: is a disk in R2

equidecomposable to a square of the same area? Some 65 years later, Laczkovich [20]
showed that Tarski’s circle squaring is possible.

There are various results which imply the impossibility of equidecompositions when
additional regularity of the pieces is required. Examples include Dehn’s theorem [8] solv-
ing Hilbert’s third problem and the result of Dubins, Hirsch and Karush [11] which shows
that circle squaring is not possible with Jordan domains.

On the other hand, until recently there have been very few general positive results on
the existence of measurable equidecompositions (where each piece has to be Lebesgue
measurable), although a related problem of measurable equidecompositions with count-
ably many pieces was studied already by Banach and Tarski [2, Théorème 42]. (See [49,
Section 11.3] for a survey of “countable equidecompositions”.)

Some progress has been recently made for sets with “small boundary”. Namely, if the
boundaries of A,B ⊆ Rn, n > 1, have upper Minkowski dimension strictly less than n
while the sets have the same positive Lebesgue measure, then A and B are equidecom-
posable with pieces that are both Lebesgue and Baire measurable (Grabowski, Máthé and
Pikhurko [14]), Jordan measurable (Máthé, Noel and Pikhurko [32]), or Borel if the sets
A and B are also Borel (Marks and Unger [31]).

In this paper we give a general criterion for measurable equidecomposability, which
in particular applies to Rn for n > 3. An important feature of the present work when
compared with [14, 31, 32] is that for a large natural class of sets A ⊆ Rn, n > 3, we
are able to completely characterise sets B which are measurably equidecomposable to
A. Furthermore, we do not need to assume anything about the boundaries of the sets.
Given n, let C consist of all bounded sets A in Rn such that some (equivalently, every
bounded) non-empty open set can be covered by finitely many sets obtained by applying
orientation-preserving isometries to A. The following theorem is a direct consequence of
our more general Corollary 1.12.

Theorem 1.2. Let n > 3 and let A ⊆ Rn belong to C and be Lebesgue measurable. Then
a set B ⊆ Rn is measurably equidecomposable to A if and only if B belongs to C, is
Lebesgue measurable, and has the same Lebesgue measure as A.

In particular, for n > 3, every two bounded measurable subsets ofRn with non-empty
interior and of the same Lebesgue measure are measurably equidecomposable.

Remarks 1.3. (i) The assumption that n > 3 is needed in Theorem 1.2. For example,
in R2 (resp. R1), Laczkovich in [23, Theorem 3] (resp. [21, Theorem 3.3]) constructed
continuum many Jordan domains with boundaries differentiable everywhere (resp. bounded
sets that are countable unions of intervals) that all have measure 1 but no two of these sets
are set-theoretically equidecomposable.

(ii) Theorem 1.2 can be combined with the results of Dougherty and Foreman [9]
(or recent generalisations by Marks and Unger [30]) to show that if the sets A and B in
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the theorem also have the property of Baire, then the obtained pieces can be additionally
required to have the property of Baire, see Corollary 1.10(iii).

(iii) Various questions were posed early in the 20th century regarding the axiomatic
theory of the Lebesgue measure, see e.g. [49, Chapter 11]. A remaining key open problem
is whether, for n > 3, every mean (that is, a finitely additive and isometry invariant
function) κ : A → [0,∞) where A is the family of all bounded Borel subsets of Rn, is
a constant multiple of the Lebesgue measure. In a breakthrough, Margulis [29] showed
that the answer is in the affirmative if we take for A the (larger) family of all bounded
measurable sets. This resolved the famous Banach-Ruziewicz Problem whose origins can
be traced to the 1904 monograph of Lebesgue [24] (see the discussion in [49, Page 267]).
The special case Ω = Rn of our Theorem 1.14 reduces the family A in the result of
Margulis to those sets that additionally have the property of Baire. In brief, the connection
comes from the observation that an equidecomposition between A and B with all pieces
in A gives a certificate that κ(A) = κ(B).

(iv) An upper bound on the number of pieces needed in Theorem 1.2 can be derived
from our proof. For example, our estimates indicate that one can measurably equidecom-
pose a ball into a cube in R3 using at most 201010 pieces, see Remark 7.5. On the other
hand, we do not know any non-trivial lower bounds for the number of necessary pieces.

1.2 A general criterion for measurable equidecompositions
In this section, we present our general criterion for measurable equidecomposability. We
start by noting the following assumption that applies to the whole paper.

Assumption 1.4. Assume that Γ is a group, (Ω, τ) is a Polish topological space, B is the
Borel σ-algebra of (Ω, τ), and a : Γ y Ω is a (left) action by Borel automorphisms.

Furthermore, whenever we mention a measure µ on Ω, we additionally assume that
the following holds.

Assumption 1.5. Assume that µ is a σ-finite measure on (Ω,B) which is non-zero on all
non-empty open sets and that the action a : Γ y Ω preserves the measure µ.

We need a few definitions first. The result of the action of γ ∈Γ on x∈Ω is denoted by
γ.x := a(γ, x). Similarly, when U ⊆Ω we put γ.U := {γ.u : u ∈ U}, and when T ⊆ Γ
we put T.U := ∪γ∈Tγ.U . We say that a set A ⊆ Ω covers another set B ⊆ Ω if there is a
finite set T ⊆ Γ such that B ⊆ T.A.

Let us also define various families of subsets of Ω that we will use. The completion of
B with respect to µ is denoted by Bµ. Elements of the σ-algebra Bµ are called (Lebesgue)
measurable. Let T denote the σ-algebra consisting of sets with the property of Baire. Let
C consist of all subsets of Ω that have compact closure and cover a non-empty open set.
While C is closed under finite unions, it is not an algebra. Clearly, the σ-algebras B and Bµ
are invariant (under the action a : Γ y Ω). If, for example, Γ acts by homeomorphisms,
then T and C are invariant too.

Given an a-invariant set family A ⊆ 2Ω, two subsets A,B ⊆ Ω are called A-
equidecomposable (with respect to the action a : Γ y Ω) if for some m∈N there



4 Łukasz Grabowski, András Máthé, Oleg Pikhurko

exist group elements γ1, ... , γm ∈ Γ and a partition A = A1 t ... t Am with each piece
belonging to A such that γ1.A1, ... , γm.Am partition B. If A is equal to B, Bµ, T and
Bµ∩T , then anA-equidecomposition is called respectively Borel, measurable, Baire and
Baire-Lebesgue. If A = 2Ω, then we usually omit any reference to A; however, if we
need to emphasize that no restriction is imposed on the pieces, then we will use the term
set-theoretic equidecomposition.

Given µ, we say that A essentially covers B if A covers B \ N for some null set
N . If A,B ⊆ Ω are measurable sets and there exist null sets N and N ′ such that A \
N and B \ N ′ are Borel equidecomposable, then we say that A and B are essentially
Borel equidecomposable. It is easy to show (see Proposition 3.4(i)) that the existence of
an essential Borel equidecomposition together with a set-theoretic equidecomposition is
equivalent to the existence of a measurable equidecomposition.

We say that C ∈ Bµ is a domain of expansion if 0 < µ(C) < ∞ and for every real
η > 0 there is a finite set R ⊆ Γ such that for all measurable sets Y ⊆ C we have

µ((R.Y ) ∩ C) > min

(
(1− η)µ(C),

µ(Y )

η

)
.

Informally speaking, this states that all measurable subsets of C “uniformly expand” in-
side C under a suitable finite subset R of Γ , unless their R-images cover most of C.
This property is crucial in the following general criterion, based on a result of Lyons and
Nazarov [27].

Theorem 1.6. Let Assumptions 1.4 and 1.5 apply. Let A ⊆ Ω be a domain of expansion.
Then the following holds.

(i) A subset B ⊆ Ω is essentially Borel equidecomposable to A if and only if A and B
essentially cover each other, B is measurable and µ(A) = µ(B).

(ii) A subset B ⊆ Ω is measurably equidecomposable to A if and only if they are
set-theoretically equidecomposable, B is measurable and µ(A) = µ(B).

1.3 Paradoxical actions

Equidecompositions have also been considered for spaces other than the Euclidean space
Rn, often with the aim of establishing “paradoxes” and concluding that certain kinds of
measures do not exist. We refer the reader to the excellent monograph on the subject by
Tomkowicz and Wagon [49]. Having a rich family of set-theoretic equidecompositions
will be very useful when applying Theorem 1.6(ii). For the purposes of this paper, we
make the following (non-standard) definition.

Definition 1.7. Under Assumption 1.4, the action Γ y Ω called paradoxical if all the
following properties hold.

(i) The topological space Ω is locally compact.
(ii) For every γ ∈ Γ and every compact C ⊆ Ω, the closure of γ.C is compact.

(iii) Any two subsets of Ω with compact closure and non-empty interior are equidecom-
posable.
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Of course, the crucial part of this definition is the last property. The other (mild techni-
cal) properties will be needed in some of our arguments. For example, Property (ii) implies
that the family C (which consists of sets with compact closure that cover a non-empty open
set) is invariant. As a small detour, let us note the following general proposition, whose
second part relies on a powerful result of Marks and Unger [30].

Proposition 1.8. Let a : Γ y Ω be paradoxical and let A ∈ C. Then the following holds.
(i) A subset B ⊆ Ω is equidecomposable to A if and only if B ∈ C.

(ii) Suppose additionally that A ∈ T and that the family of all meager subsets of Ω
is a-invariant. Then a subset B ⊆ Ω is T -equidecomposable to A if and only if
B ∈ C ∩ T .

Note that if a Borel bijection preserves meager sets, then it is also preserves sets with
the property of Baire, so the family T in Proposition 1.8(ii) is invariant.

Let us now look at some concrete examples of actions known to be paradoxical. Let
Sn−1 denote the unit sphere in Rn with respect to the Euclidean metric. Let Hn denote
the n-dimensional hyperbolic space with the hyperbolic distance; see Section 6.3 for
all formal definitions. Let Iso(Rn), SO(n) and Iso(Hn) denote the group of orientation-
preserving isometries of respectively Rn, Sn−1 and Hn. For each of these groups, we
consider its natural action on the corresponding space. Also, let G2 be the subgroup of
affine bijections of R2 generated by SL(2,Z) (the linear maps given by 2 × 2 matrices
with determinant 1 and all entries in Z) and all translations (that is, maps of the form
x 7→ x+ u for some vector u ∈ R2). This group naturally acts on R2.

Hausdorff [15] showed that a “third” of Sn, n > 2, is equidecomposable to a “half” of
Sn, which was enough to his intended application, namely, the non-existence of a mean
defined on all subsets of the sphere. The paradoxicality of SO(n + 1) y Sn, n > 2, as
stated in Definition 1.7(iii), was established by Banach and Tarski [2]. The paradoxicality
of Iso(Rn) y Rn for n > 3 is the content of Theorem 1.1 (of Banach and Tarski [2])
while, as we mentioned already, this fails for n 6 2 by the results of Banach [1]. One can
ask what happens if we allow a richer group of transformations ofR2. The paradoxicality
of G2 y R2 was established in the influential paper of von Neumann [36] that introduced
the concept of a non-amenable group. In fact, some (explicit) smaller subgroups of G2

suffice here, see Mycielski [34, Corollary 5] (compare also with Wagon [51, Theorem 2]).
Laczkovich [22] showed that the natural action SL(2,R) y R2 \{0} is paradoxical. (See
also Tomkowicz [47] for a strengthening of this result.) As noted by Mycielski [33, Page
143], the paradoxicality of Iso(Hn) y Hn, n > 3, can be established by observing that
the subgroup of isometries that fix a point of Hn acts on its every non-trivial orbit in the
same way as SO(n) acts on Sn−1. Mycielski [33] showed that the action Iso(H2) y H2

is also paradoxical. (Some small gaps in Mycielski’s proof were fixed by Mycielski and
Tomkowicz [35]; the proof, with some further modifications, can also be found in [49,
Theorem 4.17].) We also refer the reader to Tomkowicz [48] for a general short proof of
the paradoxicality of many of the above actions.

Let us collect these five (probably, best known) examples of paradoxical actions to-
gether. For later reference, we also state the standard invariant measure µ on Ω in each
case.
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Example 1.9 (Some known paradoxical actions Γ y Ω).
(i) Γ = Iso(Rn) and Ω = Rn with the Lebesgue measure, n > 3,

(ii) Γ = SO(n) andΩ = Sn−1 with the (n−1)-dimensional Hausdorff measure, n > 3,
(iii) Γ = G2 and Ω = R2 with the Lebesgue measure,
(iv) Γ = SL(2,R) and Ω = R2 \ {0} with the Lebesgue measure,
(v) Γ = Iso(Hn) and Ω = Hn with the measure defined by (6.2), n > 2.

1.4 Expanding actions
Let us call an action Γ y Ω satisfying Assumptions 1.4 and 1.5 expanding (with respect
to the measure µ) if every set in Bµ ∩ C is a domain of expansion.

This notion is of interest because of the following corollary that can be derived with
some work from Theorem 1.6 and Proposition 1.8.

Corollary 1.10. In addition to Assumptions 1.4 and 1.5, assume that the action is para-
doxical and expanding. Let A ∈ Bµ ∩ C. Then the following statements hold.

(i) A subset B ⊆ Ω is essentially Borel equidecomposable to A if and only if B ∈ Bµ,
µ(B) = µ(A) and there is a null set N with B 4N ∈ C.

(ii) A subset B ⊆ Ω is measurably equidecomposable to A if and only if B ∈ Bµ ∩ C
and µ(B) = µ(A).

(iii) Suppose additionally that A has the property of Baire and that the action preserves
the family of meager sets. Then a subset B ⊆ Ω is Baire-Lebesgue equidecompos-
able to A if and only if B ∈ Bµ ∩ C ∩ T and µ(B) = µ(A).

On the other hand, many natural actions can be shown to be expanding:

Theorem 1.11. Each of the actions in Example 1.9 is expanding.

Each these actions is paradoxical and acts by homeomorphisms (in particular, preserv-
ing meager sets), so it satisfies all conclusions of Proposition 1.8 and Corollary 1.10. It
is remarkable that one can obtain exact characterisations for so many types of equide-
compositions under rather general assumptions (that in particular include all actions in
Example 1.9). We did not see such a characterisation anywhere in the previous literature,
surprisingly not even for set-theoretic equidecompositions in any case of Example 1.9. In
fact, Tomkowicz and Wagon [49, Page 176] write: “It is not completely clear which sub-
sets E of S2 are SO3(R)-equidecomposable with all of S2.” One answer to this question
(exactly those sets that cover the whole of S2) is given by Proposition 1.8(i).

As an illustration, here is one (easy to state) direct consequence of Corollary 1.10(ii)
and Theorem 1.11.

Corollary 1.12. For each action Γ y Ω of Example 1.9, every two measurable sets
A,B ∈ C of the same measure are equidecomposable with measurable pieces.

1.5 Connections to (local) spectral gap and finitely additive means
It is not hard to show (see Proposition 5.3) that if µ is a finite measure and the action
Γ y Ω has spectral gap, then the action is expanding. Thus the case of SO(n) y Sn−1,
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n > 3, of Theorem 1.11 can be derived from the known spectral gap results established
by Drinfel’d [10], Margulis [28], and Sullivan [43].

The case of the infinite measure space Rn in Theorem 1.11 is not directly covered by
the above approach. However, we were able to derive it from the spectral gap of SO(3) y
S2, using lengthy but rather elementary arguments. Later, we became aware of the general
powerful results by Boutonnet, Ioana and Salehi Golsefidy [5] that can be used here. Let
us discuss this connection in general.

Let X ⊆ Ω be a measurable set of finite positive measure. For f ∈ L2(Ω, µ), we
define ‖f‖2,X := (

∫
X
|f(x)|2 dµ(x))1/2. We say that an action Γ y Ω satisfying As-

sumptions 1.4 and 1.5 has local spectral gap with respect to X if there exist a finite set
Q ⊆ Γ and a constant c > 0 such that for any f ∈ L2(Ω, µ) with

∫
X
f(x) dµ(x) = 0 we

have
‖f‖2,X 6 c

∑
γ∈Q

‖γ.f − f‖2,X , (1.1)

where γ.f : Ω → R is defined by (γ.f)(x) := f(γ−1.x), x ∈ Ω.
This notion is of interest to us because, as we will show in Lemma 5.2, the action

has local spectral gap with respect to a set X ⊆ Ω if and only if X is a domain of
expansion. Modulo Lemma 5.2, Boutonnet et al [5, Theorem A] presented a sufficient
condition for the action to be expanding (stated here as Theorem 5.1). While it seems that
Theorem 5.1 can be used to derive the full Theorem 1.11, we use it here for SL(2,R) y
R2 \ {0} and the hyperbolic space only, presenting more direct proofs of the other cases
of Theorem 1.11.

We decided to include also our initial proof of Theorem 1.11 for Iso(Rn) y Rn. As
we have already mentioned, it is rather elementary, apart from using the spectral gap prop-
erty of SO(3) y S2. Also, it can be used to estimate the number of pieces in the obtained
measurable equidecompositions; see Remark 7.5 for an example of a such calculation.
Last but not least, our proof also gives the following result that does not seem to follow
from [5] nor from other known spectral gap results.

Theorem 1.13. For each n > 3, there is a closed nowhere dense bounded subsetX ofRn

such that µ(X) > 0 and the action Iso(Rn) y Rn has local spectral gap with respect
to X (i.e., by Lemma 5.2, X is a domain of expansion).

For an a-invariant family A ⊆ 2Ω which is closed under finite unions, a mean on A
is an a-invariant finitely additive function κ : A → [0,∞). The analogue of the question
discussed in Remark 1.3(iii), namely whether every mean on Borel sets with compact
closure is a constant multiple of the measure µ, is also open for all actions listed in Ex-
ample 1.9 to the best of the authors’ knowledge. The following theorem provides some
partial progress in this direction.

Theorem 1.14. Let Γ y Ω be any action from Example 1.9 and letA be the family of all
measurable subsets of Ω that have the property of Baire and compact closure. Then every
mean on A is a constant multiple of the measure µ.

The result of Margulis [29] (namely, the version of Theorem 1.14 when we take the
action Iso(Rn) y Rn and enlarge the family A by dropping the requirement that the sets
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in A have the property of Baire) can be derived by a straightforward modification of our
proof. Alternatively, it is a consequence of Theorem 1.11, Lemma 5.2 and the implication
(4) =⇒ (1) of [5, Theorem 7.6].

1.6 Organisation of the paper
Section 2 contain some further notation and various auxiliary results.

Theorem 1.6 is proved in Section 3 where we also give a full proof of the result of
Lyons and Nazarov [27] on the existence of a.e.-perfect Borel matchings.

Section 4 is dedicated to proving Proposition 1.8 and also contains the derivation of
Corollary 1.10.

Section 5 discusses the relation to (local) spectral gap in detail, in particular showing
that the action has local spectral gap with respect to X if and only if X is a domain of
expansion.

Section 6 contains the proofs of all cases of Theorem 1.11. In particular, Section 6.5
contains a few different proofs that the action Iso(Rn) y Rn is expanding for n > 3,
with our new (more elementary) proof appearing in Section 6.5.2. This proof is then used
to derive Theorems 1.13 (at the end of Section 6.5.2) and to give upper bounds on the
number of pieces in some of our equidecompositions (in Section 7).

As we mentioned already, Corollary 1.12 clearly follows from Corollary 1.10 and
Theorem 1.11.

Theorem 1.14 is proved in Section 8, as a consequence of a more general Lemma 8.1.
As described in Section 1.1, all new results stated there are direct consequences of the

above results.
Some concluding remarks and remaining open questions can be found in Section 9.

2 Some further notation and auxiliary results
Let us collect some frequently used notation, also recalling some definitions that already
appeared in the Introduction.

Let N := {0, 1, ...} consist of non-negative integers. For k ∈ N, we denote [k] :=
{1, ... , k}. When we write X = A t B, we mean that the sets A and B partition X
(i.e., A ∪ B = X and A ∩ B = ∅). By πi we will denote the projection from a product
to its i-th coordinate; formally, for sets X1, ... , Xm and i ∈ [m], the projection πi maps
(x1, ... , xm) ∈

∏m
j=1Xj to xi ∈ Xi.

Under Assumption 1.4, we will use the following shorthands for S, T ⊆ Γ , γ ∈ Γ ,
y ∈ Ω and X ⊆ Ω:

γ.y := a(γ, y) ∈ Ω,

γ.X := {γ.x : x ∈ X} ⊆ Ω,

S.X := ∪γ∈S γ.X = {γ.x : γ ∈ S, x ∈ X} ⊆ Ω,

ST := {σγ : σ ∈ S, γ ∈ T} ⊆ Γ.

We call γ.X a translate of X . The group action and the group multiplication take prece-
dence over all other set operations; for example, S.X ∩Y means (S.X)∩Y . The identity
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of the group Γ is denoted by e. Also, we write S−1 := {γ−1 : γ ∈ S} and call the set S
symmetric if S−1 = S.

By a multiset Q ⊆ Γ we mean a function Q : Γ → N with Q(γ) encoding the
multiplicity of γ in Q. It is finite if |Q| :=

∑
γ∈Γ Q(γ) is finite. For f : Γ → R, we define∑

γ∈Q f(γ) :=
∑

γ∈Γ Q(γ) f(γ).
The closure of X ⊆ Ω in the topological space (Ω, τ) is denoted by X . The comple-

ment of X is Xc := Ω \ X . The indicator function 1X of X assumes value 1 on X and
value 0 on Ω \X .

Two sets A,B ⊆ Ω cover each other if there is a finite set S ⊆ Γ with S.A ⊇ B and
S.B ⊇ A. When we talk about equidecompositions forRn, Sn, orHn without specifying
the group, we mean by default the group of orientation-preserving isometries.

Also, recall these families of subsets of Ω: B (Borel), Bµ (measurable), C (having
compact closure and covering a non-empty open set) and T (having the property of Baire).

Let G be a (bipartite) graph, by which we mean a triple (V1, V2, E), where V1 and V2
are sets (that are called the parts of G) and E (called the edge set of G) is a subset of
V1 × V2.

A matching in G is a subset M of the edge set E such that for every x in V1 (resp.
V2) there is at most one vertex y with (x, y) ∈ M (resp. (y, x) ∈ M ). For i = 1, 2, the
projection πi(M) consists of matched vertices in Vi. It will be sometimes convenient to
view a matching as a partial bijection; then π1(M) and π2(M) are just the domain and the
range of M . The matching M is called perfect if π1(M) = V1 and π2(M) = V2, that is,
M as a function is a bijection from V1 to V2.

For X ⊆ V1 and Y ⊆ V2 their neighbourhoods are respectively

N(X) := {y ∈ V2 : ∃x ∈ X (x, y) ∈ E},
N(Y ) := {x ∈ V1 : ∃ y ∈ Y (x, y) ∈ E}.

The degree of a vertex x is deg(x) := |N({x})|. We call G locally finite if the degree of
each vertex is finite.

There may be some ambiguity when V1∩V2 6= ∅. There are two, essentially equivalent,
ways to deal with this formally. The first one is to work with the action ã : Γ ⊕ C2 y
Ω × C2 instead, where C2 := ({−1, 1},×) is the cyclic group with two elements, Γ
acts on each copy of Ω the same way as before while the non-identity element of C2

swaps these two copies. Then we can replace Vi by Vi × {(−1)i}, thus making the parts
disjoint. However, then we have to make (routine) verifications that our claimed results,
when proved for ã, transfer to the original action a. Alternatively, we can operate with the
unordered graph

G̃ := ((V1 × {−1}) t (V2 × {1}), Ẽ), where Ẽ := { {(x,−1), (y, 1)} : (x, y) ∈ E},
(2.1)

which carries the same information as G. For example, instead of the degree of x ∈ Vi we
should have, strictly speaking, defined the degree of (x, (−1)i), etc. Since the meaning
will usually be clear from the context, we will be working mostly with G, switching to G̃
occasionally.

We call a bipartite graph G = (V1, V2, E) Borel if V1, V2 ⊆ Ω and E ⊆ Ω2 are all
Borel. One way to generate Borel subsets of Ω2 that is relevant to this paper is as follows.
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A Borel arrow is a pair (U, γ), where U ⊆ Ω is Borel and γ ∈ Γ . Given a countable set
of Borel arrows A = {(Ui, γi) : i ∈ I}, let

E(A) := ∪i∈I{(x, γi.x) : x ∈ Ui} ⊆ Ω2. (2.2)

This set is Borel (as the countable union of the graphs of Borel partial functions). A special
case is when A = {(Ω, γ) : γ ∈ S} for some countable S ⊆ Γ (that is, each Ui is equal
to Ω); then we denote

ES := E(A) = ∪γ∈S{(x, γ.x) : x ∈ Ω} ⊆ Ω2, (2.3)

which is just the union over γ ∈ S of the graphs of the functions a(γ, ·) : Ω → Ω.
We will be using the Lusin-Novikov Uniformisation Theorem (see e.g. [17, Theo-

rem 18.10]) a number of times, often without explicitly mentioning it. We need only the
weaker form of the theorem which states that, for Polish spaces, a continuous countably-
to-one image of a Borel set is Borel. For example, one of its consequences is that for every
Borel graph G = (V1, V2, E) with countable vertex degrees and every Borel X ⊆ Vi its
neighbourhood N(X) is Borel. Indeed, if e.g. i = 1 then N(X) = π2((X × V2) ∩ E) is
the countable-to-one image of a Borel set under the (continuous) projection π2. Another
useful consequence of the Uniformisation Theorem is as follows.

Lemma 2.1. Under Assumptions 1.4, let S ⊆ Γ be a countable subset and let E ′ ⊆ ES
be Borel. Then there are Borel sets Uγ ⊆ Ω for γ ∈ S such that A := {(Uγ, γ) : γ ∈ S}
bijectively generates E ′ (meaning that E ′ = E(A) and for every (x, y) ∈ E ′ there is
exactly one γ ∈ S with x ∈ Uγ and y = γ.x).

Proof. In brief, we have to pick in a Borel way, for every edge of E ′, exactly one element
of S that generates this edge. Such a selection can be obtained by taking a maximal
Borel independent set, which exists by a result of Kechris, Solecki and Todorcevic [18,
Proposition 4.2], in the (non-bipartite) Borel graph with vertex set {((x, y), γ) ∈ E ′ ×
S : γ.x = y} whose two vertices are connected if they correspond to the same edge of E ′.

For completeness, we include a more direct proof.
Let 4 be a linear ordering of S coming from some injection of S intoN. We construct

the required sets Uγ one by one by taking the maximal possible set given the previous
sets. Namely, we inductively define Uγ for γ ∈ S as

Uγ := {x ∈ Ω : (x, γ.x) ∈ E ′} \ (∪β≺γ{x ∈ Uβ : γ.x = β.x}).

The obtained sets can be shown to be Borel by induction on γ ∈ S. For example, each
auxiliary set

{x ∈ Ω : γ.x = β.x} = π1( {(x, y) ∈ Ω2 : y = γ.x} ∩ {(x, y) ∈ Ω2 : y = β.x} )

is Borel by the Lusin-Novikov Uniformisation Theorem.
By definition, E ′ ⊇ E(A), where A := {(Uγ, γ) : γ ∈ S}. Also, for every (x, y) ∈ E ′

there is exactly one γ ∈ S with x ∈ Uγ and y = γ.x, namely, the smallest element of
{γ ∈ S : y = γ.x}. (Note that this set is non-empty since E ′ ⊆ ES .) It follows that A has
all required properties.
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The following result points out a well-known connection between equidecompositions
and graph matchings.

Lemma 2.2. Under Assumption 1.4, let S ⊆ Γ be a finite set and M be a matching in
the bipartite graph (Ω,Ω,ES). Let A := π1(M) and B := π2(M). Then the following
statements hold.

(i) The sets A,B ⊆ Ω are equidecomposable using group elements from S only.
(ii) If M ⊆ Ω2 is Borel, then A and B are Borel equidecomposable using group ele-

ments from S only.

Proof. For every γ ∈ S, let Aγ consist of those x ∈ A such that (x, γ.x) ∈ M and γ is
the smallest element of S with this property (under a fixed ordering of S). Since M is a
matching, the sets Aγ partition A and their translates γ.Aγ partition B. Thus the sets A
and B are equidecomposable using elements from S only.

If, moreover, the matching M is Borel, then all pieces Aγ are Borel (which can argued
similarly as in the proof of Lemma 2.1).

Let us call the action Γ y Ω minimal if there is no closed subset X ⊆ Ω such that X
is proper (i.e., X 6= ∅ and X 6= Ω) and Γ.X = X .

Lemma 2.3. Under Assumption 1.4, suppose that the action Γ y Ω is paradoxical. Then
it is minimal. Also, if A ∈ C is equidecomposable to some set B, then B ∈ C. Also, any
two sets A,B ∈ C cover each other.

Proof. Suppose that a closed proper subset X ⊆ Ω satisfies Γ.X = X . Pick some x ∈ X
and y ∈ Ω \X . By the local compactness of Ω, choose open sets U 3 x and W 3 y with
compact closures where, additionally, we can assume that W ∩ X = ∅. Then Γ.W , as a
subset of the invariant set Ω \X , does not contain x ∈ U . Thus the sets U,W ∈ C are not
equidecomposable, contradicting the paradoxicality of the action.

Next, suppose that B ⊆ Ω is equidecomposable to A ∈ C. The set B has to cover A
and, by the transitivity of the covering relation, B also covers some non-empty open set.
On the other hand, B is covered by finitely many copies of A. Since the closure of A is
compact and the action of each element of Γ preserves this property by Definition 1.7(ii),
the closure of B can be covered by finitely many compact sets and so it is compact itself.
Thus B ∈ C as required.

Finally, let A,B ∈ C be arbitrary. By the definition of C, the sets A and B cover some
non-empty open sets U and W respectively. By shrinking U and W , we can additionally
assume that they have compact closures. By the paradoxicality of the action, A ∪ U is
equidecomposable to B ∪ W , from which it easily follows that A and B cover each
other.

Let Assumption 1.5 apply to the rest of this section. In particular, the action Γ y Ω
preserves the measure µ on (Ω,B). The following reformulation of the measure preser-
vation property will be useful to us.

Lemma 2.4. Under Assumptions 1.4 and 1.5, let Λ be a countable subgroup of Γ , let
C ⊆ Ω be Borel, and let ψ : C → Ω be a Borel injective map such that, for every x ∈ C,
we have ψ(x) ∈ Λ.{x}. Then ψ(C) is a Borel set and µ(ψ(C)) = µ(C).
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Proof. Of course, the first claim (that ψ(C) is Borel) follows from the Lusin-Novikov
Uniformisation Theorem; we also get it as a by-product of our proof of the second claim.

The graph E ′ := {(x, ψ(x)) : x ∈ C} of ψ is a Borel subset of EΛ. By Lemma 2.1, we
can find Borel arrows (Cβ, β), β ∈ Λ, that bijectively generateE ′. The sets Cβ partition C
and their images ψ(Cβ) = β.Cβ are Borel sets that partition ψ(C) by the injectivity of
the function ψ. Thus ψ(C) = tβ∈Λβ.Cβ is a Borel set of measure

∑
β∈Λ µ(β.Cβ) =∑

β∈Λ µ(Cβ) = µ(C), as required.

We say that some property holds almost everywhere (a.e. for short) if the set of x ∈ Ω
where it fails is a null set with respect to the measure µ. For example, two sets A,B ⊆ Ω
essentially cover each other if there is a finite S ⊆ Γ with S.A ⊇ B and S.B ⊇ A a.e.

Recall that a measurable set C ⊆ Ω is a domain of expansion if 0 < µ(C) < ∞ and
for every real η > 0 there is a finite set R ⊆ Γ such that for all measurable sets Y ⊆ C
we have

µ(R.Y ∩ C) > min

(
(1− η)µ(C),

µ(Y )

η

)
. (2.4)

Such a set R will be called η-expanding for C. Observe that it is enough to check (2.4)
just for Borel subsets of C. (Indeed, every σ-finite Borel measure on a Polish space is
regular, see e.g. [7, Proposition 8.1.12], so for every measurable Y there is a null set N
such that Y \N is Borel, in fact, an Fσ-set.) Also, C ′ ⊆ Ω with C ′ = C a.e. is a domain
of expansion if and only if C is.

Lemma 2.5. Under Assumptions 1.4 and 1.5, let A,B ⊆ Ω be two measurable sets that
essentially cover each other. Then A is a domain of expansion if and only if B is a domain
of expansion.

Proof. Let us assume, for example, that A is a domain of expansion. Let T ⊆ Γ be a
finite set such that A ⊆ T.B and B ⊆ T−1.A a.e. Let t := |T |. By the invariance of the
measure, we have that 0 < µ(A)/t 6 µ(B) 6 t µ(A) <∞.

Let ε > 0 be arbitrary. Let η := ε/t2 and let S be an η-expanding set for A.
We claim that T−1ST is an ε-expanding set for B. Indeed, let Y ⊆ B be a measurable

set. We have that Y ⊆ T−1.A a.e., so there exists γ ∈ T such that µ(γ.Y ∩ A) =
µ(Y ∩ γ−1.A) > µ(Y )/t. Since S is η-expanding for A, we have

µ(ST.Y ∩ A) > min

(
(1− η)µ(A),

µ(T.Y ∩ A)

η

)
> min

(
(1− η)µ(A),

µ(Y )

ηt

)
.

If µ(A \ ST.Y ) 6 η µ(A), then we have by the choice of T that

µ(B \ T−1ST.Y ) 6 t µ(A \ ST.Y ) 6 t η µ(A) =
ε µ(A)

t
6 ε µ(B).

Otherwise, we have µ(ST.Y ∩ A) > µ(Y )/(ηt). Using that A ⊆ T.B a.e., we deduce
that for some γ ∈ T we have µ(ST.Y ∩ γ.B) > µ(Y )/(ηt2), and so

µ(T−1ST.Y ∩B) > µ(ST.Y ∩ γ.B) > µ(Y )/(ηt2) = µ(Y )/ε.

Thus, T−1ST is ε-expanding for B, as desired.
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Remark 2.6. Recall that we defined the action Γ y Ω to be expanding if every C ∈
Bµ∩C is a domain of expansion. It follows from Lemmas 2.3 and 2.5 that, for paradoxical
actions, it is enough to check just one arbitrary member of Bµ ∩ C.

We call a bipartite Borel graph G = (A,B,E) a bipartite c-expander if 0 < µ(A) =
µ(B) < ∞ and, for every measurable (equivalently, Borel) subset Y of A or B, it holds
that

µ(N(Y )) >
1

2
µ(A) or µ(N(Y )) > (1 + c)µ(Y ). (2.5)

We callG a bipartite expander if it is a bipartite c-expander for some c > 0. For example,
if C ⊆ Ω is Borel with 0 < µ(C) < ∞ and S ⊆ Γ is an η-expanding set for C with
0 < η < 1/2, then the graph (C,C,ES ∩ C2) is a bipartite ((1− η)/η)-expander.

3 Proof of Theorem 1.6

3.1 Augmenting paths
First, we need to define some graph-theoretic concepts adopted to our setting. Let G =
(A,B,E) be a bipartite graph and let M ⊆ E be a matching in G.

An alternating path (starting atA) is a non-empty sequence of points P = (x0, ... , x`)
such that

(i) x0 ∈ A \ π1(M);
(ii) the odd-indexed vertices x1, x3, ... ∈ B are pairwise distinct;

(iii) for every i ∈ [`], we have that (xi−1, xi) ∈ E \M if i is odd and (xi, xi−1) ∈ M if
i is even.

Since M is a matching and x0 ∈ A is unmatched, Item (ii) implies that the even-
indexed vertices x0, x2, ... ∈ A are also pairwise distinct. This definition works also
when A ∩ B 6= ∅, since the parity of the position in P determines the part a vertex is
assigned to. If we are to work with the unordered graph G̃ as defined in (2.1), then the
corresponding definition is that

P̃ := ((x0,−1), (x1, 1), ... , (x`, (−1)`+1))

is a path in G̃ that starts with an unmatched vertex and whose edges alternate between
Ẽ \ M̃ and M̃ . The length of P is `, the number of edges.

An augmenting path (starting at A) is an alternating path P = (x0, ... , x`) of odd
length ` > 1 such that x` ∈ B \ π2(M). The augmentation of M along P is the matching
M ′ := M 4E(P ) which is obtained by taking the symmetric difference between M and

E(P ) := {(x0, x1), (x2, x1), (x2, x3), ... , (x`−1, x`)}.

In order words, we modify M by including (xi−1, xi) for all odd i ∈ [`] and removing
(xi, xi−1) for all even i ∈ [`]. Note that the augmented matching M ′ covers two new
vertices: π1(M ′) = π1(M) t {x0} and π2(M ′) = π2(M) t {x`}.

Suppose that E ⊆ ER for some fixed countable set R ⊆ Γ , where ER is defined
by (2.3). Then a Borel augmenting family is a tuple (U, β1, ... , β`), where U is a Borel
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subset of A and β1, ... , β` are elements of R (with repetitions allowed) so that (i) for
every x ∈ U the sequence

Px,β1, ... ,β` := (x, β1.x, β2β1.x, ... , β` ... β2β1.x) (3.1)

is an augmenting path for M ; (ii) for distinct x, y ∈ U the corresponding augmenting
paths P̃x,β1, ... ,β` and P̃y,β1, ... ,β` in G̃ are vertex-disjoint. Informally speaking, a Borel aug-
menting family is a Borel collection of vertex-disjoint augmenting paths in G̃. The length
of such a family is `, the number of edges in each path. The augmentation M ′ of M along
a Borel augmenting family (U, β1, ... , β`) is obtained from M by augmenting along the
paths in (3.1) for all x ∈ U . (Since the paths are vertex-disjoint in G̃, all these augmen-
tations can be done in parallel.) Note that M ′ is a matching, π1(M ′) = π1(M) t U and
π2(M

′) = π2(M
′) t (β` ... β1.U). Also, M ′ is Borel if M is.

By swapping the roles of A and B, we can define in the obvious way an alternating
path starting at B. Note that there is no need to define an augmenting path starting at B:
by reversing the order of vertices we can consider augmenting paths starting at A only.

3.2 Proof of the result of Lyons and Nazarov on measurable match-
ings

In this section we provide all details of the result of Lyons and Nazarov [27, Remark 2.6]
(stated as Theorem 3.3 here) which gives a sufficient condition for the existence of a Borel
a.e.-perfect matching. We need the following result first, which does not use measure and,
in fact, was proved in [13] for arbitrary (not necessarily bipartite) Borel graphs.

Lemma 3.1 (Elek and Lippner [13]). Under Assumption 1.4, letG = (A,B,E) be a Borel
locally finite bipartite graph with E ⊆ ER for some countable R ⊆ Γ . (In particular, A
and B are Borel subsets of Ω.) Then there are Borel matchings M0 = ∅, M1,M2, ... ⊆ E
such that

(i) for every i > 1, the matching Mi admits no augmenting path of length at most
2i− 1;

(ii) for every i > 0, there is a countable sequence of Borel matchings K0, K1, ... ⊆ E
such that (a) K0 = Mi; (b) for every j > 1, Kj is the augmentation of Kj−1
along some Borel augmenting family of length at most 2i+ 1; (c) every (x, y) ∈ E
eventually belongs to either all or none of the matchings Kj; (d) Mi+1 = ∪∞j=1∩∞t=j
Kt.

Proof. The first item is [13, Proposition 1.1]. The second item follows directly from the
proof of [13, Proposition 1.1]. In brief, the proof, when adopted to our setting, proceeds
as follows.

Suppose that i > 0 and we have already constructed matchings M0, ... ,Mi. By a
result of Kechris et al [18], there is a Borel vertex colouring φ : A → N such that
φ(x) 6= φ(y) for every two distinct vertices x, y ∈ A with (x,−1), (y,−1) ∈ Ã being
at distance at most 4i + 2 in G̃. Fix some sequence (xj)

∞
j=1 where each xj belongs to

X := ∪i+1
t=1R

2t−1×N so that each element of X appears as xj for infinitely many choices
of j.
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Define K0 := Mi. Suppose that j > 1 and we have already defined Kj−1. Let
xj = ((β1, ... , β2t−1), c) with t ∈ [i + 1]. Let U consist of those x ∈ A such that
Px := Px,β1, ... ,β2t−1 , as defined in (3.1), is an augmenting path forKj−1 and φ(x) = c. The
set U is Borel. Also, for distinct x, y ∈ U , the paths P̃x and P̃y are vertex disjoint for other-
wise (x,−1) and (y,−1) are at distance at most 4i+ 2 in G̃ and satisfy φ(x) = φ(y) = c,
contradicting the choice of the colouring φ. Thus (U, β1, . . . , β2t−1) is a Borel augment-
ing family for Kj−1. Define Kj to be the augmentation of Kj−1 along (U, β1, ... , β2t−1).
Increase j and repeat.

Each augmentation as above that flips any given edge (x, y) ∈ E strictly decreases the
set of currently unmatched vertices in G̃ at distance at most 2i from the edge. This set
is finite, e.g. by König’s Infinity Lemma. Thus (x, y) can be flipped only finitely many
times, that is, it eventually belongs to all or none of the matchings Kj . It follows that
Mi+1 := ∪∞j=1 ∩∞t=j Kt is a Borel matching that does not admit any augmenting path of
length at most 2i+1 as every potential path was considered for augmentation for infinitely
many values of j.

Remark 3.2. A result of Hopcroft and Karp [16] states that if a matching K admits no
augmenting path of length at most 2i− 1 and we flip an augmenting path of length 2i+ 1
(that is, shortest possible), then no new augmenting paths of length at most 2i+ 1 appear.
Thus, when we construct Mi+1 from Mi in the proof of Lemma 3.1, it is enough in fact to
take for X just some enumeration of R2i+1 ×N.

Theorem 3.3 (Lyons and Nazarov [27]). In addition to the assumptions of Lemma 3.1, let
Assumption 1.5 apply and let the graph G = (A,B,E) be a bipartite expander, that is,
µ(A) = µ(B) ∈ (0,∞) and (2.5) holds for some c > 0. Then G has a Borel a.e.-perfect
matching M ⊆ E.

Proof. Let M0,M1, ... be the sequence of Borel matchings returned by Lemma 3.1. Let
M be defined by

M := ∪∞j=0 ∩∞i=j Mi, (3.2)

that is, M consists of edges that are eventually included in every Mi. Clearly, M is a
Borel matching. Thus it remains to show that the set of vertices not matched by M has
measure 0. As we will see, this will be a consequence of Claims 3.3.1 and 3.3.6 via a
Borel-Cantelli-type argument.

For i ∈ N, let X i := A \ π1(Mi) and Y i := B \ π2(Mi) be the subsets of A and B of
vertices not matched by Mi. By Lemma 2.4, the sets π1(M) and π2(M) (and thus the sets
X i and Y i) have the same measure.

Note that the set π1(Mi4Mi+1) consists of those x ∈ A on which Mi and Mi+1 differ
as partial functions (in particular, it includes those x ∈ A for which exactly one of these
functions is defined).

Claim 3.3.1. For every i ∈ N, it holds that µ(π1(Mi4Mi+1)) 6 (i+ 1)µ(X i).

Proof of Claim. In brief, when we construct Mi+1 from Mi, each individual augmentation
that matches an extra point of A changes the current matching at at most i + 1 elements
of A so the claim follows from the invariance of the measure µ.
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Let us give a full proof. Given i, letK0 = Mi, K1, K2, ... ⊆ E be the Borel matchings
returned by the second part of Lemma 3.1.

Take j > 1 and let (Uj, γ1, ... , γ2`+1) with 0 6 ` 6 i be the Borel augmenting family
for Kj−1 that augments it into Kj . Since each augmentation increases the set of matched
vertices and thus π1(Kj−1) ⊇ π1(Mi), we have that Uj ⊆ A \ π1(Kj−1) is a subset of
A \ π1(Mi) = X i. For t ∈ {0, ... , `}, let ψt map x ∈ Uj to γ2t ... γ1.x. Then ψ0, ... , ψ` are
Borel injections whose images partition π1(Kj 4Kj−1). By Lemma 2.4, we have

µ(π1(Kj−14Kj)) =
∑̀
t=0

µ(ψt(Uj)) = (`+ 1)µ(Uj) 6 (i+ 1)µ(Uj).

Again, note that augmentations can only increase the set of matched vertices. Thus, for
every h > j, we have that Uh ⊆ A\π1(Kh−1) is disjoint from Uj ⊆ π1(Kj) ⊆ π1(Kh−1).
Also, Mi 4 Mi+1 ⊆ ∪∞j=1(Kj 4 Kj−i). Finally, since every Uj is a subset of X i, we
conclude that

µ(π1(Mi4Mi+1)) 6
∞∑
j=1

µ(π1(Kj−14Kj)) 6 (i+ 1)
∞∑
j=1

µ(Uj) 6 (i+ 1)µ(X i).

The claim is proved.
Fix i > 1. For integer j > 0, let X i

j consist of the end-points of alternating paths for
Mi (that start at A) whose length is at most j and has the same parity as j. Since i is fixed
(until (3.3)), we abbreviate Xj := X i

j . Since, for each x ∈ X i, the length-0 path (x) is
alternating, we have in particular that X0 = X i. As the graph is bipartite, it holds that
X0 ⊆ X2 ⊆ ... ⊆ A and X1 ⊆ X3 ⊆ ... ⊆ B. Define X ′0 := X0, X ′1 := X1 and, for
j > 2,X ′j := Xj \Xj−2. By definition, the setsX ′0, X

′
2, ... (resp.X ′1, X

′
3, ... ) are pairwise

disjoint.

Claim 3.3.2. For every j ∈ [i], the matchingMi gives a bijection betweenX ′2j andX ′2j−1.

Proof of Claim. Let x be any element of X ′2j ⊆ A. By definition, there is an alternating
path (x0, ... , x2j) with x0 ∈ X0 and x2j = x. This path has even length, so (x, y) ∈ Mi,
where y := x2j−1. The truncated alternating path (x0, ... , x2j−1) shows that y ∈ X2j−1.
Suppose, on the contrary to the claim, that y 6∈ X ′2j−1. Then y ∈ X2j−3. Let this be
witnessed by some alternating path Q of length at most 2j − 3. The odd-length path Q
ends with an edge in E \Mi. Either Q already contains x or we can extend Q by adding
x, in each case obtaining a contradiction to x 6∈ X2j−2.

Conversely, take any y in X ′2j−1 ⊆ B. Fix an alternating path P = (x0, ... , x2j−1)
with x0 ∈ X0 and x2j−1 = y. The last edge of this path of odd length is in E \Mi and,
since Mi admits no augmenting path of length 2j − 1 6 2i − 1, the vertex y has to be
matched. Let (x, y) ∈ Mi. The vertex x ∈ π1(Mi) cannot belong to X0 = A \ π1(Mi).
Also, x cannot belong to X ′2t for some t ∈ [j − 1]: otherwise an even-length alternating
path Q witnessing this has to end with the pair (x, y) ∈ Mi (as y is the unique Mi-match
of x) and a truncation of Q shows that y ∈ X2t−1 ⊆ X2j−3, a contradiction. In particular,
x cannot occur in P as an even-indexed vertex. Thus we can add x to P , obtaining an
alternating path which shows that x ∈ X2j . We have already argued that x 6∈ X2j−2. Thus
we conclude that x ∈ X ′2j , as desired.
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Recall that Xj is a subset of A (resp. B) if j is even (resp. odd).

Claim 3.3.3. For every j ∈ [i], we have X2j+1 = N(X2j).

Proof of Claim. The inclusion X2j+1 ⊆ N(X2j) is clear. For the other direction, take
arbitrary x ∈ X2j and y ∈ N({x}) ⊆ B. Pick an alternating path P of length at most
2j starting at X0 and ending in x. Suppose that y does not belong to P , as otherwise a
truncation of P shows that y is in X2j−1 ⊆ X2j+1, giving the required. In particular, we
have that (x, y) 6∈ Mi as otherwise y precedes x on P . Thus we can extend P by adding
y. This shows that y ∈ X2j+1, as desired.

Claims 3.3.2 and 3.3.3 show by induction on j ∈ [i] that the set X ′j is Borel. (In fact,
this is true for every j since X ′j is defined by a local rule; however the stated range of j
will suffice for our purposes.)

Claim 3.3.4. For every j ∈ [i] we have that µ(X2j) > µ(X2j−1) while µ(X2j−1) is strictly
larger than 1

2
µ(B) or at least (1 + c)µ(X2j−2).

Proof of Claim. Claim 3.3.2 implies by induction on j ∈ [i] that the matching Mi gives a
bijection between X2j \ X0 = X ′2 t ... t X ′2j and X2j−1 = X ′1 t ... t X ′2j−1. Thus we
have by Lemma 2.4 that µ(X2j \X0) = µ(X2j−1), giving the first inequality.

The stated lower bound on µ(X2j−1) is a direct consequence of Claim 3.3.3 and the
bipartite expansion property of G assumed by the theorem.

For j ∈ N, define Yj to consist of the end-points of alternating paths which start in
Y0 := Y i whose length is at most j and has the same parity as j. (This becomes the
same definition as that of Xj when we swap the roles of the sets A and B.) By symmetry,
Claim 3.3.4 also holds when we swap A and B, and replace each Xt by Yt.

Claim 3.3.5. The sets Xi−1 and Yi are disjoint.

Proof of Claim. Assuming the contrary, pick alternating paths P = (x0, ... , x`) and Q =
(y0, ... , yk) starting at A and B respectively (thus x0 ∈ X0 and y0 ∈ Y0) such that ` + k
is odd, x` = yk, ` 6 i − 1, k 6 i, and the value of ` + k is smallest possible. Note that
k > 1 as otherwise the path P of length ` 6 2i − 1 is Mi-augmenting, contradicting the
choice of Mi. Similarly, ` > 1.

The minimality of `+k implies that the paths P̃ and Q̃ in G̃ intersect only in their end-
points. Also, if ` is odd (resp. even), then exactly one of the edges (x`−1, x`), (yk−1, yk) ∈
E (resp. (x`, x`−1), (yk, yk−1) ∈ E) belongs toMi; namely (yk−1, yk) ∈Mi (resp. (x`, x`−1) ∈
Mi). Therefore the concatenation of P with the reversal of Q at the common end-point,
that is, (x0, ... , x`, yk−1, ... , y0), is an augmenting path of length at most 2i − 1, contra-
dicting the choice of Mi.

Note that µ(X i) = µ(Y i), since µ(A) = µ(B) <∞ by our assumption and µ(π1(Mi)) =
µ(π2(Mi)) by Lemma 2.4.

Claim 3.3.6. It holds that µ(X i) = µ(Y i) 6 (1 + c)
−i+1

2 µ(A).
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Proof of Claim. Suppose first that i is odd. By Claim 3.3.5, the sets Xi−1 and Yi are
disjoint. As both are subsets ofA, at least one of these two sets, supposeXi−1, has measure
at most µ(A)/2. By Claim 3.3.4, the measures of the setsX0 ⊆ X2 ⊆ ... ⊆ Xi−1 increase
by factor at least 1 + c each time. Thus, by X0 = X i, we have

µ(A) > µ(Xi−1) > (1 + c)
i−1
2 µ(X0) = (1 + c)

i−1
2 µ(X i),

giving the required. The obvious modifications of this proof (swapping the roles of A and
B if needed) also apply to the remaining cases (when µ(Yi) 6 µ(A)/2 or when i is even),
giving the stated bound.

Now we are ready to finish the proof of the theorem (essentially by applying the Borel-
Cantelli Lemma). Indeed, π1(M) contains every vertex of A which matched by Mi and
on which all matchings Mj with j > i agree. Thus, for every i ∈ N, we have

µ(A \ π1(M)) 6 µ(X i) +
∞∑
j=i

µ(π1(Mj+14Mj)). (3.3)

The last series is summable by Claims 3.3.1 and 3.3.6. Furthermore, Claim 3.3.6 also
gives that µ(X i) tends to 0. Since we can pick an arbitrarily large i, we have that µ(A \
π1(M)) = 0, which finishes the proof of Theorem 3.3.

3.3 Finishing the proof of Theorem 1.6
Proof of Theorem 1.6(i). The only non-trivial part is to show the converse direction, namely
that if A is a domain of expansion (in particular, 0 < µ(A) < ∞), A and B essentially
cover each other, and µ(B) = µ(A), then A is essentially Borel equidecomposable to B.
By removing null sets, we can assume that A and B are Borel.

Choose a finite symmetric set T ⊆ Γ such that T.A ⊇ B and T.B ⊇ A a.e. By Lemma
2.5, B is also a domain of expansion. Let t := |T |. Fix η > 0 with 2tη < 1. Take a finite
subset R ⊆ Γ which is η-expanding for both A and B.

Let us we verify that the Borel graph G := (A,B,ETR∪(TR)−1 ∩ (A × B)) satisfies
the bipartite expansion condition (2.5) with c := 1. Let Y be a measurable subset of, say,
A. Since R is η-expanding for A, at least one of the following two alternatives hold. If
µ(R.Y ∩ A) > µ(Y )/η then, by T.B ⊇ A ⊇ R.Y ∩ A a.e., there is γ ∈ T with the
translate γ.B covering at least 1/t-th measure of R.Y ∩ A; thus

µ(N(Y )) > µ(TR.Y ∩B) > µ(γ−1.(R.Y ) ∩B)

= µ(R.Y ∩ γ.B) >
1

tη
µ(Y ) > 2µ(Y ).

If µ(A \R.Y ) 6 η µ(A) then, by T.A ⊇ B and µ(A) = µ(B) ∈ (0,∞), we have

µ(B \N(Y )) 6 µ(B \ TR.Y ) 6 µ(T.(A \R.Y ))

6 t µ(A \R.Y ) 6 t η µ(A) <
1

2
µ(B).
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Thus, G is indeed a bipartite 1-expander.
Now, by Theorem 3.3, G contains a Borel matching M such that the unmatched sets

A\π1(M) and B \π2(M) have measure 0. By Lemma 2.2(ii), the matched sets π1(M) ⊆
A and π2(M) ⊆ B are Borel equidecomposable, as desired.

Let us state one step needed in the proof of Theorem 1.6(ii) as Part (i) of the following
auxiliary proposition.

Proposition 3.4. Let Γ y Ω be as in Assumptions 1.4 and 1.5. Let measurable sets
A,B ⊆ Ω be essentially Borel equidecomposable.

(i) If A and B are set-theoretically equidecomposable then A and B are measurably
equidecomposable.

(ii) If A and B are Baire equidecomposable then A and B are Baire-Lebesgue equide-
composable.

Proof. We will prove both items at the same time. Pick null sets NA and NB such that
A \NA and B \NB are Borel equidecomposable. Let U1, ... , Um ∈ B and γ1, ... , γm ∈ Γ
be such that A \NA = U1 t ... t Um and B \NB = γ1.U1 t ... t γm.Um. Similarly let
V1, ... , Vn ∈ 2Ω and δ1, ... , δn ∈ Γ be such that A = V1 t ... t Vn and B = δ1.V1 t ... t
δn.Vn.

Let N ′ be a Borel null set which contains NA ∪ NB. Let Λ be the subgroup of Γ
generated by {γ1, ... , γm, δ1, ... , δn} and let N := Λ.N ′. Since Λ is countable and N ′ is a
Borel null set, we have that N also is a Borel null set. Furthermore, by the Λ-invariance
of the set N , we have that δi.(Vi ∩ N) = δi.Vi ∩ δi.N = δi.Vi ∩ N for i ∈ [n] and
γi.(Ui \N) = γi.Ui \N for i ∈ [m].

It follows that A and B are equidecomposable using the partition

A = (U1 \N) t ... t (Um \N) t (V1 ∩N) t ... t (Vn ∩N)

and the group elements γ1, ... , γm, δ1, ... , δn. Informally speaking, we use the pieces Vi
on N and the pieces Ui on the complement of N .

It is clear that the sets Ui \N are Borel (in particular they are measurable and have the
property of Baire). Furthermore, the sets Vi ∩ N are contained in the null set N , so they
are measurable. This finishes the proof of the first part.

Additionally, if the sets Vi have the property of Baire then the sets Vi ∩ N have the
property of Baire as well since N is Borel. This observation finishes the proof of the
second part.

Proof of Theorem 1.6(ii). Let us show the converse direction (as the forward direction is
trivial).

Since A and B are equidecomposable, they also cover each other. By the converse
direction in Theorem 1.6(i) that we have already proved, these sets are essentially Borel
equidecomposable. Thus Proposition 3.4(i) gives the required measurable equidecompo-
sition of A and B.
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4 Proof of Proposition 1.8
There was some freedom as to how to define when an action is paradoxical. Our Defini-
tion 1.7(iii) is of the same form as the known paradoxes are usually stated. We had to add
some further properties, namely, the local compactness (to ensure that the family of sets
covered by the above statement is rich enough) and the preservation of compact closures
(a rather weak restriction which holds, for example, if the whole space Ω is compact or
the group acts by homeomorphisms). Note that the latter property implies that the family
C is invariant. (Recall that C consists of those subsets of Ω that cover a non-empty open
set and have compact closure.)

The proof of Proposition 1.8 will occupy this section. We will need the Banach-
Schröder-Bernstein Lemma (see e.g. [49, Theorem 3.6]), stated in terms of equidecom-
positions.

Lemma 4.1 (Banach-Schröder-Bernstein). If A is equidecomposable to some B′ ⊆ B
and B is equidecomposable to some A′ ⊆ A, then A and B are equidecomposable.

Also, it will be convenient to use the semigroup of equidecomposability types S that
was introduced by Tarski [45]. For more details, see [49, Chapter 10] whose presentation
we follow. Informally speaking, we consider all multi-subsets of Ω of bounded multiplic-
ity, identified under the appropriately defined equidecomposability relation. Formally, let
P∗(Ω) be the family of all subsets of Ω∗ := Ω ×N whose projection on N is finite. Let
Γ ∗ be the direct product of Γ and the group SN of all permutations ofN. Define its action
a∗ on Ω∗ by a∗((γ, σ), (x, n)) := (a(γ, x), σ(n)) (that is, Γ ∗ acts component-wise). For
A,B ∈ P∗(Ω), we write A 4 B if A is set-theoretically equidecomposable under the
action a∗ to a subset of B. If A 4 B and B 4 A, then we write A ∼ B. This is an
equivalence relation. The equivalence class of A ∈ P∗(Ω) is denoted by [A]. Let

S := { [A] : A ∈ P∗(Ω) }, (4.1)

and define the sum of [A], [B] ∈ S by taking disjoint representatives A′ ∈ [A] and B′ ∈
[B] and letting [A] + [B] := [A′ ∪ B′]. It is easy to see that this is well-defined and
satisfies various natural properties, like commutativity, associativity, etc. Also, 4 gives
a partial order on S. We say that A ∈ P∗(Ω) can be doubled if [A] ∼ 2[A], where
n[A] := [A] + · · ·+ [A] denotes the sum of n copies of [A] ∈ S . Under the identification
of x ∈ Ω with x∗ := (x, 0) ∈ Ω∗, these definitions also apply to subsets of Ω.

Lemma 4.2. IfA,B ⊆ Ω cover each other andB can be doubled, thenA can be doubled.

Proof. By the covering assumption, [A] 4 m[B] and [B] 4 n[A] for some m,n ∈ N.
From [B] = 2[B], it follows that [B] = r[B] for every integer r > 2. We conclude that

n(2[A]) = 2n[A] 4 2n(m[B]) = 2mn[B] = [B] 4 n[A]. (4.2)

A version of the Cancellation Law (see [49, Theorem 10.20]) states that for any Y, Z ∈
P∗(Ω) if n[Y ] 4 n[Z] then [Y ] 4 [Z]. In brief, its proof proceeds by considering the
bipartite graph G whose parts are the sets Y, Z ⊆ Ω×N and whose edge set corresponds
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to a fixed witness of n[Y ] 4 n[Z]. Thus every vertex in Y (resp. Z) has G-degree exactly
n (resp. at most n). A simple double-counting of edges shows that every finite subset X
of Y has at least |X| neighbours in Z. Now, Rado’s theorem [38] (that uses the Axiom
of Choice) gives that G has a matching covering all elements of Y and thus Y 4 Z, as
claimed.

Thus, by (4.2), we have that 2[A] 4 [A] which, by the Banach-Schröder-Bernstein
Lemma (Lemma 4.1), gives that A can be doubled.

Proof of Proposition 1.8(i). Assume that |Ω| > 1 as otherwise there is nothing to do.
Recall that A ∈ C, that is, A has compact closure and covers a non-empty open set.

One direction (namely that if B is equidecomposable to A, then B ∈ C) was proved in
Lemma 2.3.

Next, let us show that every A ∈ C can be doubled. First, suppose that A is an open
set. The set A has to contain at least two elements. (Otherwise, pick distinct elements
x, y ∈ Ω and an open set U 3 x, y with compact closure, and note that the sets A and U
contradict the paradoxicality of the action.) Since |A| > 2, we can find disjoint non-empty
open subsets U,W ⊆ A. Since the action is paradoxical, A is equidecomposable to each
of U and W . Thus two copies of A are equidecomposable to U tW ⊆ A. By Lemma 4.1,
A can be doubled, as desired. For general A ∈ C, pick any open U ∈ C, which exists by
the local compactness of Ω. As we have just argued, the open set U can be doubled. By
Lemma 2.3, A and U cover each other. Thus, by Lemma 4.2, A can be doubled.

Finally, it remains to show that arbitraryA,B ∈ C are equidecomposable. By Lemma 2.3
we know that A and B cover each other. As we proved in the previous paragraph, each
element U ∈ C can be doubled. By Lemma 2.3, each of the two obtained copies of U
necessarily belongs to C. Thus by induction, for any integer n > 2, there is a partition
A = A1 t ... t An such that each Ai is equidecomposable to A (and belongs to C). By
choosing n such that n copies of A cover B, one can conclude that B is equidecompos-
able to a subset of A. The same also holds when we swap the roles of A and B. Now the
desired conclusion follows from Lemma 4.1.

In order to establish the second part of Proposition 1.8, we rely on the following
weaker version of a powerful result of Marks and Unger [30, Theorem 1.3].

Theorem 4.3 (Marks and Unger [30]). Suppose that G = (V1, V2, E) is a locally finite
bipartite Borel graph on a Polish space such that

|NG(X)| > 2|X|, for every finite set X with X ⊆ V1 or X ⊆ V2. (4.3)

Then there is a Borel matching M in G such that the set of unmatched vertices in each
part is meager.

Proof of Proposition 1.8(ii). Again, the forward implication is trivial so we prove the con-
verse direction only. Let A,B ∈ C ∩ T be arbitrary. By Part (i) of the proposition, that
we have already proved, these sets are equidecomposable. Let S ⊆ Γ be a finite set that
suffices for this equidecomposition. By enlarging S, assume that S−1 = S 3 e. Also, as
we have showed in the proof of Part (i), every set in C can be set-theoretically doubled. By
repeating, we can find a finite symmetric set T 3 e such that the relations 2|S| [A] 4 [A]
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and 2|S| [B] 4 [B] can be shown by using elements from T only. Let R := ST ∪ (ST )−1

and consider the bipartite graph G := (A,B,ER ∩ (A×B)).
This graph satisfies (4.3). Indeed, take some finite set X , say X ⊆ A. By the choice

of T , the set Y := T.X ∩ A contains 2 |S| disjoint copies of X and thus |Y | > 2 |S| |X|.
Since Y ⊆ A ⊆ S.B, there is γ ∈ S with |Y ∩ γ.B| > |Y |/|S| > 2 |X|. Thus N(X) ⊇
γ−1.(Y ∩ γ.B) has at least 2 |X| elements, as claimed.

We cannot apply Theorem 4.3 yet, as the sets A and B need not be Borel. So we
proceed as follows. Find Borel sets A′ ⊆ A and B′ ⊆ B such that A \ A′ and B \ B′
are meager and choose a Borel meager set N containing (A \ A′) ∪ (B \ B′). (In fact,
we can require N to be an Fσ-set, see e.g. [17, Proposition 8.23].) Let Λ ⊆ Γ be the
subgroup generated by R. Of course, Λ is countable. Since the action preserves meager
and Borel sets, the set Λ.N is meager and Borel. When we remove the set Λ.N from the
graph G, we remove whole components. Thus the new graph G′ still satisfies (4.3). Also,
G′ is a Borel graph since its parts, A \ Λ.N = A′ \ Λ.N and B \ Λ.N = B′ \ Λ.N ,
are Borel. Thus Theorem 4.3 applies to G′ and gives a Borel matching M such that all
unmatched vertices are inside some Borel meager set N ′. By enlarging the set N ′, we can
also assume that it contains N as a subset. The Borel meager set Λ.N ′ is again a union of
some components ofG. Thus the set-theoretic equidecomposition betweenA andB gives
an equidecomposition between the meager sets A ∩ Λ.N ′ and B ∩ Λ.N ′ while M gives a
Borel equidecomposition between A \Λ.N ′ and B \Λ.N ′. Putting these together, we get
the required Baire equidecomposition between A and B (using the finite set R ⊆ Γ ).

Proof of Corollary 1.10. All forward implications in Corollary 1.10 are trivial so let us
show the converse direction. In all cases, the sets A and B are in C (resp. essentially are
in C) so by Lemma 2.3 they cover (resp. essentially cover) each other.

Now, Item (i) of the corollary is a direct consequence of Theorem 1.6(i). In order to
derive Item (ii) from Item (i), it suffices by Proposition 3.4(i) to show that A and B are
set-theoretically equidecomposable, and this follows from Proposition 1.8(i).

Finally, let us derive Item (iii) from Item (ii). By the latter, we know that A and
B are measurably equidecomposable. Proposition 1.8(ii) gives that these sets are also
Baire equidecomposable. These two equidecompositions can be combined into a Baire-
Lebesgue equidecomposition by Proposition 3.4(ii).

5 Relation to (local) spectral gap

Recall that the local spectral gap property was defined in Section 1.5. Note that we do not
assume in the definition that Γ is countable. The authors of [5] consider only countable
Γ , in which case our definition coincides with the one in [5]. However, the definition of
local spectral gap, as stated in Section 1.5, makes sense also when Γ is not countable.

For a finite multiset Q ⊆ Γ , let TQ : L2(Ω, µ) → L2(Ω, µ) be the averaging operator
defined by

(TQf)(x) :=
1

|Q|
∑
γ∈Q

f(γ−1.x), f ∈ L2(Ω, µ), x ∈ Ω. (5.1)
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We say that the operator TQ has spectral gap if there exists a constant c > 0 such that for
any f ∈ L2(Ω, µ) with

∫
Ω
f(x) dµ(x) = 0 we have ‖TQf‖2 6 (1 − c) ‖f‖2. Also, we

say that the action a : Γ y Ω has spectral gap if there is a finite multiset (equivalently,
a finite set) Q such that the operator TQ has spectral gap. If µ(Ω) < ∞, then the latter
property is easily seen to be equivalent to the local spectral gap of the action awith respect
to the whole space Ω.

Boutonnet et al [5, Theorem A] proved the following sufficient condition for local
spectral gap.

Theorem 5.1 (Boutonnet et al [5]). Let Γ be a connected Lie group with a fixed left Haar
measure mΓ . Suppose that the Lie algebra g of Γ is simple. Let Ad : Γ → GL(g) denote
its adjoint representation. Let Λ be a dense countable subgroup of Γ and let B be a basis
of g such that for every g ∈ Λ the matrix of Ad(g) in the basis B has all entries algebraic.
Then the left translation action Λy (Γ,mΓ ) has local spectral gap with respect to every
measurable set X with compact closure and non-empty interior.

The above notions and results are of interest to us because of the following equiva-
lence, mentioned in the Introduction.

Lemma 5.2. Let Assumptions 1.4 and 1.5 apply and let X ⊆ Ω be a measurable set of
finite positive measure. Then the following are equivalent.

(A) The set X is a domain of expansion with respect to the action Γ y Ω.
(B) The action Γ y Ω has local spectral gap with respect to X .

Proof. Boutonnet et al [5, Theorem 7.6] proved that, under the additional assumptions
that Γ is countable and the action Γ y Ω is ergodic, Property (B) (i.e., the local spectral
gap with respect to X) is equivalent to the following:

(C) If a sequence An, n = 0, 1, ... , of measurable subsets of Ω satisfies µ(An∩X) > 0
for all n, and

lim
n→∞

µ
(
(γ.An4 An

)
∩X)

µ(An ∩X)
= 0 (5.2)

for all γ ∈ Γ , then limn→∞ µ(An ∩X) = µ(X).
In fact, the part of the proof in [5] that shows the equivalence between (B) and (C)

does not use the ergodicity of the action Γ y Ω. Clearly, (A) looks closer in spirit to (C)
than to (B) and, indeed, it is fairly easy to derive the equivalence of (A) and (C). Since we
need only the implication (B) =⇒ (A) for our equidecomposition results, we present a
direct proof of this for reader’s convenience. In the other direction, we show only that (A)
implies (C), leaving to the reader to check that the proof of the implication (C) =⇒ (B)
from [5, Theorem 7.6] does not use ergodicity.

In order to prove (B) =⇒ (A), we need some preliminaries. Let us say that the action
Γ y Ω has a highly local spectral gap with respect to a measurable set B ⊆ Ω with
0 < µ(B) <∞ if there are a finite set S ⊆ Γ and a real κ such that

‖f‖2,B 6 κ
∑
g∈S

‖g.f − f‖2,B ∩ g.B (5.3)

for any f ∈ L2(Ω, µ) with
∫
B
f dµ = 0 (equivalently, for every f ∈ L2(B, µ) with∫

B
f dµ = 0).
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One motivation behind this definition (besides that it is useful for our proof) is that
each side of (5.3) depends only on the restriction of f to B (but not on any values of f
outside B as is the case in (1.1)).

Clearly, the highly local spectral gap for B implies the local spectral gap for B (with
the same choice of S and κ). Let us show that the converse implication also holds.

Claim 5.2.1. If the action has local spectral gap with respect to a measurable set B ⊆ Ω
with 0 < µ(B) <∞, then it has the highly local spectral gap property with respect to B.

Proof of Claim. Let a finite set S and a real κ satisfy the local spectral gap property with
respect to B ⊆ Ω. By enlarging S, we can assume that e ∈ S. Define κ′ := κ |S| and

S ′ := {gh−1 : g, h ∈ S},

where we view S ′ as a set, not as a multiset. (Alternatively, if one views S ′ as a multiset
so e.g. |S ′| = |S|2, then κ′ = κ suffices in the argument below.)

Let us show that S ′ and κ′ satisfy the highly local spectral gap condition. Take any
f ∈ L2(Ω, µ) with

∫
B
f dµ = 0.

We define f ′ ∈ L2(Ω, µ) as follows. Fix some total order on S with the identity e
being the smallest element. For x ∈ Ω, if there is γ ∈ S such that γ.x ∈ B then let γx be
the smallest such γ and define f ′(x) := f(γx.x); otherwise (i.e., if S.{x} ∩ B = ∅), we
let f ′(x) := 0 (while γx is undefined). Since e comes before any other element of S, we
have that f ′(x) = f(x) for all x ∈ B. For g, h ∈ S, define

Bg,h := {x ∈ B : γg−1.x = h}.

It follows from the definition that, for every g ∈ S, we have B = th∈SBg,h, that is, the
sets Bg,h, h ∈ S, are disjoint and partition B. Also, trivially, Bg,h ⊆ B ∩ gh−1.B.

As f and f ′ coincide on B, we have
∫
B
f ′ dµ =

∫
B
f dµ = 0. Also, the square of

the L2(Ω, µ)-norm of f ′ is finite, as it is at most |S| times the square of ‖f‖2,B. By the
properties stated above and the inequality (

∑
h∈S xh)

1/2 6
∑

h∈S x
1/2
h valid for any non-

negative reals xh, we have that

‖f‖2,B = ‖f ′‖2,B 6 κ
∑
g∈S

‖g.f ′ − f ′‖2,B

= κ
∑
g∈S

(∑
h∈S

∫
Bg,h

(f(hg−1.x)− f(x))2 dµ(x)

)1/2

6 κ
∑
g∈S

(∑
h∈S

∫
B ∩ gh−1.B

(f(hg−1.x)− f(x))2 dµ(x)

)1/2

6 κ
∑
g∈S

∑
h∈S

(∫
B ∩ gh−1.B

(f(hg−1.x)− f(x))2 dµ(x)

)1/2

6 κ |S|
∑
γ∈S′

(∫
B ∩ γ.B

(f(γ−1.x)− f(x))2 dµ(x)

)1/2

= κ′
∑
γ∈S′
‖γ.f − f‖2,B ∩ γ.B,
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that is, the real κ′ and the set S ′ establish the highly local spectral gap for B. This proves
Claim 5.2.1.

Now, we can give a direct proof that (B) implies (A). Since the properties in question
are invariant under scaling the measure by a constant factor, assume that µ(X) = 1. By
Claim 5.2.1, we can find a real κ and a symmetric finite set S ⊆ Γ with S 3 e that
satisfy the highly local spectral gap condition for X . Now, given η > 0, let ` ∈ N satisfy
(1 + η/(2κ2|S|2))` > 1/η and consider the set

Q := S` = {γ1 ... γ` : γ1, ... , γ` ∈ S}

of all possible `-wise products of elements of S. We will show that this set Q is η-
expanding for X . We need an auxiliary claim first.

Claim 5.2.2. For every measurable Y ⊆ X , we have

µ(S.Y ∩ (X \ Y )) >
1− µ(Y )

2κ2|S|2
µ(Y ). (5.4)

Proof of Claim. Let y := µ(Y ). Define f : Ω → R by

f(x) := (1− y)1Y − y1X\Y =


1− y, x ∈ Y,
−y, x ∈ X \ Y,
0, x ∈ Ω \X.

(5.5)

Then ‖f‖22,Y = (1− y)2y + y2(1− y) = y(1− y) and
∫
X
f(x) dµ(x) = 0.

Let γ ∈ S. For x ∈ X ∩ γ.X , we have that γ−1.x ∈ X and thus |(γ.f)(x)− f(x)| =
|f(γ−1.x) − f(x)| assumes value 0 or 1; in fact, it is 1 if and only if x ∈ Y and γ−1.x ∈
X \ Y or vice versa, that is, precisely if

x ∈ (Y ∩ γ.(X \ Y )) ∪ (γ.Y ∩ (X \ Y )).

Since S = S−1, the latter set is a subset of γ.Z ∪Z, where Z := S.Y ∩ (X \Y ). Since the
action is measure-preserving, we conclude that ‖γ.f−f‖22,X ∩ γ.X 6 µ(γ.Z∪Z) 6 2µ(Z).

The above (in)equalities and the choice of S, κ give that

(y(1− y))1/2 = ‖f‖2,X 6 κ
∑
γ∈S

‖γ.f − f‖2,X ∩ γ.X 6 κ|S|
(
2µ(Z)

)1/2
,

which implies the claim.

Now we are ready to show that Q is η-expanding for X . Take an arbitrary measurable
subset Y ⊆ X . Let Y0 := Y and, inductively for i ∈ [`], let Yi := S.Yi−1 ∩ X . Clearly,
Y` ⊆ Q.Y ∩X . If for some i 6 `, we have µ(Yi) > 1−η, then (since e ∈ S) we have that
each of Yi ⊆ ... ⊆ Y` ⊆ Q.Y ∩X has measure at least 1− η, as required. Otherwise, we
obtain from Claim 5.2.2 by induction on i = 0, ... , ` that µ(Yi) > (1+η/(2κ2|S|2))iµ(Y ).
Taking i = `, we get the the required lower bound µ(Q.Y ∩X) > µ(Y`) > µ(Y )/η. Since
η > 0 was arbitrary, we conclude that X is a domain of expansion. We have shown that
(B) implies (A).



26 Łukasz Grabowski, András Máthé, Oleg Pikhurko

Now, let us show that (A) implies (B). Let X be a domain of expansion. For each
positive integer n, fix some finite set Sn ⊆ Γ which is (1/n)-expanding for X . Let Λ be
the subgroup of Γ generated by ∪∞n=1Sn.

First, let us show that the countable group Λ satisfies (C). Suppose on the contrary
that some sequence (An)n∈N violates this property. Let A′n := An ∩ X . By passing to a
subsequence, we can assume that there is an integer m > 2 such that µ(A′n) < µ(X)(1−
2/m) for every n. Let S := Sm, that is, S is a (1/m)-expanding set for X . Thus, for every
n ∈ N,

µ(S.A′n ∩X) > min

((
1− 1

m

)
µ(X), mµ(A′n)

)
.

By passing to a subsequence again, we can assume that
(i) for all n we have µ(S.A′n ∩X) >

(
1− 1

m

)
µ(X), or

(ii) for all n we have µ(S.A′n ∩X) > mµ(A′n).
If (i) holds then clearly µ((S.A′n ∩ X) \ A′n) >

(
1− 1

m

)
µ(X) − (1 − 2

m
)µ(X) =

µ(X)/m and thus, for some γ ∈ S and infinitely many n, we have µ((γ.A′n∩X)\A′n) >
µ(X)/(m|S|), and so also

µ
(
(γ.An \ An) ∩X

)
= µ((γ.An ∩X) \ (An ∩X)) >

µ(X)

m|S|

for infinitely many n. This is in contradiction with the assumption (5.2) of Property (C).
Suppose now that (ii) holds. Since m > 2, we have µ((S.A′n ∩X) \A′n) > µ(A′n) for

all n. Therefore for some γ ∈ S and infinitely many n we have µ((γ.A′n ∩ X) \ A′n) >
µ(A′n)/|S|, and hence

lim sup
n→∞

µ((γ.An4 An) ∩X)

µ(An ∩X)
> lim sup

n→∞

µ((γ.An ∩X) \ (An ∩X))

µ(A′n)
>

1

|S|
,

which again is a contradiction to (5.2).
Thus (C) holds for X with respect to the action Λ y Ω. By [5, Theorem 7.6], the

action of the countable group Λ on Ω has local spectral gap with respect to X , that is, (B)
holds for the group Λ. Of course, when we enlarge the group to Γ , then (B) still holds.

The following proposition will be needed later, for estimating the number of pieces in
some equidecompositions given by our proofs.

Proposition 5.3. In addition to Assumptions 1.4 and 1.5, assume that µ is a finite measure.
Let S ⊆ Γ be a finite symmetric multiset, and let c ∈ (0, 1) be such that for every f ∈
L2(Ω, µ) with

∫
f(x) dµ(x) = 0 we have ‖TSf‖2 6 (1− c)‖f‖2. Define c′ := c(2− c).

Then the following statements hold.
(i) For every measurable Y ⊆ Ω it holds that

µ(S.Y ) >
µ(Y )µ(Ω)

(1− c)2µ(Ω) + 2cµ(Y )− c2µ(Y )
> µ(Y )

(
1 + c′

µ(Ω \ Y )

µ(Ω)

)
.

(ii) Let η > 0 and ` ∈ N be such that (1 + c′η)` > 1/η. Then S` ⊆ Γ is an η-expanding
set for Ω.
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Proof. By scaling the measure, we can assume that µ(Ω) = 1. Take any measurable
Y ⊆ Ω with y := µ(Y ) > 0. Analogously to (5.5), define f := (1− y)1Y − y1Ω\Y . We
have ‖f‖22 = y(1− y) and

∫
Ω
f(x) dµ(x) = 0.

Let Z := S.Y and z := µ(Z). Clearly, for every x ∈ Ω \ Z we have that (TSf)(x) =
−y. By the invariance of the measure, it also holds that

∫
Ω
TSf dµ = |S|−1

∑
γ∈S
∫
Ω
γ.f dµ =

0. Under these constraints on TSf , its L2-norm is minimised when the function is constant
on Z, that is, assumes the value (1− z)y/z there. Thus

‖TSf‖22 >
(

(1− z)y

z

)2

z + y2(1− z) =
y2(1− z)

z
.

By the spectral gap property, the left-hand side is at most (1−c)2‖f‖22 = (1−c)2y(1−y).
Solving the obtained linear inequality in z, we obtain the first inequality of Part (i). The
second inequality is obtained by observing that by c, y ∈ [0, 1],

1

(1− c)2 + 2cy − c2y
− 1 =

c(2− c)
(1− c)2 + 2cy − c2y

(1− y) > c′(1− y).

We prove Part (ii) similarly as we did after Claim 5.2.2. Define Y0 := Y . Inductively
for i ∈ N, let Yi+1 := S.Yi. If for some i 6 `, we have µ(Yi) > 1 − η, then µ(Y`) >
µ(Y`−1) > . . . > µ(Yi) (since the set S is non-empty and µ is invariant). Otherwise, the
measure of each new set Yi, i 6 `, increases by factor at least 1 + c′η by Part (i) and thus
µ(S`.Y ) > µ(Y )/η by the choice of `.

6 Proof of Theorem 1.11

6.1 Proof of Theorem 1.11 for SO(n) y S
n−1, n > 3

Here,Ω is the sphere Sn−1 with the uniform probability measure µ. It was shown indepen-
dently by Margulis [28] and Sullivan [43] for n > 5, and by Drinfel’d [10] for n = 3, 4,
that the action SO(n) y Sn−1 has spectral gap. By Proposition 5.3, the whole space Sn−1

is a domain of expansion.
In order to finish the proof, it is enough to show that every A ∈ B ∩ C is a domain

of expansion. By the definition of C, A covers some non-empty open set and thus also
covers the whole sphere Sn−1. Of course, the sphere Sn−1 ⊇ A also covers A. Now,
Lemma 2.5 gives that A is a domain of expansion. (Alternatively, we could have just
quoted Remark 2.6 for this step.) Thus the action SO(n) y Sn−1 is indeed expanding.

6.2 Proof of Theorem 1.11 for G2 y R
2

Recall that G2 is the subgroup of affine bijections of R2 generated by the special linear
group SL(2,Z) and all translations. In order to prove that the action a : G2 y R2 is
expanding, we consider another action b defined as follows.

Identify the torus R2/Z2 with X := [0, 1)2 and let ν denote the uniform probability
measure on Borel subsets ofX . The group SL(2,Z) acts naturally onR2, commuting with
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the reduction of vectors modulo Z2. Thus we obtain the standard measure-preserving
action b : SL(2,Z) y (X, ν). A classical result of Rosenblatt [40] states that b has
spectral gap. By Proposition 5.3, the set X is a domain of expansion for the action b.

By Remark 2.6, it is enough to show that X is a domain of expansion for the para-
doxical action a. Let π : R2 → X be the natural projection that reduces each coordinate
modulo 1. For γ ∈ SL(2,Z), let γ′ denote the corresponding element of G2 under the
natural inclusion of SL(2,Z) into G2. For example, the restriction of the composition
π ◦ a(γ′, ·) to X is equal to b(γ, ·), the b-action of γ.

Take any η > 0. Since X is a domain of expansion for the action b, there exists an η-
expanding finite set S ⊆ SL(2,Z) for X under the action b. We construct an η-expanding
set T for X ⊆ R2 under the action a : G2 y R2 as follows. For every γ ∈ S and
(m,n) ∈ Z2 such that γ′.X intersects the square [m,m+ 1)× [n, n+ 1), add the product
t−1m,nγ

′ ∈ G2 into T , where tm,n ∈ G2 is the translation by vector (m,n). Since |S| <∞,
the constructed set T is finite too. Furthermore, for every γ ∈ S and U ⊆ X , we have
that γ.U = π(γ′.U) ⊆ T.U ∩ X: indeed, for every integer square intersecting γ′.U , the
set T contains the composition of γ′ with the integer translation moving this square back
to X = [0, 1)2. Thus, S.U ⊆ T.U ∩X and, if U is measurable, then

µ(T.U ∩X) > µ(S.U) > min
(
(1− η)µ(X), µ(U)/η

)
,

where the last inequality follows from the facts that S is η-expanding for (X, ν) under the
action b and the measures ν and µ coincide on X ⊇ S.U . Thus T ⊆ G2 is an η-expanding
set forX . As η > 0 was arbitrary,X is a domain of expansion for the action a : G2 y R2,
as desired.

6.3 Proof of Theorem 1.11 for the hyperbolic space Hn

For an introduction to hyperbolic spaces see e.g. Bridson and Haefliger [6, Section 2] or
Ratcliffe [39]. One representation ofHn (that we will use here) is to take the bilinear form

〈u, v〉n,1 := −un+1vn+1 +
n∑
i=1

uivi, u, v ∈ Rn+1, (6.1)

identify Hn with upper sheet of the hyperboloid

H := {u ∈ Rn+1 : 〈u, u〉n,1 = −1}

(namely, the sheet where un+1 > 0), and define the metric d by cosh d(u, v) = −〈u, v〉n,1
for u, v ∈ Hn. The group of isometries ofHn can be identified withO(n, 1)0, the group of
(n+1)×(n+1)-matrices which leave the bilinear form in (6.1) invariant and do not swap
the two sheets ofH; see [6, Theorem 2.24] or [39, Theorem 3.2.3]. The group Iso(Hn) of
orientation-preserving isometries of Hn corresponds to the subgroup SO(n, 1)0 of index
2 in O(n, 1)0, which consists of matrices with determinant 1. The space Hn is equipped
with an isometry-invariant measure µ whose push-forward under the projection on the
first n coordinates of Rn+1 has density

ρ(x1, ... , xn) := (1 + (x21 + ... + x2n))−1/2 (6.2)

with respect to the Lebesgue measure on Rn.
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Proof of Theorem 1.11 for Iso(Hn) y Hn, n > 2. First, we show that Theorem 5.1 ap-
plies to the group Γ = Iso(Hn) = SO(n, 1)0, obtaining a countable subgroup Λ. Then we
show that the expansion of Λ y (Γ,mΓ ), where mΓ is a left Haar measure on Γ , can be
transferred to the action Λy (Hn, µ).

The Lie algebra of SO(n, 1)0 (or SO(n, 1)) is so(n, 1) which consists of (n + 1) ×
(n+ 1)-matrices M such that

MT In,1 + In,1M = 0, (6.3)

where In,1 is the diagonal matrix having n entries equal to 1 and the last entry equal to−1.
It is well-know that so(n, 1) is simple; in fact, a complete characterisation of simple real
Lie algebras is available, see e.g. Knapp [19, Theorem 6.105].

The linear system of equations (6.3) has integer coefficients, so we can choose a basis
B for so(n, 1) that consists of matrices with all entries rational.

The adjoint Ad(γ) for γ ∈ SO(n, 1)0 mapsM ∈ so(n, 1) to the matrix product γMγ−1.
If a matrix γ has algebraic entries, then so does its inverse; it follows that the matrix of
the map Ad(γ) when expressed in the basis B has all entries algebraic. Thus the only
non-trivial remaining assumption of Theorem 5.1 is the existence of a countable dense set
X ⊆ SO(n, 1)0 such that each γ ∈ X as a matrix has algebraic entries (as then we can
take Λ to be the subgroup generated by X). We can identify SO(n, 1) with the variety in
V ⊆ R(n+1)×(n+1) defined by the system of polynomials with integer coefficients, stat-
ing that the determinant is 1 and the bilinear form in (6.1) is preserved. Since SO(n, 1)0
is a connectivity component of SO(n, 1), the existence of X follows from the following
general lemma.

Lemma 6.1. Let f1, ... , fm ∈ Z[x1, ... , xr] be polynomials with integer coefficients. Let

V := {x ∈ Rr : ∀i ∈ [m] fi(x) = 0}

be the real variety defined by these polynomials. Then the set of vectors in V with all en-
tries algebraic is dense in V (in the standard topology onRr generated by open Euclidean
balls).

Proof. Although this lemma has surely been proved before, we could not find a suitable
statement (of the real case) anywhere in print. So we present our proof.

One of the consequences of the Tarski-Seidenberg Theorem [46, 41] is that the ordered
field of reals R and the ordered field A of real algebraic numbers satisfy the same set of
first-order sentences, where the language includes the constants 0 and 1, the multiplication
and addition functions, the equality relation, and the binary order relation. For an r-vector
x, we can express the statement that fi(x) = 0 for each i ∈ [m] in first-order logic. Thus,
for every Euclidean ball B ⊆ Rn whose centre and radius are rational, B ∩ V = ∅ if and
only if B ∩ V ∩An = ∅.

Now, suppose on the contrary to the claim that we have some x ∈ V and rational
r > 0 such that the radius-r ball B ⊆ Rr around x has no algebraic points from V . Pick
a rational vector x′ ∈ Rn within distance r/3 from x and let B′ be the ball around x′

of radius r/2. Then B′ ⊆ B, so B′ ∩ V has no algebraic points. However, B′ ∩ V is
non-empty as it contains x, a contradiction.
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Thus, by Theorem 5.1 the action b : Λ y (Γ,mΓ ) of the countable subgroup Λ of
Γ generated by X has local spectral gap with respect to every measurable subset of Γ
with compact closure and non-empty interior. We will show that the restriction a′ of the
measure-preserving action a : Γ y (Hn, µ) to Λ is expanding, thus finishing the proof.

Take any Borel B ⊆ Hn which has non-empty interior and compact closure. Let us
show that B is a domain of expansion.

One can derive from the formula for the hyperbolic distance that the topology onHn is
the induced topology from Rn+1. Thus B is a bounded subset of Rn+1. Since the density
ρ is uniformly bounded (namely, by 1), we have that µ(B) < ∞. Also, µ(B) > 0 as
ρ > 0 everywhere.

Let x0 := (0, ... , 0, 1) ∈ Hn and define f : Γ → Hn by f(γ) := a(γ, x0), that is,
under the assumed identification Hn ⊆ Rn+1, f(γ) the application of the matrix γ to the
vector x0. Define

B′ := f−1(B) = {γ ∈ Γ : γ.x0 ∈ B}. (6.4)

As it is easy so see, a : Γ × Hn → Hn is continuous. Thus f is also continuous and
B′ ⊆ Γ is a Borel set. Let U 6= ∅ be the interior of B. Fix u ∈ U and γ0 ∈ Γ with
γ0.x0 = u. Again, by the continuity of f there is an open set in Γ around γ0 that lies
entirely inside B′, so B′ has a non-empty interior.

Let us argue that the closure B′ of B′ is compact. Take an arbitrary infinite sequence
γ1, γ2, ... ∈ B′. Viewing Hn as a subset of Rn+1, fix some n elements x1, ... , xn ∈ Hn

so that the n + 1 vectors x0, x1, ... , xn ∈ Rn+1 are linearly independent. Each isometry
γi ∈ Iso(Hn) can be represented by a linearHn-preserving transformationRn+1 → Rn+1

given by some matrix Mi ∈ SO(n, 1)0. The images of the special point x0 by Mi are in
the compact set B, so by passing to a subsequence we can assume that they converge to
some z0 ∈ B. Since each Mi is an isometry of Hn, the images of x1, ... , xn all lie in
some large ball in Hn around z0 (and thus in some large ball in Rn+1). Again by passing
to a subsequence, we can assume that, for every j ∈ [n], Mixj converges to some zj as
i → ∞. Let X , Z, and Xi for i ∈ N be the (n + 1) × (n + 1)-matrices with columns
respectively x0, ... , xn, z0, ... , zn, and Mix0, ... ,Mixn. By the finite-dimensionality, we
have that Xi → Z as i → ∞. Also, by the choice of the vectors xj , the matrix X is
invertible. Thus Mi = XiX

−1 converges to M := ZX−1 as i→∞. This limiting matrix
M ∈ SO(n, 1)0 has to belong to B′, so this set is indeed compact.

Thus, Theorem 5.1 applies to the set B′, giving that the action of Λ on (Γ,mΓ ) has
local spectral gap with respect to this set. This means by Lemma 5.2 thatB′ is a domain of
expansion. Let η > 0 be arbitrary. Thus there are γ1, ... , γm ∈ Λ such that the η-expansion
property, as defined in (2.4), is satisfied for every Borel X ⊆ B′. Let us argue that the
same isometries are η-expanding for B. Take any Borel Y ⊆ B. Let Y ′ := f−1(Y ) ∈ B.
Note that the f -preimage of (∪mi=1γi.Y ) ∩B is exactly (∪mi=1γi.Y

′) ∩B′; indeed we have

f−1(γi.y) = {γ ∈ Γ : γ−1i γ.x0 = y} = γi {β ∈ Γ : β.x0 = y} = γi f
−1(y), for all y ∈ Y .

It remains to show is that f is measure-preserving. This is exactly the statement of, for
example, [39, Lemma 4 of Section 11.6] (which follows with some work from the unique-
ness of the Haar measure). Thus B is a domain of expansion.

By Remark 2.6, this finishes the proof of the case Iso(Hn) y Hn of Theorem 1.11.



Measurable equidecompositions 31

6.4 Proof of Theorem 1.11 for SL(2,R) y R
2 \ {0}

Here, we follow the same strategy as in Section 6.3. One new caveat is that, unlike for
the hyperbolic space, the stabiliser H of a point is not a compact subgroup. So we cannot
define B′ by the direct analogue of (6.4) as its closure would not be compact. We get
around this by, essentially, taking a compact subset of positive measure in each coset of
H in a continuous way. Also, we could not find a version of [39, Lemma 4 of Section 11.6]
that we could just cite here, so we prove it (as well as a few other claims) via direct explicit
calculations.

Proof of Theorem 1.11 for SL(2,R) y R2 \ {0}. Recall that mΓ is a left Haar measure
on Γ = SL(2,R). We view each element γ ∈ Γ as a 2× 2-matrix (γij)

2
i,j=1. It is easy to

to find a countable dense subgroup Λ of SL(2,R): just take the subgroup of matrices with
all entries rational. The Lie algebra sl2(R) of SL(2,R) consists of 2 × 2 matrices with
trace zero and is well known to be simple. For the basis B, one can take, for example,

X :=

[
0 1
0 0

]
, Y :=

[
0 0
1 0

]
, Z :=

[
1 0
0 −1

]
.

For γ ∈ SL(2,R), the adjoint Ad(γ) maps a 2 × 2-matrix M = (Mij)
2
i,j=1 ∈ sl2(R) to

γMγ−1. Clearly, we have M = M1,2X + M2,1Y + M1,1Z. If we write the linear map
Ad(γ) in the basis B, then each entry of the corresponding 3 × 3-matrix is, in fact, a
quadratic polynomial with integer coefficients in the entries of the matrix γ. Therefore, if
γ ∈ Λ then γ (and thus the matrix of Ad(γ)) has all entries rational.

So the conclusion of Theorem 5.1 applies to the action b : Λ y (Γ,mΓ ). In order to
derive that the action a : Γ y Ω is expanding, where Ω = R2 \ {0}, we need some
preparation. Define

H := {γ ∈ Γ : γe1 = e1} = {M(u) : u ∈ R}, (6.5)

where

e1 :=

[
1
0

]
and M(u) :=

[
1 u
0 1

]
.

The map M gives an isomorphism between the topological groups (R,+) and H . Let
ρ be the Haar measure on H with ρ(I) = 1, where I := {M(u) : 0 6 u 6 1}, that is, ρ is
the push-forward of the Lebesgue measure on R by M .

Clearly, the map ı : Γ → Ω, where ı(γ) := γe1 for γ ∈ Γ , is continuous and the
pre-images under ı of the points in Ω are exactly the left cosets of H . Consider the map
σ : Ω → Γ defined by[

x
y

]
7→
[
x −y

x2+y2

y x
x2+y2

]
, for

[
x
y

]
∈ Ω.

The map σ is continuous on Ω = R2 \ {0} and σ is the right inverse of ı: ı ◦ σ = IdΩ.
By e.g. [39, Theorem 5.1.5], the function φ : Ω′ → Γ , defined by φ(x, h) = σ(x)h is
a homeomorphism, where we let Ω′ := Ω × H . The space Ω′ comes with the measure
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µ′ := µ× ρ, the product of the Lebesgue measure µ on Ω ⊆ R2 and the Haar measure ρ
on H .

Let us show that the push-forward of µ′ by φ is a constant multiple of the Haar measure
mΓ on Γ . By the uniqueness of the Haar measure, it is enough to argue that, for every
γ ∈ Γ , viewed as the map Γ → Γ where β 7→ γ.β, the composition γ′ := φ−1 ◦ γ ◦ φ
from Ω×H to itself preserves the measure µ× ρ. In this concrete case, it is easy to show
this by writing explicit formulas. Namely, the inverse of φ is[

x c
y d

]
7→
([

x
y

]
,M(u)

)
, where u :=

c+ y/(x2 + y2)

x
=
d− x/(x2 + y2)

y
.

It routinely follows that γ′((x, y),M(u)) = (γ.(x, y),M(u+ F )), where F = F (γ, x, y)
does not depend on u. We see that the bijection γ′ is the measure preserving map a(γ, ·) in
the first coordinate. Also, if the first coordinate is fixed, then the second coordinate of γ′

corresponds to some translation of R under the parametrisation M from (6.5). It follows
by an application of Tonelli’s theorem that γ′ is measure-preserving, as claimed.

Thus, by scaling the measure mΓ , we can assume that φ is a measure-preserving
homeomorphism between (Ω′, µ′) and (Γ,mΓ ). For the rest of the proof, it will be more
convenient to replace the action b with its conjugate by φ. Namely, let the measure-
preserving action b′ : Λ y (Ω′, µ′) be defined by b′(γ, (x, h)) := φ−1(b(γ, φ(x, h)))
for (x, h) ∈ Ω × H and γ ∈ Λ. By the calculations in the previous paragraph, for every
x ∈ Ω, there is the (unique) map γx : H → H so that b′(γ, (x, h)) = (a(γ, x), γx(h));
moreover, each γx under the isomorphism H ∼= R corresponds to some translation of R
and thus preserves the Haar measure ρ.

Now, we are ready to show that the action a : Γ y Ω is expanding. Take any Borel
B ⊆ Ω with non-empty interior and compact closure. Let B′ := B × I . Clearly, B′ ⊆ Ω′

has compact closure and non-empty interior and µ′(B′) = µ(B). Since φ is a measure-
preserving homeomorphism, Theorem 5.1 (when applied to b) gives that the conjugated
action b′ has local spectral gap with respect to every measurable subset ofΩ′ with compact
closure and non-empty interior. Thus there are a real κ and a finite set S ⊆ Λ such that

‖f ′‖2,B′ 6 κ
∑
s∈S

‖s.f ′ − f ′‖2,B′ , for all f ′ ∈ L2(Ω′, µ′) with
∫
B′
f ′ dµ′ = 0. (6.6)

Let us show that the same choice of κ and S also witnesses the local spectral gap of
the action a with respect to B. Take any f ∈ L2(Ω, µ) with

∫
B
f dµ = 0. The idea is to

apply the inequality in (6.6) to the function (x, h) 7→ f(x) except, in order to have an L2-
function, we set it to 0 at the points which do not matter when we consider local spectral
gap for B′ under S (namely, those points that do not appear in (6.6)). So, let f ′(x, h) :=
f(x) for (x, h) ∈ B′ ∪ S−1.B′ and let f ′ be zero otherwise. The obtained function f ′ is
in L2(Ω′, µ′) because is it obtained by patching together compositions of g ∈ L2(Ω′, µ′)
with finitely many measure-preserving maps b′(γ, ·), γ ∈ S, where g(x, h) := f(x) if
h ∈ I and is set to 0 otherwise. Since f ′(x, h) = f(x) for all (x, h) ∈ B′, we have∫
B′
f ′ dµ′ =

∫
B
f dµ = 0. Thus (6.6) applies. Since f ′(x, h) = f(x) for (x, h) ∈ S−1.B′



Measurable equidecompositions 33

and γx preserves the measure ρ for each x ∈ Ω, we have for each s ∈ S that

‖s.f ′ − f ′‖2,B′ =

∫
B×I

(f ′(s−1.(x, h))− f ′(x, h))2 dµ′(x, h)

=

∫
B×I

(f(s−1.x)− f(x))2 d(µ× ρ)(x, h) = ‖s.f − f‖2,B.

It follows by (6.6) that

‖f‖2,B = ‖f ′‖2,B′ 6 κ
∑
s∈S

‖s.f ′ − f ′‖2,B′ = κ
∑
s∈S

‖s.f − f‖2,B.

Thus the action a : Γ y Ω is expanding by Lemma 5.2 (and Remark 2.6), as required.

6.5 Proof of Theorem 1.11 for Iso(Rn) y R
n, n > 3

We give a few proofs of this case: by deriving it from known results in Section 6.5.1 and
then giving a more direct proof in Section 6.5.2.

6.5.1 Derivation from known results

Theorem 1.11(i) can be rather straightforwardly derived from known (deep) results in a
few different ways.

First proof of Theorem 1.11 for Iso(Rn) y Rn, n > 3. Margulis [29] showed that, for this
action, every isometry-invariant positive mean defined on compactly supported bounded
measurable functions is a scalar multiple of the integral with respect to the Lebesgue mea-
sure. Also, it can be shown via Lebesgue’s density theorem that every dense subgroup of
Iso(Rn) acts ergodically on Rn. Thus the implication (1) =⇒ (4) of [5, Theorem 7.6] ap-
plies here and gives that the action Iso(Rn) y Rn has local spectral gap with respect to
every measurable set in C. We conclude by Lemma 5.2 that the action Iso(Rn) y Rn is
expanding.

Alternatively, the desired local spectral gap property of Iso(Rn) y Rn can be derived
from [5, Theorem A] (which is Theorem 5.1 here) in a similar way as it was done for
the action Iso(Hn) y Hn in Section 6.3. Yet another proof is to use the following more
recent result of Boutonnet and Ioana [4, Theorem A].

Theorem 6.2 (Boutonnet and Ioana [4]). LetΛ be a countable dense subgroup of Iso(Rn),
n > 3, such that the left-translation action Θ(Λ) y SO(d) has spectral gap, where
Θ : Iso(Rn) → SO(n) denotes the natural quotient. Then the natural action Λ y Rn

has local spectral gap with respect to every measurable set with compact closure and
non-empty interior.

In order to apply Theorem 6.2, one can let Λ be the subgroup generated by a finite
subset of SO(n) ⊆ Iso(Rn) having the spectral gap property and some countable dense
subset of Iso(Rn).



34 Łukasz Grabowski, András Máthé, Oleg Pikhurko

6.5.2 Approach via more direct computations

In this subsection we will reprove the case of Iso(Rn) y Rn, n > 3, of Theorem 1.11
in a more direct way. We prove the case n = 3 first and derive the general case n > 4
as a consequence. We will not use the results of Margulis [29] nor Boutonnet et al [5, 4].
However, when proving the base case n = 3, we still need as an input the spectral gap
property of the action of SO(3) on the 2-dimensional sphere. While the original proof of
this by Drinfel’d [10] requires a fair amount of background, there are more elementary
proofs now: see, for example, Benoist and de Saxcé [3].

The rest of this section is devoted to domains of expansion in Rn. However, we start by
proving a sufficient criterion for being a domain of expansion for a general action Γ y Ω.

Let us informally motivate the upcoming definitions. Suppose that we fix some ρ > 1
and would like to show that the annulus Y := {y ∈ R3 : 1 6 ‖y‖2 6 ρ} is a domain of
expansion. For U ⊆ Y and z ∈ [1, ρ] let Uz := {y ∈ U : ‖y‖2 = z} be the z-leaf of U .
For i ∈ [3], let µi denote the i-dimensional Hausdorff measure on R3.

By the spectral gap property of SO(3) y (S2, µ2) and Proposition 5.3, the sphere S2 is
a domain of expansion under this action. So, for every δ > 0, there is a finite δ-expanding
set Sδ ⊆ SO(3). For each z ∈ [1, ρ], the group SO(3) also acts on (Yz, µ

2) (which is just
the sphere of radius z) and the set Sδ is also δ-expanding for Yz. Thus, for every Borel
U ⊆ Y , the leaf Uz under the action of Sδ occupies at least (1 − δ)-fraction of Yz or
expands by factor at least 1/δ in the measure µz. It follows that, if U does not expand in
measure under Sδ, then this means that the set U is “close” to a ring set (a union of some
spheres Yz).

In order to deal with such sets, we add a finite set T of isometries of R3 with the
property that there is c > 0 such that if U is any Borel ring set then µ2((T.U)z) > cµ(U)
for every z ∈ [1, ρ]. We will call such a set T a diffuser. Informally speaking, a diffuser
spreads any ring set across all radii of interest fairly uniformly. If we apply a spherical
expanding set Sβ with β � δ to any such “uniformly spread” set T.U , then we ensure
that, for each z ∈ [1, ρ], its z-leaf (T.U)z expands or occupies most of Yz. It follows
from the above properties that Sβ.T has a good expansion property when applied to any
(almost) ring set. Thus, our proof strategy is as follows: if U expands under Sδ then we
are done; otherwise Sδ.U is close to a ring set and consequently expands under SβT . The
exact value of ρ will be chosen to simplify finding a diffuser set; in fact, we will choose ρ
so that the diffuser can be taken to be a one-element set (see Figure 1 and Lemma 6.8).

Let us give all formal general definitions (that are motivated by the above discussion).
Assumptions 1.4 and 1.5 apply everywhere in this section.

Definition 6.3. A foliation of a Borel set Y ⊆ Ω is a pair ((Z,BZ , ν), (Yz, µz)z∈Z), where
(i) (Z,BZ , ν) is a standard measure space with 0 < ν(Z) <∞,

(ii) the sets Yz, z ∈ Z, are pairwise disjoint subsets of Y ,
(iii) for every Borel X ⊆ Z, the set YX := ∪z∈XYz is a Borel subset of Y ,
(iv) each µz is a finite measure on (Ω,B) supported on Yz such that for every Borel set

U ⊆ Y the function z 7→ µz(U) is Borel and integrable, and it holds that

µ(U) =

∫
Z

µz(U) dν(z). (6.7)



Measurable equidecompositions 35

Note that if ν happens to be the push-forward of µ under the map Y → Z that sends
each Yz to z (when necessarily µz is a probability measure for ν-a.e. z ∈ Z), then (6.7)
states that the map z 7→ µz gives a disintegration of the measure µ, see e.g. [50, Section
5.1.2].

Under Definition 6.3, the support of a Borel set U ⊆ Ω is defined as

Supp(U) := {z ∈ Z : µz(U) > 0}.

Of course, Supp(U) = Supp(U∩Y ). Also, for z ∈ Z andX ⊆ Z we denote Uz := U∩Yz
and and UX :=

⋃
x∈X Ux ⊆ Y . Note that Uz = U ∩ Yz is Borel by Item (iii) of the above

definition. Also, since each µz is supported on Yz, we have µz(U) = µz(Uz).

Definition 6.4. Let Y be a subset of Ω with a foliation ((Z,BZ , ν), (Yz, µz)z∈Z). For
ε > 0, we say that a finite set S ⊆ Γ is leaf-wise ε-expanding if, for every Borel U ⊆ Y ,
it holds that

µz(S.U) > min

(
(1− ε)µz(Y ),

µz(U)

ε

)
, for every z ∈ Z.

We say that Y is a domain of leaf-wise expansion if for every ε > 0 there is a leaf-wise
ε-expanding finite set Sε ⊆ Γ .

For c > 0, we say a finite set T ⊆ Γ is a c-diffuser for Y if for every Borel R ⊆ Z and
every z ∈ Z we have

µz(T.YR) > c µ(YR) / ν(Z). (6.8)

A finite set T ⊆ Γ is called a diffuser if it is a c-diffuser for some c > 0.

The following lemma states, informally speaking, that a diffuser spreads well not only
ring sets YR but also those sets that are “close” to them.

Lemma 6.5. Let (Yz, µz)z∈Z be a foliation of Y ⊆ Ω. Let T be a diffuser for Y and let
c > 0 satisfy (6.8). Given ε ∈ (0, 1), let δ := εc/(ε+ |T |). Then, for any Borel set V ⊆ Y
of positive measure satisfying µz(V ) > (1− δ)µz(Y ) for each z ∈ Supp(V ), we have

ν
(
{z ∈ Z : µz(T.V ) > δ µ(V )/ν(Z)}

)
> (1− ε) ν(Z). (6.9)

Proof. Note that if we divide ν by some α > 0 and multiply each µz by the same constant
α, then all statements of Definitions 6.3 and 6.4 remain valid. (This will be used later in
Remark 7.5 and this is why we divide by ν(Z) in (6.8).) Thus, we can assume without
loss of generality that ν(Z) = 1.

Let R := Supp(V ). Note that the set R is Borel by Item (iv) of Definition 6.3. The
measure of VZ\R is 0 by (6.7), so by removing this set from V we may assume that Vz = ∅
for z ∈ Z \R. Let W := YR \ V . Note that YR = V tW and µ(YR) 6= 0. Define

R′ := {z ∈ Z : µz(T.W ) > (c− δ)µ(YR)} .

Since T is a c-diffuser, we obtain that, for all z ∈ Z \R′,

µz(T.V ) = µz(T.(YR \W )) > c µ(YR)− µz(T.W ) > δ µ(YR) > δ µ(V ).
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Thus, in order to finish the proof, it is enough to show that ν(R′) 6 ε. By (6.7), we
have that

µ(T.W ) > µ(T.W ∩ YR′) =

∫
R′
µz(T.W ) dν(z) > (c− δ)µ(YR) ν(R′).

Since µz(W ) = µz(Y \ V ) 6 δ µz(Y ) for each z ∈ R by the assumption on V and since
W ⊆ YR, we have, again by (6.7), that µ(W ) 6 δ µ(YR). Hence

(c− δ)µ(YR) ν(R′) 6 µ(T.W ) 6 |T |µ(W ) 6 |T | δ µ(YR),

giving the required bound ν(R′) 6 ε by the choice of δ.

We are ready to state our criterion for being a domain of expansion. Recall that Sη
for η > 0 is a finite leaf-wise η-expanding subset of Γ . Let us additionally assume that
Sη 3 e.

Proposition 6.6. Let ((Z,BZ , ν), (Yz, µz)z∈Z) be a foliation of Borel Y ⊆ Ω. Suppose
that there is M > 1 such that for all z ∈ Z we have M > µz(Y ) > 1

M
. If Y is a domain

of leaf-wise expansion which admits a diffuser T , then Y is a domain of expansion.
More precisely, given η ∈ (0, 1/2) and c > 0 such that T is a c-diffuser, let ε :=

η/(2M2), δ := εc/(ε + |T |), and β := δε/(2M). Then R := Sβ T Sδ ∪ Sδ is an η-
expanding set for Y .

Proof. By scaling the measures ν and µ by the same constant, we can assume for conve-
nience that ν(Z) = 1. By taking R := Z in (6.8) and integrating it over all z ∈ Z, we see
that c 6 1. Thus δ 6 cε 6 ε 6 1/4 and β 6 1/32.

Take an arbitrary Borel set U ⊆ Y . We need to lower bound µ(R.U ∩ Y ). Define

X := {z ∈ Z : µz(Sδ.U) > (1− δ)µz(Y )}.

Case 1. Suppose that µ(UZ\X) > µ(U)/2.

Since Sδ is leaf-wise δ-expanding, we have for every z ∈ Z\X that µz(Sδ.U) > µz(U)/δ.
Thus, by (6.7), we obtain the required lower bound as follows:

µ(R.U ∩ Y ) > µ(Sδ.U ∩ Y ) >
∫
Z\X

µz(U)

δ
dν(z) =

1

δ
µ(UZ\X) >

1

δ

µ(U)

2
>
µ(U)

η
.

The last inequality follows since, by c 6 1, we have δ 6 cε = cη/(2M2) 6 η/2.

Case 2. Suppose that Case 1 does not hold, that is, µ(UX) > µ(U)/2.
Define V := (Sδ.U)X ⊆ Y . Since e ∈ Sδ, we have µ(V ) > µ(UX) > µ(U)/2. Let

W := {z ∈ Z : µz(T.V ) > δ µ(U)/2} .

By Lemma 6.5 (that is, by our choice of δ), we have

ν (W ) > 1− ε. (6.10)
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We consider two subcases. First, suppose that µ(U) > ε. For z ∈ W , we have
µz(T.V ) > δε/2 = βM > βµz(Y ) and thus Sβ cannot increase the µz-measure of
(T.V )z by factor 1/β or larger. Since Sβ is leaf-wise β-expanding, it follows that µz (SβT.V ) >
(1− β)µz(Y ) for every z ∈ W . Thus, by (6.7) and (6.10),

µ(R.U ∩ Y ) > µ (SβT.V ∩ Y ) >
∫
W

(1− β)µz(Y ) dν(z)

>
∫
Z

(1− β)µz(Y ) dν(z) − εM

> (1− β)µ(Y )− εM2µ(Y ) > (1− η)µ(Y ).

as desired. (Note that β + εM2 = ε(δ/(2M) +M2) = η(δ/(4M3) + 1/2) 6 η.)
Finally, suppose that µ(U) 6 ε. Let

B := {z ∈ W : µz (SβT.V ) < (1− β)µz(Y )} .

For each z ∈ B, since Sβ is β-expanding for Yz and B ⊆ W , we have

µz (SβT.V ) = µz(Sβ.(T.V )z) >
µz(T.V )

β
>
δ µ(U)

2β
.

Thus, using (6.7) again, we obtain

µ(R.U ∩ Y ) > µ (SβT.V ∩ Y ) >
∫
W\B

(1− β)µz(Y ) dν(z) +

∫
B

δ µ(U)

2β
dν(z),

>
1− β
M

ν(W \B) +
δ µ(U)

2β
ν(B).

We would like to argue that this is at least µ(U)/η. Since both parts are linear in µ(U)
it is enough to check only the extreme values of µ(U). Suppose that µ(U) = ε (as the
inequality for µ(U) = 0 trivially holds by β < 1). The coefficient at ν(B), namely
δε/(2β) = M > 1 is clearly larger than the coefficient at µ(W \B). Thus (for µ(U) = ε)
the lower bound on µ(R.U ∩ Y ) is at least

1− β
M

ν(W ) >
(1− β)(1− ε)

M
>

31

32
· 3

4
· 1

M
>

1

2M2
=
µ(U)

η
,

as required.

We proceed to apply Proposition 6.6. Here, we have that Ω = R3 with the L2-norm
‖ · ‖ and Γ = Iso(R3). Define

Y := {y ∈ R3 : 1 6 ‖y‖ 6 ρ}, (6.11)

where ρ := 1 +
√

2/2. For d = 1, 2, 3, let µd denote the d-dimensional Hausdorff mea-
sure on R3 scaled so that µd([0, 1]d × {0}3−d) = 1. Let µ := µ3 be the Lebesgue
measure on R3. The foliation of Y is given by the concentric spheres, where (Z, ν)
is the interval [1, ρ] with the Lebesgue measure. Here, µz is the restriction of µ2 to
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B

θ

A

Figure 1: Two-dimensional analogue of the set Y (in grey) together with the cube
K. The angle θ is the angle between two radii which pass through opposite vertices
of the face A, and it is equal to π/2.

Yz := {y ∈ R3 : ‖y‖ = z}, the sphere of radius z. By our scaling, µz(Yz) = 4πz2

for z ∈ Z. The map Y → (Z, ν)× (S2, µ2), which sends x to (‖x‖, x/‖x‖), is a measure-
preserving Borel isomorphism. Since a product of two standard finite measure spaces
gives a foliation by Tonelli’s theorem, we conclude that we indeed have a foliation of Y .

The following lemma is an exercise in elementary geometry.

Lemma 6.7. There is a solid 3-dimensional cube K ⊆ R3 with the following properties.
(i) The side length of K is 1.

(ii) There are two opposing faces A and B of K such that A ∩ Y1 consists of the four
corners of A while B is tangent to Yρ.

(iii) For every z ∈ Z and every point x ∈ K ∩ Yz the angle between the plane tangent
to Yz at x and the plane extending the face A is at most π/4.

Sketch of Proof. The cube K is pictured in Figure 1. We construct it as follows. We start
by inscribing into Y1 a 2-dimensional square A of side length 1 whose third coordinate
is a positive constant. Then we extend A to a cube of side length 1 in such a way that A
is its lower face (lower with respect to the third coordinate in R3). The first property of
the lemma is clear by construction. Let h be the height of a triangle whose vertices are
the centre of Y1 together with two opposite vertices of A. One can easily compute that
h =
√

2/2. Thus h+ 1 = ρ and the second property follows.
Let us show the third property. By elementary considerations the angle in question is

maximized at points x which are corners of the face A (when z = 1). At such x the angle
in question is equal to the angle between the diagonal of A and the tangent plane to Y1,
and that angle is easily computed to be equal to π/4.

The following lemma, which gives f ∈ Iso(R3) such that {f} is a diffuser, is a routine
calculus exercise.

Lemma 6.8. Let f : K → K be an isometry which maps the face A to one of the side
faces of K. Let R ⊆ [1, ρ] be a Borel subset. Then for all z ∈ [1, ρ] we have

µz(f(KR)) >
1

2
µ(KR) =

1

2
√

2

µ(KR)

ν(Z)
.
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Proof. Let g : K → A be the orthogonal projection onto A. Let L be the set of straight
line segments contained in the face A that connect f(B) to f(A) and are orthogonal to
both f(B) and f(A).

Let us fix z ∈ [1, ρ] and let (g ◦ f)z be the restriction of g ◦ f to f−1(Kz). Note that
(g ◦ f)z is a diffeomorphism from f−1(Kz) to A. For ` ∈ L let ̂̀be the preimage of `
under (g ◦ f)z.

Let U ⊆ ̂̀be a Borel subset. Note that f maps ̂̀ isometrically into the sphere Kz. It
follows that we have

µ1((g ◦ f)z(U)) > cos(π/4)µ1(U) =

√
2

2
µ1(U).

Since the map x 7→ ‖x‖ does not increase distances and maps KR∩ ̂̀onto R, we have
µ1(KR ∩ ̂̀) > ν(R). Consequently we have

µ1((g ◦ f)z(KR ∩ ̂̀)) > √2

2
ν(R). (6.12)

Let us fix ` ∈ L. We clearly have A = (A ∩ f(A))× `. Furthermore, the elements of
L are exactly the sets {x}× ` in this decomposition. Therefore, by Tonelli’s theorem, and
since the side length of K is equal to 1,

µ2((g ◦ f)z(KR)) > min
`∈L

µ1((g ◦ f)z(KR) ∩ `).

Note that for ` ∈ L we have (g ◦ f)z(KR) ∩ ` = (g ◦ f)z(KR ∩ ̂̀), and so by (6.12),

µ2((g ◦ f)z(KR)) >

√
2

2
ν(R).

Note that (g ◦ f)z(KR) = g(f(KR)z). Hence, since g is an orthogonal projection, we
have µz(f(KR)) = µ2(f(KR)z) > µ2((g ◦ f)z(KR)). On the other hand, by (6.7) we
have µ(KR) 6 ν(R) sup{µz(K) : z ∈ R}. Note that for z ∈ R the set Kz projects onto
the face A. Hence, by the third item of Lemma 6.7, we have that

sup {µz(K) : z ∈ R} 6 µ2(A)

cos(π
4
)

=
√

2.

Putting these inequalities together, we obtain that

µz(f(KR)) > µ2((g ◦ f)z(KR)) >

√
2

2
ν(R) >

1

2
µ(KR),

which is exactly our claim.

Corollary 6.9. Let ρ := 1 +
√

2/2 and let X ⊆ [1, ρ] be a Borel set of positive mea-
sure. Then the set Y := {y ∈ R3 : ‖y‖ ∈ X} is a domain of expansion for the action
Iso(R3) y R3.
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Proof. Recall that the set Y comes with the spherical foliation by Z = [1, ρ]. By the
spectral gap property of SO(3) y S3 and Proposition 5.3, the set Y is a domain of leaf-
wise expansion. By Lemma 6.8, Y admits a (single-element) diffuser. Now, the corollary
follows from Proposition 6.6.

We are ready to give another proof for the Euclidean case of Theorem 1.11.

Second proof of Theorem 1.11 for Iso(Rn) y Rn, n > 3. We use induction on n. If n =
3, then Y := {y ∈ R3 : 1 6 ‖y‖ 6 ρ} is a domain of expansion by Corollary 6.9.
Lemma 2.5 gives that every measurable subset X ⊆ R3 that belongs to C is a domain of
expansion (since X and Y cover each other), as desired.

Suppose that n > 4. By Lemma 2.5 again, we only need to show that Y := [0, 1]n

is a domain of expansion. Note that Y becomes foliated when we take Z := [0, 1] and
Yz := [0, 1]n−1 × {z} for z ∈ Z (with the uniform probability measures).

Take any η > 0. By the inductive assumption, there is a finite η-expanding set S ⊆
Iso(Rn−1) for [0, 1]n−1. Consider S ′ := {γ′ : γ ∈ S} ⊆ Iso(Rn), where we define γ′.x :=
(γ.(x1, . . . , xn−1), xn) for x ∈ Rn (that is, γ′ acts at γ on the first n − 1 coordinates and
is trivial on the last coordinate). The set S ′ is leaf-wise-η-expanding. Thus Y is a domain
of leaf-wise expansion.

Let γ be the isometry of Rn which is the identity on the first n − 2 coordinates and
which is the rotation by π/2 around the centre of [0, 1]2 on the last two coordinates.
It is easy to see that for any Borel set R ⊆ Z and any z ∈ Z we have µz(γ.YR) =
µ(YR). In particular, the singleton set {γ} is a diffuser (with the constant c = 1). Now,
Proposition 6.6 shows that Y is a domain of expansion, finishing the proof.

Also, it is easy now to derive Theorem 1.13 from the Introduction, namely the exis-
tence of a domain of expansion Y in Rn, n > 3, which is closed and nowhere dense.
(Note that such a set Y is meager and cannot essentially cover a non-empty open set.)

Proof of Theorem 1.13. Let X be a closed nowhere dense subset of [0, 1 +
√

2/2] of pos-
itive measure, for example, a “fat” Cantor set.

If n = 3, let Y := {y ∈ R3 : ‖y‖ ∈ X}; otherwise let Y := [0, 1]n−1 ×X . The only
non-trivial property that we have to check is that Y is a domain of expansion. If n = 3,
this is the result of Corollary 6.9.

Suppose that n > 4. Here, we take the product-space foliation of Y = [0, 1]n−1×X by
the last factor Z := X . Since the action Iso(Rn−1) y Rn−1 is expanding, Y is a domain
of leaf-wise expansion. Similarly to the previous proof, one can show that Y admits a
diffuser consisting of a single isometry (which is trivial on the first n− 2 coordinates and
is a rotation by angle π/2 in the last two coordinates). Thus Y is a domain of expansion
by Proposition 6.6.

7 Sample estimates of the number of pieces
In this section we give sample estimates of the number of pieces in some of our con-
structed equidecompositions. We will need the following result of Lubotzky, Phillips and
Sarnak [25, 26].
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Theorem 7.1. For every integer k ≡ 2 (mod 4) with k − 1 > 3 being a prime, there is a
symmetric k-setQ ⊆ SO(3) such that, for the action SO(3) y S2, the averaging operator
TQ(f) = 1

k

∑
δ∈Q δ.f on L2(S2, µ) has the second largest eigenvalue (in absolute value)

at most 2
√
k − 1/k and thus satisfies

‖TQf‖2 6 (1− c)‖f‖2, for every f ∈ L2(S2, µ) with
∫
S2 f dµ = 0, (7.1)

where c := 1− 2
√
k − 1/2k.

Proof. Let us outline just the construction of such a set. Take integer quaternions of the
form q = a0 + a1i+ a2j+ a3k with

∑3
i=0 a

2
i = k− 1, a1, a2, a3 even and a0 > 0 odd, and

then take the standard map that sends a unit quaternion q/
√
k − 1 to an element of SO(3),

see e.g. [26, Equation (2.4)]. There are exactly k such quaternions ([26, Equation (2.1)])
which come in conjugate pairs, giving a symmetric k-set of rotations. The stated spectral
gap property is exactly the content of [26, Theorem 2.1].

Note that the Alon-Boppana bound [37] implies that no larger value of c can work
in (7.1) for a symmetric k-set Q.

First, we do one example where calculations are easy.

Lemma 7.2. Consider the action SO(3) y (S2, µ). LetA,B ⊆ S2 be measurable subsets
of the same measure such that each contains a closed hemisphere. Then A and B are
essentially Borel equidecomposable with at most 54 pieces.

Proof. Before equidecomposing, we can realign the sets so that they contain the same
closed hemisphere H ⊆ S2. Fix an involution γ ∈ SO(3) with H ∪ γ.H = S2. Let
T := {e, γ}. Thus T = T−1 and T.A = T.B = S2. Let Q ⊆ SO(3) be the set returned
by Theorem 7.1 for k := 18. With c := 1− 2

√
k − 1/k as in Theorem 7.1, define

f(x) :=
x

(1− c)2 + 2cx− c2x
=

81x

64x+ 17
, for x ∈ [0, 1].

Let us show that there is ε > 0 such that

f(x) > (1 + ε) min(2x, 2/3), for every x ∈ (0, 1]. (7.2)

First, it is easy to see that for all x ∈ [0, 1] we have f(x) > min(2x, 2/3) (which reduces
to a linear in x inequality on each of the intervals [0, 1/3] and [1/3, 1]) with equality if and
only if x = 0. Also, f ′(0) = 81/17 > 2. Thus there is δ > 0 such that f(x) > (1 + δ) 2x
for all x ∈ [0, δ). By the continuity of the involved functions, there is ε ∈ (0, δ] such
that (7.2) holds in the remaining compact interval [δ, 1], thus proving (7.2).

Fix ε > 0 satisfying (7.2) and let R := TQ ∪ (TQ)−1.
Let us show that the graph G := (A,B,ER ∩ (A× B)) is a bipartite (ε/2)-expander.

Take any measurable U inside a part of G. By R = R−1 and the symmetry between
A and B, assume that U ⊆ A. By Proposition 5.3(i), we have µ(Q.U) > f(u), where
u := µ(U). (Recall that µ(S2) = 1.) If µ(Q.U) > (2 + ε)u, then by T.B = S2 we can
choose β ∈ T with

µ(N(U)) > µ(TQ.U ∩B) > µ(βQ.U ∩B) = µ(Q.U ∩ β.B) >
1

2
µ(Q.U), (7.3)
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which is at least (1+ε/2)u, as desired. (Recall that β−1 = β for every β ∈ T .) Otherwise,
by (7.2), we have that µ(S2 \ Q.U) 6 1 − f(u) < 1/3. Let b := µ(B). If b > 2/3, then
µ(B \ TQ.U) 6 µ(S2 \ Q.U) < b/2. Otherwise we have by the argument in (7.3) that
µ(N(U)) > µ(Q.U)/2 > b/2. We conclude that G is indeed a bipartite (ε/2)-expander.

By Theorem 3.3, G admits an a.e.-perfect Borel matching. By Lemma 2.2, this match-
ing corresponds to an essential Borel equidecompositions between A and B using ele-
ments from R only. Since Q is symmetric and T 3 e, we have that |TQ∩ (TQ)−1| > |Q|
and thus |R| 6 2 · |T | · |Q| − |Q| = 54, as required.

Next, we give a rough estimate of the number of pieces needed for measurable equide-
composition between a cube and a Euclidean ball in R3. Our purpose is just to demon-
strate how an explicit bound can be derived from our results.

First, we need to understand how large the constructed η-expanding sets are. For a
domain of expansion Y ⊆ Ω and η ∈ (0, 1), let s(η;Y ) be the smallest s ∈ N such that
there is a real δ ∈ (0, η) and a δ-expanding set S ⊆ Γ for Y with |S| 6 s.

Lemma 7.3. Let η ∈ (0, 1). Let k ≡ 2 (mod 4) be such that k − 1 is a prime. Define
c := 1− 2

√
k − 1/k and

c′ := c(2− c) =
(k − 2)2

k2
.

If ` ∈ N satisfies (1 + c′η)` > 1/η, then s(η;S2) 6 1 +
∑`−1

i=0 k(k − 1)i.

Proof. LetQ ⊆ SO(3) be the symmetric k-set returned by Theorem 7.1 that satisfies (7.1).
By Proposition 5.3(ii), the set Q` is η-expanding for the whole space S2. The size of Q`

can be upper bounded by the number of words over Q of length at most ` that do not
contain an element next to its inverse, giving the stated bound.

Lemma 7.4. LetA andB be, respectively, a cube and a ball in R3 of the same volume. Let
Y be the annulus, as defined in (6.11). Then A and B are measurably equidecomposable
with at most 1400 · s(1/1109;Y ) + 2000 pieces.

Proof. First we rescale A and B by the same factor so that each fits inside the annulus.
Namely, we scale the ball to have radius r := (ρ − 1)/2. Then the cube has side length
λ := (4π

3
)1/3r and elementary calculations show that it fits into Y (e.g. touching the unit

sphere Y1 in the centre of its face). We can cover Y by at mostm := d2ρ/λe3 scaled cubes,
arranged as a grid. Also, if we take a maximal packing of balls of radius r/2 with centres
in Y , then balls with the same centres but of the twice larger radius r cover Y . Since the
smaller balls are disjoint and lie entirely between the spheres of radii 1−r/2 and ρ+r/2,
we have at most n := b((ρ + r

2
)3 − (1 − r

2
)3)/( r

2
)3c balls. Numerical calculations show

that m = 216 and n = 1109. Let N,M ⊆ Iso(R3) be the sets of translations of these
sizes that achieve M.A ⊇ Y and N.B ⊇ Y . By translating the ball and the cube, we can
assume that each of M and N contains the identity. Let S ⊆ Iso(R3) be an η-expanding
set for Y with η < 1/1109 of size s(1/1109;Y ). Define R := S−1M ∪N−1S.

Let us show that the graph G := (A,B,ER ∩ (A × B)) generated by R with parts A
andB is a bipartite c-expander with c := 1/(1109 η)−1 > 0. Indeed, take any measurable
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set U inside one part, say U ⊆ B. Note that the neighbourhood of U in A is R−1.U ∩A ⊇
M−1S.U ∩ A. If µ(S.U ∩ Y ) > µ(U)/η then, by M.A ⊇ Y , there is γ ∈M with

µ(γ−1S.U ∩ A) = µ(S.U ∩ γ.A) >
µ(S.U ∩ Y )

m
>
µ(U)

ηm
> (1 + c)µ(U),

as desired. Otherwise, by the choice of S, we have µ(Y \ S.U) 6 ηµ(Y ) < µ(A)/2.
(Note that µ(Y )/µ(A) = (ρ3 − 1)/r3 < 1109/2.) Since M 3 e and A ⊆ Y , we have
µ(M−1S.U ∩ A) > µ(S.U ∩ A) > µ(A)/2. Thus G is indeed a bipartite c-expander.

By Theorem 3.3, the set A and B are essentially Borel equidecomposable using ele-
ments from R only. In order to get a measurable exact decomposition between A and B,
it is enough by Proposition 3.4(i) to add some isometries to R showing that A and B are
set-theoretically equidecomposable. By the standard proof of Banach-Schröder-Bernstein
Lemma (Lemma 4.1), it is enough that the extra isometries show, in the notation of Sec-
tion 4, that [A] 4 [B] and [B] 4 [A]. The original proof of the Banach-Tarski Para-
dox shows that the ball doubling [B] ∼ 2[B] can be shown with 5 isometries and thus
2k[B] 4 [B] can be shown with 5k isometries. Rather roughly, 8 copies each of the sets
A and B are enough to cover the other: indeed, “one eighth” of each set, namely [0, λ/2]3

and {v ∈ R3 : v > 0, ‖v‖2 6 r} respectively, can be covered by one translate of the other
set. Thus [A] 4 8[B] 4 [B] can be shown with 8 · 53 isometries. Also, 8[B] 4 [B] 4 8[A]
needs at most 53 · 8 isometries. The relation 8[B] 4 8[A] means that these isometries
can be used to construct a bipartite (multi-)graph H with parts A and B such that every
vertex of A (resp. B) has degree at most 8 (resp. exactly 8). By Rado’s theorem [38], H
has a matching covering every vertex of B. Thus we can show [B] 4 [A] with at most
1000 isometries. In total, we need to add at most 2000 further elements to R to satisfy the
lemma.

Remark 7.5. In order to estimate the number of pieces in Lemma 7.4, we need to estimate
the function s(η;Y ) for the annulus Y . By Lemma 6.8, there is a single-element c-diffuser
T := {f} with c := 1/(2

√
2). As we are free to scale each µz by α and ν by 1/α, we

can assume that µ1(Y ) = 1/ρ and µρ(Y ) = ρ. Thus, when we apply Proposition 6.6,
we can take M := ρ. For any η ∈ (0, 1/2), Proposition 6.6 tells us to set ε := η/(2ρ2),
δ := εc/(ε + |T |) and β := δε/(2ρ). In particular, if we take η = 1/1109, then our
numerical calculations indicate that δ = 5.46... · 10−5 and β = 2.47... · 10−9, and that
k := 6 and ` := 4.3 · 105 (resp. ` := 1.8 · 1010) satisfy Lemma 7.3 when estimating
s(δ;Y ) (resp. s(β;Y )). Thus, by taking minimum expanding sets Sδ, Sβ ⊆ SO(3) in
Proposition 6.6, we get that at most

1400 · |Sδ| · (|Sβ|+ 1) + 2000 < 51.81·1010 < 201010

pieces should be enough to measurably equidecompose the ball and the cube. Of course,
many improvements of this bound are possible, even with very simple additional ideas.
However, we do not see a way to obtain any reasonable bounds here, so we do not pursue
this direction any further.
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8 Proof of Theorem 1.14
Theorem 1.14 follows from the following result where we have collected all the properties
that are used in our proof: it is trivial to check that each action listed in Example 1.9 (which
is expanding by Theorem 1.11) satisfies all assumptions of Lemma 8.1.

Lemma 8.1. Under Assumptions 1.4 and 1.5, let the action a : Γ y Ω be paradoxical
and expanding. Suppose that the family of meager subsets ofΩ is a-invariant, the measure
µ is atomless and there is a non-empty open set W ⊆ Ω with µ(W ) <∞. Let

A := {X ⊆ Ω : X ∈ Bµ ∩ T and X is compact}.

Then every mean κ : A → [0,∞) is a constant multiple of the measure µ.

Proof. If |Ω| = 1, then there is nothing to do. Otherwise, by e.g. the paradoxicality
of the action, Ω has infinitely many points. Fix pairwise disjoint non-empty open sets
U1, U2, U3 ⊆ Ω with compact closures.

Claim 8.1.1. Let i ∈ [3] and A,B ∈ A be subsets of Ω \ Ui.
(i) If µ(A) = µ(B), then κ(A) = κ(B).

(ii) If µ(A) > rµ(B) > 0 for some r ∈ R, then κ(A) > rκ(B).

Proof of Claim. Let us show the first part. The sets A′ := A∪Ui and B′ := B ∪Ui are in
A (since Ui ∈ A while A is closed under unions).

Since the open set W with µ(W ) <∞ covers every other set in C by Lemma 2.3 and
µ is invariant, we have for every Y ∈ C that µ(Y ) < ∞ (and that µ(Y ) > 0 since Y
covers a non-empty open set). In particular, 0 < µ(A′) = µ(B′) <∞. Since the action a
is expanding, the sets A′ and B′ are domains of expansion. By Proposition 1.8(ii) (resp.
Theorem 1.6(ii)), the sets A and B are Baire (resp. Lebesgue) equidecomposable. Thus,
by Proposition 3.4(ii), these sets are Baire-Lebesgue equidecomposable, say with pieces
A′ = A1 t ... t Am and B′ = B1 t ... t Bm. Each piece belongs to A: it is in Bµ ∩ T
by definition and has compact closure as a subset of A′ or B′. By the finite additivity and
a-invariance of κ, we have

κ(A′) =
m∑
j=1

κ(Aj) =
m∑
j=1

κ(Bj) = κ(B′).

Thus κ(A) = κ(A′)−κ(Ui) = κ(B′)−κ(Ui) = κ(B), proving the first part of the claim.
Let us show the second part.
First, assume that r = p/q with p, q ∈ N. We use a consequence of Sierpiński’s

theorem [42] (for a modern proof see e.g. [12, Proposition A.1]) that if (Ω′,A′, µ′) is an
arbitrary non-atomic measure space with µ′(Ω′) <∞, then for every ρ ∈ [0, µ′(Ω′)] there
is Y ∈ A′ with µ′(Y ) = ρ. By applying this result to the σ-algebra Bµ ∩ T ⊇ A of all
Baire-Lebesgue subsets of Ω, we can find (Bµ∩T )-measurable partitions A = A0tA1t
... tAp and B = B1 t ... tBq such that each of the p+ q sets A1, ... , Ap, B1, ... , Bq has
measure exactly µ(B)/q. Again, each piece is in A. We conclude by the first part of the
claim that all these sets, except A0, have the same κ-value which has to be κ(B)/q. Thus
κ(A) >

∑p
i=1 κ(Ai) > p κ(B)/q, as required.
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Now, take an arbitrary positive r ∈ R. Suppose on the contrary that κ(A) < r κ(B).
Then, trivially, κ(B) > 0 and there are p, q ∈ N with κ(A) < p

q
κ(B) and p/q < r.

However, this contradicts the conclusion of the previous paragraph.

Observe that, for every µ-null set A ∈ A, we have that κ(A) = 0. Indeed, since
A = (A\U1)t(A∩U1), it is enough by the additivity of κ to prove this when A ⊆ Ω \Ui
for some i ∈ [3]. By taking B = ∅ in the first part of Claim 8.1.1 we get that κ(A) =
κ(∅) = 0, as desired.

This and the second part of Claim 8.1.1 give for every i ∈ [3] that there is ci ∈ R
such that, for every A-subset A of Ω \ Ui, we have κ(A) = ci µ(A). Furthermore, by
κ(U3) = c1 µ(U3) = c2 µ(U3) and 0 < µ(U3) < ∞, we conclude that c1 = c2. This
constant c := c1 = c2 works for every A ∈ A:

κ(A) = κ(A ∩ U1) + κ(A \ U1) = c2 µ(A ∩ U1) + c1 µ(A \ U1) = c µ(A),

finishing the proof of the lemma.

9 Concluding Remarks

Note that there are paradoxical actions which are not expanding. For example, take two
isometries in SO(3) such that they generate a rank-2 free group F and the action b :
F y S2 has spectral gap, let c : Z y S1 where the generator of Z is a rotation by some
angle θ 6∈ πQ, and consider the action a : (F × Z) y Ω, where Ω := S2 × S1 and
a((γ, n), (x, y)) := (b(γ, x), c(n, y)). Since b is paradoxical (e.g. by [49, Theorem 5.5]),
we can double the whole space Ω also under the action a (by using only elements of the
form (γ, 0) ∈ F × Z). Since every orbit of b or c is dense (in the former case by, for
example, the proof of [25, Theorem 2.7]), this also holds for the new action a. Thus, with
respect to the action a, every set with non-empty interior covers Ω and is equidecompos-
able to Ω by the proof of Proposition 1.8(i). It follows that the action a is paradoxical.
On the other hand, the products S2 × Y , where we take for Y almost b-invariant sets of
measure 1/2, are almost a-invariant sets. This shows that the action a is not expanding.

An interesting open question that remains is whether any two bounded Borel subsets of
Rn, n > 3, that have non-empty interior and the same Lebesgue measure are equidecom-
posable with Borel pieces. Our Theorem 1.2 implies that the answer is in the affirmative,
provided we can first remove a Borel null set from each set.

Also, it would be interesting to find some alternative characterization of bounded mea-
surable subsets of Rn, n > 3, that are domains of expansion. By Lemma 2.5, essentially
covering a non-empty open set is a sufficient condition. However, it is not necessary by
Theorem 1.13.

Of course, the above questions can also be asked for other group actions. In particular,
they are open for all actions listed in Example 1.9, as far as the authors know.

Another interesting question is to get reasonable upper bounds on the sizes of expand-
ing sets (namely to estimate the function s(η;X) from Section 7) when, for example,
X = [0, 1]3 is the unit cube under the action Iso(R3) y R3.
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Acknowledgments. The authors thank Adrian Ioana, Greg Tomkowicz and Péter Varjú for useful discussions
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[2] BANACH, S., AND TARSKI, A. Sur la décomposition des ensembles de points en parties
respectivement congruentes. Fund. Math. 6 (1924), 244–277.
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