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Portfolio decision analysis models support selecting a portfolio of projects in view of multiple objectives and

limited resources. These models often rely on the additive-linear portfolio value function, although empirical

evidence suggests that the underlying preference assumptions do not always hold. In this paper we relax

these assumptions and derive a more general class of portfolio value functions which deploy symmetric

multilinear functions to capture non-linearities in the criterion specific portfolio values. These criterion

specific portfolio values can be aggregated with an additive, a multiplicative or a multilinear function allowing

a rich representation of preferences among the multiple objectives. We develop novel techniques for eliciting

these value functions and also discuss the use of existing techniques that are often applied in practice.

Furthermore, we demonstrate that the value functions can be maximized for problem sizes of practical

relevance using an implicit enumeration algorithm or an approximate mixed integer linear programming

model. Application of the results is illustrated with an example in ecological conservation site selection.
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1. Introduction

Selecting which portfolio of project candidates (e.g., products, infrastructure investments, research

programmes, policy options) to implement with the available resources is an important decision

problem both in public administration and private companies (e.g., Golabi et al. 1981, Ewing Jr.

et al. 2006, Liesiö et al. 2007, Kleinmuntz 2007, Phillips and Bana e Costa 2007, Grushka-Cockayne

et al. 2008). Maximizing the value of a project portfolio is often complicated by multiple value

criteria and a large number of alternative portfolios. Plenty of applied and theoretical research

has been done to develop analytic support for such decisions, mainly under titles such as portfolio

decision analysis, project portfolio selection and resource allocation (for overviews see, e.g., Klein-
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Liesiö: Multiattribute Value Functions for Portfolio Decision Analysis
2

muntz 2007, Salo et al. 2011). Common to most of this work is the use of multiattribute value

or utility functions to model preferences over alternative resource allocations or portfolios, and

the deployment of mathematical optimization techniques to identify the most preferred portfolio

subject to resource and other portfolio constraints.

The additive-linear portfolio value function (Golabi et al. 1981), in which portfolio value is the

sum of additive multiattribute project values, has become a standard in multiobjective portfolio

decision analysis applications. Often its use is motivated by the simple preference elicitation pro-

cess and computational tractability: Preferences are captured by criterion specific project value

functions and criterion weights, and the optimal portfolio is obtained by solving an integer linear

programming (ILP) problem. However, the additive-linear portfolio value function assumes that

the value increase resulting from adding a project into the portfolio does not depend on what other

projects are included in the portfolio. This assumption does not often hold in practice: For instance,

Kleinmuntz (2007) reports experiences in health-care capital budgeting cases, where improvements

in the portfolio’s aggregate financial return become less important relative to improvements in

other attributes, when the aggregate financial return increases. Mild and Salo (2009) note that in

infrastructure asset portfolio management, the marginal value of improving assets’ quality class

may decrease, when the number of assets in the best quality class increases.

The literature offers very few tools to cope with non-linear criterion specific portfolio value. For

monetary attributes (e.g., cash-flow), the sum of the projects’ performances (e.g., net cash-flow)

is often a natural measure of portfolio performance, in which case a non-linear value function over

the sum can be used to capture non-constant marginal value (e.g., Argyris et al. 2011) or threshold

constraints can be introduced to limit the sum into a range where the marginal value is approxi-

mately constant (e.g., Kleinmuntz 2007). However, these approaches are not directly applicable for

‘non-additive’ attributes or attributes without a natural measurement scale, which both are com-

mon in applications of multiobjective portfolio decision analysis (e.g., Golabi et al. 1981, Ewing Jr.

et al. 2006, Liesiö et al. 2007, Kleinmuntz 2007, Phillips and Bana e Costa 2007). As an exception,

Grushka-Cockayne et al. (2008) use non-additive criterion specific portfolio value functions in the
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context of development project selection, but do not discuss the underlying preference assumptions

in detail.

In this paper we develop non-additive portfolio value functions based on the theory of measur-

able multiattribute value functions by Dyer and Sarin (1979). We show that project-symmetric

preferences and weaker preference independence assumptions than those underlying the additive-

linear portfolio value imply that the projects’ criterion specific values are combined with sym-

metric multilinear functions. The resulting criterion specific portfolio values are then aggregated

with an additive, a multiplicative or a multilinear function. We develop techniques to elicit these

value functions, derive several special forms of them and illustrate how they relate to the stan-

dard additive-linear portfolio value. Both exact and approximate integer programming models are

developed for maximizing these portfolio value functions subject to linear constraints.

The rest of this paper is structured as follows. Section 2 introduces the problem setting with an

illustrative example in ecological conservation site selection. Section 3 establishes the formal pref-

erence assumptions underlying the additive-linear model. Section 4 relaxes some of these assump-

tions, derives the corresponding portfolio value functions and develops techniques for eliciting these

functions. Section 5 presents optimization models for maximizing the developed portfolio value

functions. Section 6 applies these results to the example of Section 2. Section 7 discusses some

practical aspects of these models and Section 8 concludes.

2. Preliminary example

We begin with an illustrative example to introduce the standard framework for multiobjective

portfolio decision analysis by Golabi et al. (1981). The example is based on pilot projects carried out

in Finland in which public funds were used to purchase privately owned forest sites for conservation

for a fixed period of some 10–20 years. In many of these projects the public officials used an additive

multiattribute value function over relevant conservation criteria to form a priority order in which

the offered sites were acquired for conservation. Here we present a stylized version of this problem

in which the public officials seek to maximize the conservation value of a site portfolio subject to

a limited budget.
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Table 1 Criteria and measurement scales

i Criterion name Measurement unit x0
i x∗

i Xi

1 Area ha 0.5 5 [0.5,5]
2 Old broad-leaved trees m3 0 200 [0,200]
3 Natural water economy verbal none excellent {none, poor, good,excellent}
4 Endangered species number 0 100 {0,1, ...,100}
5 Closest nature reserve km 50 0 [0,50]

The sites (cf. projects) are evaluated with regard to n = 5 criteria indexed i ∈ I = {1, . . . , n}

whose measurement scales Xi and the most and the least preferred performance levels (x∗
i and x0

i ,

respectively) are presented in Table 1. The performance of any site is captured by a row-vector in

X1× ...×Xn (e.g., (3ha,100m3,poor,80,10km)) and (x0
1, ..., x

0
n) is the base-line performance that

results if a site is not selected (in general the base-line can be any performance in X1 × ...×Xn;

Golabi et al. 1981, Clemen and Smith 2009). Hence, the performance of a site portfolio is captured

by a matrix x with m rows denoted by xjI = (xj1, . . . , xjn), j ∈ J = {1, ...,m}. Here m does not have

to be equal to the number of actual site candidates available, but defines the maximum number

of site candidates in the value model (cf. choosing the end points for the measurement scales in

multiattribute models; see, e.g., von Winterfeldt and Edwards 1986).

A portfolio value function is a mapping V : X → R, where X = {X1 × ...×Xn}m is the m ∙ n-

dimensional space of all possible portfolio performances x. The additive-linear portfolio value func-

tion is V (x) =
∑n

i=1 wi(1)
∑m

j=1 vi(xji) (Golabi et al. 1981), where vi : Xi→ [0,1] are the criterion

specific site value functions and wi(1) is the weight of criterion i; it captures the value increase

when the criterion specific performance of a single site is changed from the least preferred level x0
i

to the most preferred level x∗
i . The criterion specific site value functions used in the example are

presented in Figure 1.

To formulate the portfolio optimization problem we introduce binary decision variables z1, . . . , zm,

such that zj = 1 if site j is selected and zj = 0 if it is not selected. The set of feasible decision

variable values is ZF = {z ∈ {0,1}m | Az ≤B}, where matrix A∈Rq×m and vector B ∈Rq code the

q linear feasibility constraints (see, e.g., Liesiö et al. 2007). The limited budget for acquiring sites

for conservation is modeled by a single constraint (q = 1) with B equal to the total budget and row-

vector A containing the cost of each site. With the additive-linear V the most preferred portfolio
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Figure 1 Criterion specific project value functions v1, ..., v5.

is obtained from the ILP problem maxz∈ZF

∑n

i=1 wi(1)
∑m

j=1[zjvi(x
go
ji )+ (1− zj)vi(xno

ji )], where xgo
ji

and xno
ji denote the performances when the jth site is selected and not selected, respectively (i.e.,

in this example xno
ji = x0

i for all j ∈ J, i∈ I).

The additive-linear value function does not allow non-constant marginal value; adding a

project into the portfolio results in the same value increase independent of the composition

of the portfolio. For instance, when considering a single site the DM may state that crite-

rion ‘Natural water economy’ (i = 3) is more important than ‘Endangered species’ (i = 4)

in the sense that w3(1) > w4(1). The additive-linear value function then implies that a site

with performances (y1ha, y2m3, exc.,0, y5km) adds more value than a site with performances

(y1ha, y2m3,none,100, y5km), (y1, y2, y5) ∈X1×X2×X5, even when the portfolio contains a lot of

other sites with excellent natural water economy but few endangered species.
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3. Preference Assumptions Underlying the Additive-Linear Portfolio Value

In this section we establish the four preference assumptions underlying the additive-linear portfolio

value function and in Section 4 relax the last one of these to derive a more general class of portfolio

value functions. We use the framework of measurable value functions by Dyer and Sarin (1979),

but in Section 7 discuss how corresponding results can be obtained with multiattribute utility

functions (Keeney and Raiffa 1976). The use of measurable value functions requires that the DM’s

preferences are captured by weak orders � and �D on X and X×X, respectively; xa � xb denotes

that portfolio xa is (equally) preferred to portfolio xb and (xa← xb) �D (xc← xd) denotes that

the change from portfolio xb to portfolio xa is (equally) preferred to the change from portfolio

xd to portfolio xc. Equal preferences (∼,∼D) and strict preferences (�,�D) among portfolios and

changes are defined in a standard way. A measurable portfolio value function V : X→R represents

these preference orders in the sense that for any portfolios xa, xb, xc, xd ∈X

V (xa)≥ V (xb) ⇔ xa � xb,

V (xa)−V (xb)≥ V (xc)−V (xd) ⇔ (xa← xb)�D (xc← xd).

V is unique up to positive affine transformations: if V ′ = αV + β for some α > 0, and β ∈R then

both V and V ′ imply the same preferences � and �D. Hence, for the rest of the paper we scale

the portfolio value such that V (x0) = 0 and V (x∗) = 1, where x0 and x∗ denote the least and most

preferred portfolios, respectively. Since V : X→ [0,1] can be interpreted as an m ∙n-attribute value

function we refer to the terms Xji of the cartesian product X =×j∈J,i∈I Xji as attributes. However,

the same set of n criteria is used to evaluate all projects and hence the measurement scale for each

attribute Xji is Xi. Figure 2 illustrates the attribute structure as a value tree.

The first preference assumption is that two portfolio performances xa and xb that contain exactly

the same project performances are equally preferred even if these performances are not produced

by the same projects. More specifically, if by changing the order of rows of xa it is possible to

obtain matrix that is equal to xb, then xa ∼ xb. In the site selection example this assumption would

imply, for instance, that
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Figure 2 The value tree consisting of m ∙n (twig-level) attributes Xji. The measurement scales are identical

in each column, i.e., Xji = Xi for all j ∈ J, i∈ I.

xa =








3ha 100m3 none 80 10km
0.5ha 0m3 none 0 50km
0.5ha 0m3 none 0 50km

...
...

...
...

...







∼








0.5ha 0m3 none 0 50km
3ha 100m3 none 80 10km

0.5ha 0m3 none 0 50km
...

...
...

...
...








= xb.

Assumption 1. The preferences � are project-symmetric, i.e., any portfolio performances xa, xb ∈

X that are equal up to permutation of rows are equally preferred.

The rest of the preference assumptions make use of the concept of weak difference independence

of attribute sets (Dyer and Sarin 1979). A set of attributes is said to be weak difference independent

(WDI) if the preferences among changes (�D) in the performance levels of these attributes are the

same for any performance levels of the other attributes (see Appendix A for mathematical details).

If a set of attributes is WDI, then it is also preference independent (PI), i.e., preferences among

the performance levels (�) of these attributes do not depend on the performance levels of the other

attributes (Dyer and Sarin 1979).

Preferences �D among changes in the criterion specific performance level of a single project

are assumed independent of (i) the performance of the project w.r.t. other criteria and (ii) the

performances of the other projects. This assumption is a pre-requisite for eliciting criterion specific
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project value functions (project scoring); for instance, making the statement 40 ← 0∼D 100← 60

regarding the value of endangered species on a site (see v4 in Figure 1) requires that the level of

the other attributes does not matter.

Assumption 2. Each attribute Xji, j ∈ J, i∈ I, is WDI.

Assumptions 1 and 2 ensure that there exist most x∗
i and least x0

i preferred levels on each

measurement scale Xi such that the most and least preferred portfolios x∗ and x0 satisfy x∗
ji = x∗

i

and x0
ji = x0

i for all i∈ I, j ∈ J . In the site selection example the most and least preferred portfolios

consist of m sites with performances (5ha,200m3, exc.,100,0km) and (0.5ha,0m3,none,0,10km),

respectively.

The third assumption is that preferences �D over attributes that measure the criterion

specific portfolio performance do not depend on the portfolio’s performance w.r.t. all other

attributes. This means that each criterion can be used as a meaningful measure of portfolio per-

formance by examining how projects in the portfolio perform w.r.t. the criterion in question.

In the site selection example this implies, for instance, that the DM can state if the change

(exc.,none, ...,none)T ← (none, ...,none)T in the water economy criterion (i = 3) is preferred to

the change (good,good,none, ...,none)T ← (none, ...,none)T without knowing the fixed levels of the

other attributes Xji, j ∈ J, i 6= 3.

Assumption 3. Each set of attributes measuring the criterion specific portfolio performance XJi =

X1i× ∙ ∙ ∙×Xmi, i∈ I, is WDI.

Assumptions 1–3 hold throughout the paper, but the one additional assumption necessary for

the additive-linear value function will be relaxed later. This is that preferences �D over the per-

formance levels of a single project are independent of the performances of other projects in the

portfolio. In our example this assumption implies, for instance, that the preferences between of site

performances (0.5ha,0m3, exc.,0,10km) and (0.5ha,0m3,none,100,10km) remain the same regard-

less of the performance levels of other sites in the portfolio.
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Assumption 4. Each set of attributes measuring the performance of a single project XjI = Xj1×

∙ ∙ ∙×Xjn, j ∈ J , is WDI.

Assumptions 1–4 are necessary for the additive-linear portfolio value function as stated by the

following theorem, which uses the following notation: xJi = (x1i, ..., xmi)T ∈XJi is the ith column

of matrix x ∈X, matrix (xji, x
0
ji
) ∈X has all elements at the least preferred levels except for xji

and (xJi, x
0
Ji

)∈X has all elements at the least preferred levels except for the ith column xJi.

Theorem 1. Preferences satisfy Assumptions 1–4 if and only if V is either

additive-linear: V (x) =
n∑

i=1

Vi(xJi), Vi(xJi) = wi(1)
m∑

j=1

vi(xji), or (1)

multiplicative: 1+ κV (x) =
n∏

i=1

[1+ κVi(xJi)], 1+ κVi(xJi) =
m∏

j=1

(1+ κwi(1)vi(xji))], (2)

where Vi : XJi → [0,1] and vi : Xi → [0,1] are the criterion specific portfolio and project value

functions, respectively, such that Vi(xJi) = V (xJi, x
0
Ji

) and vi(xji) = V (xji, x
0
ji
)/V (x∗

ji, x
0
ji
). Further-

more, wi(1) is the weight of criterion i such that wi(1) = V (x∗
ji, x

0
ji
).

All proofs are in Appendix C.

The choice between a multiplicative and an additive-linear V can be determined by examining

preferences over two criteria of a single project (cf. Dyer and Sarin 1979, Corollary 1). If a change in

the criterion specific performance of a project remains equally preferred when the project’s perfor-

mance w.r.t. some other criterion is altered, then V is additive-linear. For instance, if Assumptions

1–4 hold in the site selection example then V is additive-linear if and only if

(5ha,0m3)← (0.5ha,0m3)∼D (5ha,100m3)← (0.5ha,100m3), (3)

i.e., the preference for an increase in sites area from 0.5 to 5ha is not dependent on the volume of

old broad-leaved trees on the site. An alternative approach to establish that V is additive-linear

is to verify that each XjI , j ∈ J , is strictly difference independent instead of Assumption 4 (see

Golabi et al. 1981).
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The criterion weights w1(1), . . . ,wn(1) can be elicited through standard tradeoff techniques.

Select two criteria i, i′ ∈ I and let x = (x0
ji, x

0
ji′ , xK) be a portfolio in which project j has the

least preferred performance levels w.r.t. criteria i and i′, while all other performance levels xK ,

K = {(j, i), (j, i′)}, are held fixed at arbitrary levels. Without loss of generality we assume that

changing x0
ji to the most preferred performance level x∗

ji is preferred to changing x0
ji′ to x∗

ji′ . The

DM is asked to compensate the change x∗
ji′ ← x0

ji′ in criterion i′ with a change in criterion i by

defining a level xji ∈Xi such that (xji, x
0
ji′ , xK)← x∼D (x0

ji, x
∗
ji′ , xK)← x, which implies

V (xji, x
0
ji′ , xK) = V (x0

ji, x
∗
ji′ , xK)⇔ vi(xji)wi(1) = wi′(1), (4)

since all other terms in the sum (1) or product (2) cancel out. In the site selection example this

would correspond to defining site’s area y such that (yha,0m3) ∼ (0.5ha,200m3) when i = 1 and

i′ = 2. Establishing equality (4) for pairs of criteria i = 1, .., n−1, i′ = i+1 results in n−1 equations

that together with the chosen scaling V (x∗) = 1 define a unique additive-linear V . The additional

equation needed to define κ in the multiplicative V can be obtained by asking the DM to specify

levels xji � x0
i and xji′ � x0

i′ such that (xji, xji′ , xK)∼ (x0
ji, x

∗
ji′ , xK) (e.g., y ∈ (0.5,5) and y′ ∈ (0,200)

such that (yha, y′m3) ∼ (0.5ha,200m3)), which implies [1 + κwi(1)vi(xji)][1 + κw′i(1)vi′(xji′)] =

1+κwi′(1). These equalities clearly hold for any level of xK , wherefore the criterion weights cannot

depend on the criterion specific portfolio performance.

4. Non-additive Portfolio Value Functions

Due to Assumption 4 the value of adding a project into a portfolio cannot depend on how it

complements the portfolio’s criterion specific performances. Hence, we replace it with a weaker

assumption that the attributes measuring the performance of a single project XjI are mutually WDI

without restricting preference dependencies between projects. More specifically, we assume that if

the performances of projects other than j are fixed to arbitrary levels xjI ∈XjI =×j′ 6=j,i∈I Xj′i,

then preferences � and �D over the set of attributes XjI′ =×i∈I′ Xji, I ′ ⊂ I, do not depend on

the level of the remaining attributes XjI′ =×i/∈I′ Xji (i.e., XjI′ is conditionally WDI of XjI′ ; see

Appendix A for details).
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Assumption 5. Each subset of attributes measuring the performance of a single project XjI′ , j ∈

J, I ′ ⊂ I, is conditionally WDI of XjI′ given a fixed level of the other attributes XjI .

For instance, in the site selection example it may be that when a site portfolio is

empty (x0), criterion ‘Natural water economy’ (i = 3) is more important than ‘Endangered

species’ (i = 4) in the sense that the DM would rather select a site with performances

(0.5ha,0m3, exc.,0,10km) than a site with performances (0.5ha,0m3,none,100,10km). Assump-

tion 5 then implies (y1ha, y2m3, exc.,0, y5km) � (y1ha, y2m3,none,100, y5km) for any (y1, y2, y5) ∈

X1×X2 ×X5 as long as the portfolio does not include any other sites. However, it does not rule

out the possibility that (y1ha, y2m3, exc.,0, y5km)≺ (y1ha, y2m3,none,100, y5km) for all (y1, y2, y5)∈

X1 ×X2 ×X5, if the portfolio contains many sites with an excellent natural water economy, for

instance.

The following theorem shows that Assumption 5 still retains the additive or multiplicative aggre-

gation of the criterion specific portfolio value functions Vi, wherefore the same test (cf. (3)) can be

used to select between these alternative forms. However, each Vi is a symmetric strictly increasing

multilinear function of the criterion specific project values vi(x1i), ..., vi(xmi).

Theorem 2. Preferences satisfy Assumptions 1–3 and 5 if and only if V is either

additive-multilinear: V (x) =
n∑

i=1

Vi(xJi), or (5)

multiplicative-multilinear: 1+ κV (x) =
n∏

i=1

[1+ κVi(xJi)], (6)

where the criterion specific portfolio value functions are (symmetric) multilinear:

Vi(xJi) =
∑

J ′⊆J

wi(|J ′|)
∏

j∈J ′

vi(xji)
∏

j /∈J ′

(1− vi(xji)). (7)

In Equation (7) wi : {0, . . . ,m}→ [0,1] denotes the strictly increasing weighting function such that

wi(k) = Vi(x∗
J ′i, x

0

J ′i
) ∀ J ′ ⊆ J, |J ′|= k and wi(0) = Vi(x0

Ji) = 0.

In the value functions of Theorem 1 the ‘importance’ of each criterion is captured by a

single parameter wi(1), but additive- and multiplicative-multilinear V deploy m parameters
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wi(1), . . . ,wi(m). Each wi(k) corresponds to the criterion specific value of a portfolio that has k

projects with indexes J ′ ⊆ J on the most preferred level x∗
i and the other m− k projects on the

least preferred level x0
i (denoted by (xJ ′i, xJ ′i)). Due to project-symmetric preferences (Assump-

tion 1) Vi(xJ ′i, xJ ′i) remains constant for any J ′ whose size is k. To make the notation more

compact we denote 〈k,x∗
i 〉= (x∗

1i, ..., x
∗
ki, x

0
i , ..., x

0
i )

T and wi(k) = Vi(〈k,x∗
i 〉). More generally, we use

〈k1, y;k2, y
′〉 ∈XJi to denote the criterion specific performance of a portfolio with k1 projects at

performance level y ∈Xi, k2 projects at performance level y′ ∈Xi, and the rest of the projects at

the least preferred level x0
i , i.e.,

〈k1, y;k2, y
′〉= (y, . . . , y

︸ ︷︷ ︸
k1

elements

, y′, . . . , y′

︸ ︷︷ ︸
k2

elements

, x0
i , . . . , x

0
i︸ ︷︷ ︸

m−k1−k2
elements

)T ∈XJi.

4.1. Eliciting Criterion Specific Portfolio Value Functions

When the criterion specific project value function vi has been established, eliciting Vi (7) requires

defining the weighting function values wi(1), ...,wi(m). This can be done by first fixing the other

criteria to any level xJi and then building equally preferred portfolios (∼) or equally preferred

changes between portfolios (∼d) that only differ w.r.t. criterion i.

One approach is to go through the values k ∈ {1, . . . ,m−1} and for each k ask the DM to adjust

the level y ∈Xi until the portfolios 〈k,x∗
i 〉 and 〈k− 1, x∗

i ; 2, y〉 are equally preferred. For instance,

applying this approach for criterion ‘Old broad-leaved trees’ with k = 10 requires the DM to define

a volume y between 0 and 200m3 such that having nine sites with 200m3 and two sites with ym3

of broad-leaved trees is equally preferred to having ten sites with 200m3 of broad-leaved trees. In

terms of criterion specific portfolio value 〈k,x∗
i 〉 ∼ 〈k− 1, x∗

i ; 2, y〉 is equivalent to

Vi(〈k,x∗
i 〉) = Vi(〈k− 1, x∗

i ; 2, y〉) (8)

⇔wi(k) = v2
i (y)wi(k +1)+2vi(y)(1− vi(y))wi(k)+ (1− vi(y))2wi(k− 1)

⇔wi(k +1)−wi(k) = (
1− vi(y)

vi(y)
)2(wi(k)−wi(k− 1)). (9)

Notice that if y = x0
i (or y = x∗

i ) then 〈k,x∗
i 〉 ∼ 〈k−1, x∗

i 〉 (or 〈k,x∗
i 〉 ∼ 〈k+1, x∗

i 〉), which contradicts

the requirement that wi is strictly increasing. Since vi(y) is a known numerical value in the interval
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(0,1), Equation (9) is a linear constraint on the weighting function values (in fact comparison of

any two performances or changes in XJi results in a linear constraint; see Appendix B for details).

Repeating this question for each k = 1, . . . ,m− 1 results in m− 1 linear equations for m variables

which determines the values of wi(1), ...,wi(m) up to multiplication with a positive constant.

Another approach is to apply standard value function elicitation techniques (see, e.g., von Winter-

feldt and Edwards 1986) over the discrete measurement scale {0,1,2, ...,m} to obtain the criterion

specific values of portfolios consisting of k and m− k projects with performance levels x∗
i and x0

i ,

respectively. For instance, applying the difference standard sequence to the criterion ‘Natural water

economy’ (i = 3) starts by defining a unit stimulus, say the change from a portfolio with no water

economy (x0
J3) to a portfolio of 10 sites with excellent water economy, i.e., 〈k0, exc.〉, where k0 = 10

(see Figure 3). Then the DM is asked to define the number of projects k1, such that the change from

k0 = 10 to k1 sites with excellent natural water economy is equally preferred to the change from zero

to k0 = 10 such sites (k1 = 13 in Figure 3). Continuing this process results in a sequence of portfolio

performances 〈k1, exc.〉, 〈k2, exc.〉, etc., where each change 〈kl, exc.〉 ← 〈kl−1, exc.〉 is equally pre-

ferred. The equality V3(〈kl, x
∗
i 〉)−V3(〈kl−1, x

∗
i 〉) = w3(kl)−w3(kl−1) = w3(k0)−w3(0) = w3(k0) then

defines the weighting function value for each kl and the rest of the values can be obtained by linear

interpolation or by applying technique (8). Again the weighting function values are determined up

to multiplication with a positive constant since the value of the unit stimulus w3(k0) remains free.

4.2. Aggregating the Criterion Specific Portfolio Values

To fix the absolute weighting function values requires defining the tradeoffs among the criteria.

In addition to the scaling constraint V (x∗) = 1, n− 1 or n constraints are needed to establish a

unique additive- or multiplicative-multilinear V , respectively. These constraints can be obtained

with similar techniques as with the additive-linear and multiplicative V : Let x = (x0
ji, x

0
ji′ , xK) be a

portfolio in which project j has the least preferred performance levels w.r.t. criteria i and i′, while

all other performance levels xK are held fixed at arbitrary levels. The DM is asked to compensate
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Figure 3 Large dots correspond to the weighting function values obtained from the difference standard

sequence kl = 0,10,13,15,18,23,50 and small dots to the interpolated values.

the change x∗
ji′ ← x0

ji′ in criterion i′ with a change in criterion i by defining a level xji ∈Xi such

that

(xji, x
0
ji′ , xK)← (x0

ji, x
0
ji′ , xK) ∼D (x0

ji, x
∗
ji′ , xK)← (x0

ji, x
0
ji′ , xK)

⇔ V (xji, x
0
ji′ , xK) = V (x0

ji, x
∗
ji′ , xK). (10)

If the DM compares the criterion specific performances of a single project when the rest of the

projects are on the least preferred level, i.e., xK = x0
K , then (10) implies vi(xji)wi(1) = wi′(1), which

is equivalent to Equation (4) obtained for the multiplicative/additive-linear V .

The DM can also be asked to define a corresponding compensation when the portfolio already

contains some projects and hence xK 6= x0
K . In the site selection example, for instance, the DM

could be asked to first consider a portfolio with k = 25 sites, each with 200m3 of old broad-leaved

trees (i = 2) and an excellent natural water economy (i′ = 3). Then she would define y ∈X2 such

that adding either of the sites (∙, ym3,none, ∙, ∙) and (∙,0m3, exc., ∙, ∙) into the portfolio would be

equally preferred, i.e.,

(〈25,200m3; 1, ym3〉, 〈25, exc.〉) ← (〈25,200m3〉, 〈25, exc.〉)∼D
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(〈25,200m3〉, 〈26, exc.〉) ← (〈25,200m3〉, 〈25, exc.〉).

In general, if xK has k projects on the most preferred performance level w.r.t criterion i and k′

projects on the most preferred performance level w.r.t criterion i′, then Equation (10) yields

vi(xji)[wi(k +1)−wi(ki)] = wi′(k′ +1)−wi′(k′), (11)

1+ κ[vi(xji)wi(k +1)+ (1− vi(xji))wi(k)]
1+ κwi(k)

=
1+ κwi′(k′ +1)

1+ κwi′(k′)
(12)

for the additive- and multiplicative-multilinear V , respectively. Repeating this question for the

pairs of criteria i = 1, ..., n− 1, i′ = i + 1 results in n− 1 constraints and the additional constraint

needed for the multiplicative-multilinear V can be elicited similarly as with the multiplicative V .

When V is additive-multilinear standard weighting techniques can be applied to assess the trade-

offs among the criteria. For instance, in swing weighting (von Winterfeldt and Edwards 1986) the

DM first determines the order in which she would prefer to change the criteria from the least to the

most preferred level and then assesses swing weights s1, ..., sn that reflect the value increases of these

changes. In our setting these changes correspond to x∗
Ji← x0

Ji, i∈ I, and hence the normalized swing

weights are equal to w1(m), ...,wn(m). In turn, asking the DM to consider changes 〈k,x∗
i 〉 ← x0

Ji,

i∈ I, results in swing weights such that si/si′ = wi(k)/wi′(k) for all i, i′ ∈ I.

4.3. Special Forms of the Multilinear Criterion Specific Portfolio Value Function

The techniques for eliciting Vi in Section 4.1 produce linear constraints for the weighting function

values wi(1), ...,wi(m). If these constraints imply that the ratio ri between successive value increases

wi(k + 1) − wi(k) and wi(k) − wi(k − 1) is constant for any k ∈ {1, ...,m − 1}, then Vi is either

multiplicative (ri 6= 1) or linear (ri = 1). For instance, in the site selection example the DM may feel

that a site with excellent natural water economy is equally preferred to two sites with good natural

water economy. This statement does not depend on what other sites are included in the portfolio

and hence implies 〈k, exc.〉 ∼ 〈k− 1, exc.; 2,good〉 for all k ∈ {1, ...,m− 1}. Using Equation (9) this

can be written as w3(k +1)−w3(k) = r3[w3(k)−w3(k− 1)], where r3 = [1/v3(good)− 1]2 = 0.44.
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Corollary 1. Let Vi be symmetric multilinear (7). There exists ri ∈ (0,∞) such that the weighting

function wi satisfies wi(k +1)−wi(k) = ri[wi(k)−wi(k− 1)] for all k ∈ {1, ...,m− 1} if and only if

the criterion specific portfolio value function is either

linear: Vi(xJi) = wi(1)
m∑

j=1

vi(xji) or (13)

multiplicative: Vi(xJi) =
wi(1)
ri− 1

[
m∏

j=1

(1+ (ri− 1)vi(xji))− 1] for some ri ∈ (0,∞) \ {1}. (14)

In some cases the sum of the projects’ criterion specific performances
∑m

j=1 xji has a natural

interpretation as a measure of portfolio performance (cf. volume of old broad-leaved trees in the

site selection example). Corollary 2 shows that there are two special forms of symmetric multilinear

Vi that represent preferences over the sum of the projects’ criterion specific performances. The

first of these forms is obtained by substituting the linear criterion specific project value function

vi(xji) = (xji−x0
i )/(x∗

i −x0
i ) into the linear criterion specific portfolio value function Vi (13) which

gives

Vi(xJi) = wi(1)

∑m

j=1 xji−mx0
i

x∗
i −x0

i

. (15)

In turn, substituting the exponential vi(xji) = [1− e−(xji−x0
i )/ρ]/[1− e−(x∗

i −x0
i )/ρ], where ρ∈R \ {0},

into the multiplicative Vi (14) with ri = e−(x∗
i −x0

i )/ρ results in the exponential value function

Vi(xJi) = wi(1)
1− e−(

∑m
j=1 xji−mx0

i )/ρ

1− e−(x∗
i −x0

i )/ρ
. (16)

Corollary 2. Let Vi be symmetric multilinear (7). Vi represents preferences (xa
Ji, xJi) �

(xb
Ji, xJi)⇔

∑m

j=1 xa
ji ≥

∑m

j=1 xb
ji if and only if Vi is equal to either (15) or (16).

4.4. Comparison of Multilinear and Linear Criterion Specific Portfolio Value Functions

Figure 4 illustrates how the developed multilinear Vi compares to the standard linear Vi (13), i.e.,

the sum of the projects’ criterion specific values (scores). Each of Figures 4a–d shows a weighting

function wi(0), ...,wi(m) (m = 10,50) marked with black dots and a projection of the resulting

multilinear Vi: the gray area is the set of points (
∑m

j=1 vi(xji), Vi(xJi)) obtained when the portfolio



Liesiö: Multiattribute Value Functions for Portfolio Decision Analysis
17

performance xJi = (x1i, ..., xmi)T is varied through its entire domain XJi = Xi × ... × Xi. (vi is

assumed continuous and hence each vi(xji) obtains all values in the interval [0,1], see Appendix

B for details). The black dots are inside the gray area since (
∑m

j=1 vi(xji), Vi(xJi)) = (k,wi(k))

whenever xJi = 〈k,x∗
i 〉.

Figure 4 Multilinear Vi and the sum of criterion specific project values for four weighting functions wi: (a)

wi(k+1)−wi(k) = 0.7(wi(k)−wi(k−1) for all k = 1, ...,9 (cf. Corollary 1), (b) wi is obtained by

the difference standard technique (cf. Figure 3), (c) wi follows the cumulative normal distribution

function, and (d) wi is roughly equal to a step function.

Figure 4c illustrates that Vi is not necessarily increasing in the sum of scores; For instance,

portfolios 〈10, y〉, vi(y) = 0.5 (marked with ‘+’), and 〈5, x∗
i 〉 have criterion specific values 0.81 and

0.95 = wi(5), respectively, even though the sum of the projects’ scores for both portfolios is 5.

Furthermore, portfolio 〈4, x∗; 1, y′〉, where vi(y′) = 0.75 (marked with ‘*’) has a criterion specific
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value of 0.89 even though the sum of its projects’ scores is only 4.75. This highlights that even

though the criterion specific project value functions vi are measurable (i.e. cardinal), the sum of

project scores
∑m

j=1 vi(xji) does not provide a portfolio performance measure in the sense that

preferences are representable with a non-linear value function over this sum. Yet, it is somewhat

surprising that in some cases such an approach is almost equal to applying a multilinear Vi. For

instance, in Figure 4a the maximum criterion specific value difference of two portfolios with equal

sum of scores is only 0.05. In turn, the other extreme is illustrated in Figure 4d where wi is roughly

equal to a step function and the maximum value difference is close to 0.5.

4.5. The Multilinear Portfolio Value Function

We conclude this section by briefly discussing the case where preferences do not satisfy neither of

Assumptions 4 and 5.

Theorem 3. Preferences satisfy Assumptions 1–3 if and only if V is multilinear:

V (x) =
∑

I′⊆I

λ(I ′)
∏

i∈I′

Vi(xJi)
λ({i})

∏

i/∈I′

(1−
Vi(xJi)
λ({i})

), (17)

where λ(I ′) = V (x∗
JI′ , x

0

JI′
), I ′′ ⊂ I ′⇒ λ(I ′′) < λ(I ′), V (x0) = λ(∅) = 0, V (x∗) = λ(I) = 1 and the

criterion specific portfolio value functions Vi are symmetric multilinear (7). Furthermore, (5) and

(6) are obtained from (17) by substituting λ(I ′) =
∑

i∈I′ λ({i}) and 1+κλ(I ′) =
∏

i∈I′(1+κλ({i})),

respectively.

In the multilinear V each λ corresponds to the value of a portfolio with each criterion i either at the

most preferred level x∗
Ji or at the least preferred level x0

Ji. For instance, in the site selection example

λ({1,2}) = V (x), where portfolio x consists of m projects with performances (x∗
1, x

∗
2, x

0
3, x

0
4, x

0
5) =

(5ha,200m3,none,0,50km). Vi can be elicited with the techniques presented in Section 4.1, after

which the values of λ can be obtained by examining preferences over the performances of a single

project X1× ∙ ∙ ∙×Xn. More specifically, by setting xj′i = x0
i for all j′ ∈ J \ {j}, i∈ I, (17) becomes

V (x) =
∑

I′⊆I

λ(I ′)
∏

i∈I′

vi(xji)
wi(1)
wi(m)

∏

i/∈I′

(1− vi(xji)
wi(1)
wi(m)

),
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where wi(1)/wi(m) and vi(xji) are known numbers. However, the elicitation burden grows exponen-

tially in the number of criteria n, wherefore in most cases it may be more practical to reformulate

the evaluation criteria (cf. Keeney and von Winterfeldt 2007) so that Assumption 5 holds and thus

less complex additive- or multiplicative-multilinear portfolio value functions of Theorem 2 can be

used.

5. Optimization Models for Maximizing Portfolio Value

The most preferred portfolio that satisfies the feasibility constraints can be identified by solving

the integer programming problem

max
z∈ZF

V (x̂(z)), ZF = {z ∈ {0,1}m | Az ≤B}, (18)

where function x̂ : {0,1}m→X maps the vector of decision variables z to performance levels x̂(z)

such that for each project j, x̂jI(z) = (xgo
j1 , ..., x

go
jn) if zj = 1 and x̂jI(z) = (xno

j1 , ..., xno
jn) if zj = 0. To

our knowledge there exist no well established algorithms to solve (18) when V is not additive-linear

(1). Hence, we develop two approaches for solving (18): An exact implicit enumeration algorithm

for small problems (m < 100) and an approximate mixed integer linear programming (MILP) model

for large problems (m > 100) with an additive-multilinear V (5).

5.1. Implicit Enumeration Algorithm

To keep the notation simple we first introduce the implicit enumeration algorithm with a single

feasibility constraint az ≤ b and then extend it to handle multiple constraints. The algorithm

enumerates the possible values of decision variables z starting with z = (0, . . . ,0)T , and composes

of two main parts: The Forward-loop and the Backtrack-step. The Forward-loop successively sets

zk← 1 in an increasing order of indexes k and at each iteration in which z is feasible compares the

value of portfolio x̂(z) to the greatest portfolio value found so far, V ∗. If V (x̂(z)) is greater than

V ∗, then z is stored as the best solution z∗. The Forward-loop is terminated when k reaches m,

whereafter the algorithm moves to the Backtrack-step. The Backtrack-step sets zm← 0, finds the
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greatest index k with zk = 1 and sets zk← 0. If such an index does not exist, then the algorithm

terminates; otherwise the Forward-loop is repeated.

Two additional steps are implemented into the Forward-loop to avoid enumeration of all 2m

possible values of z. These steps utilize the property that at any time zj = 0 for all j > k, and

continuing the Forward-loop can only change the values of zk+1, ..., zm to one. First, if the solution

z is infeasible and it cannot be made feasible by setting zj = 1 for some indexes j ∈ {k, . . . ,m},

then there is no need to continue the Forward-loop as it would only produce infeasible solutions.

Second, if the portfolio value V (x̂(z)) that can be obtained by setting zj = 1 for some indexes

j ∈ {k, . . . ,m} cannot exceed V ∗, then continuing the Forward-loop would only produce sub-optimal

solutions. To determine whether this conditions holds, we compute an upper bound si for the sum

of criterion specific projects’ values
∑m

j=1 vi(x̂ji(z)) when z1, ..., zk are fixed and zk+1, ..., zm are

optimized subject to the feasibility constraint, i.e.,

si←
k∑

j=1

vi(x̂ji(z))+ max
z̃j∈[0,1]

k<j≤m

{
m∑

j=k+1

z̃jvi(x
go
ji )+ (1− z̃j)vi(xno

ji ) |
m∑

j=k+1

z̃jaj ≤ b−
k∑

j=1

zjaj}. (19)

In (19) the integrality constraints on zk+1, ..., zm are relaxed to obtain a linear programming problem

that can be solved efficiently (see, e.g., Martello and Toth 1990). The upper bound si for the sum

of scores implies also an upper bound V i(si) for each Vi(x̂Ji(z)) (see Figure 4 and Appendix B

for details). Furthermore, V can be written as V (x) = g(V1(xJ1), . . . , Vn(xJn)) where g :Rn→R is

increasing in all arguments, wherefore g(V 1(s1), . . . , V n(sn)) is an upper bound for the portfolio

value V (x̂(z)). Formally the implicit enumeration algorithm can be stated as follows:

z← (0, . . . ,0)T , k← 0, z∗←∅, V ∗←−∞

If
∑m

j=1 zjaj ≤ b then z∗← z, V ∗← V (x̂(z))

Repeat

Repeat (Forward-loop)

k← k +1, zk← 1

If
∑m

j=1 zjaj ≤ b and V (x̂(z)) > V ∗ then z∗← z , V ∗← V (x̂(z))

If
∑k

j=1 zjaj +
∑m

j=k+1 min{0, aj}> b then break loop
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If g(V 1(s1), . . . , V n(sn)) < V ∗ then break loop

Until k = m

Backtrack-step:

zm← 0

k←max({j ∈ J | zj = 1}∪ {0})

If k > 0 then zk← 0

Until k = 0

Theorem 4. Let z∗ be the output of the implicit enumeration algorithm. If z∗ = ∅ then {z ∈

{0,1}m | az ≤ b}= ∅; otherwise z∗ ∈ argmaxz∈{0,1}m{V (x̂(z)) | az ≤ b}.

Extending the algorithm to account for q > 1 feasibility constraints Az ≤B is straightforward.

First, if
∑k

j=1 zjAlj +
∑m

j=k+1 min{0,Alj} > Bl holds for any l = 1, ..., q, then the lth constraint

cannot be satisfied by setting zj = 1 for any j ∈ {k, . . . ,m}. Thus, one or more variables zj = 1, j ≤ k,

have to be set to zero to obtain a feasible solution and the Forward-loop can be terminated. Second,

an upper bound for the solution of optimization problem (19) with q feasibility constraints and

m−k integrality constraints can be obtained by minimizing its Lagrangean dual with subgradient

optimization (see, e.g., Bertsimas and Tsitsiklis 1997).

5.2. MILP Approximation

If V is additive-multilinear, problem (18) can be approximated with a MILP model. This

requires choosing a piecewise linear mapping Ṽi : [0,m] → [0,1] for each criterion i ∈ I such

that the difference between the exact criterion specific portfolio value Vi(xJi) and its approxi-

mation Ṽi(
∑m

j=1 vi(xji)) is ‘small’ for all xJi ∈ XJi. Let χi
1 < χi

2... < χi
li

denote the real-valued

points on the interval [0,m] such that Ṽi is linear on each interval [χi
d, χ

i
d+1]. Then the problem

maxz∈{0,1}m{
∑n

i=1 Ṽi(
∑m

j=1 vi(x̂ji(z))) | Az ≤B} can be formulated as the following MILP problem

(see, e.g., Bertsimas and Tsitsiklis 1997):

max
z∈{0,1}m

θi,ψi,i∈I

n∑

i=1

li∑

d=1

θi
dṼi(χi

d) (20)

Az ≤B (21)
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n∑

j=1

zjvi(x
go
ji )+ (1− zj)vi(xno

ji ) =
li∑

d=1

θi
dχ

i
d ∀ i∈ I (22)

li∑

d=1

θi
d = 1 ∀ i∈ I (23)

li−1∑

d=1

ψi
d = 1 ∀ i∈ I (24)

θi
1 ≤ ψi

1 ∀ i∈ I (25)

θi
d ≤ ψi

d−1 + ψi
d ∀ d∈ {2, ...., li− 1} i∈ I (26)

θi
li
≤ ψi

li−1 ∀ i∈ I (27)

θi ∈ [0,1]li , ψi ∈ {0,1}li−1, ∀ i∈ I. (28)

The number of additional variables and constraints in the MILP problem (20)–(28) depends

on the number of points χi
d used in the approximations Ṽi, i = 1, ..., n. For instance, the Vi illus-

trated in Figure 4b can be approximated by seven points χi = (0,10,13,15,18,23,50) with values

Ṽi(χi
d) = wi(χi

d) requiring only 13 additional variables of which 6 are integer valued and 9 additional

constraints (23)–(27). If Ṽi is concave there is no need to introduce the binary variables ψi and

the associated constraints (24)–(27), because Ṽi(
∑li

d=1 θi
dχ

i
d)≥

∑li
d=1 θi

dṼi(χi
d) for any non-negative

θ1, ...., θli that sum up to one. For instance, the Vi illustrated in Figure 4a can be approximated

by 11 points χi = (0,1, . . . ,10) with values Ṽi(χi
d) = wi(χi

d) resulting in 11 additional continuous

variables θi and one additional constraint (23).

6. Conservation Site Selection Example Revisited

We continue with the site selection example to illustrate use of the additive-multilinear portfolio

value function and the developed optimization models. This requires eliciting the criterion specific

portfolio value functions V1, ..., V5 (see Figure 5) in addition to the criterion specific site value

functions v1, ..., v5 specified in Figure 1. The marginal value of every additional conservation hectare

is constant, wherefore both v1 and V1 are linear. The volume of ‘Old broad-leaved trees’ is a natural

performance measure of both sites and site portfolios, wherefore the use of an exponential value

function (16) over the net volume is appropriate when the marginal value is not constant (Corollary
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2). The scaling coefficient ρ can be elicited by asking a midway level y such that a change from the

least preferred level of 0m3 to level ym3 is equally preferred to a change from the level ym3 to the

most preferred level of 50 ∙ 200m3 = 10000m3. Specifying y = 700 results to the exponential value

functions v2 and V2.

The criterion specific portfolio value functions V3, V4 and V5 can be elicited with techniques of

Section 4.1. The DM uses the difference standard technique for criterion ‘Natural water economy’

and establishes that the successive changes between portfolios x0
J3, 〈3, exc.〉, 〈18, exc.〉 and 〈45, exc.〉

are equally preferred. Use of linear interpolation/extrapolation to obtain the weighting function

values w3(k), k ∈ J \ {3,18,45}, yields V3 presented in Figure 5. For criterion ‘Closest natural

reserve’ the DM states that adding a site to the portfolio that is right next to a natural reserve

is equally preferred to adding two sites, both in a distance of 7.2km from a natural reserve. The

statement does not dependent on how close the other sites in the portfolio are to a natural reserve,

wherefore it implies

〈k,0km;1,0km〉 ∼ 〈k,0km;2,7.2km〉 ∀ k ∈ {0, ....,m− 2}.

Equation (9) implies w5(k + 2)−w5(k + 1) = r5[w5(k + 1)−w5(k)] for all k = 0, ...,m− 2, where

r5 = (1/v5(7.2)− 1)2 = 1.1, and hence V5 is multiplicative (Corollary 1).

The absolute values of V1, ..., V5 can be established with the methods of Section 4.2. For instance,

the comparison of criteria ‘Area’ and ’Endangered species’ can be operationalized by asking the

DM to specify the number of species y ∈X4 such that

(〈10,5 ha〉, 〈9,100 species〉) ← (〈9,5 ha〉, 〈9,100 species〉)∼D

(〈9,5 ha〉, 〈9,100 species; 1, y species〉) ← (〈9,5 ha〉, 〈9,100 species〉).

The answer y = 51 results in the constraint w1(10)−w1(9) = v4(51)[w4(10)−w4(9)], where v4(51) =

0.53 (see Equation (11)). The elicited w1 and w4 in Figure 5 satisfy w1(10)−w1(9) = w1(50)/50

and w4(10) − w4(9) ≈ 0.0223w4(50), wherefore the constraint is roughly equivalent to w1(50) ≈

0.6w4(50) (cf. Figure 5 where w1(50) = 0.15 and w4(50) = 0.25). A similar comparison of criteria
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Figure 5 Criterion specific portfolio value functions V1, ..., V5. The grey area represents the set

{(
∑m

j=1 vi(xji), Vi(xJi)) | vi(xji) ∈ [0,1], j = 1, ...,50} and the black points correspond to

(k,wi(k)) for k = 0, ...,m. The criterion specific portfolio values Vi(x̂(z∗)), Vi(x̂(za)) and Vi(x̂(zb))

are marked with asterisks, circles, and squares, respectively.

i = 2,3,5 and criterion i′ = 1 results in 3 additional constraints that together with the requirement

V (x∗) =
∑5

i=1 wi(50) = 1 define the absolute values of wi.

Table 2 contains a randomly generated data set of 50 sites to test the optimization models. The

performance levels xgo
ji are uniformly distributed on each measurement scale and xno

ji = x0
i for all

j = 1, ..,50, i = 1, ..,5. The cost aj of acquiring site j for conservation is obtained by generating a

random per hectare cost uniformly distributed between 80 and 120 euros for each site, and then
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multiplying it with the area of the site xgo
j1 . The total budget is b = 7083 euros, which corresponds

to 50% of the sum of all sites’ costs.

The optimal portfolio z∗ was solved with a Java implementation of the implicit enumeration

algorithm (Section 5.1) in less than 2 seconds with a standard laptop (2.53 GHz, 4GB memory).

The overall value of z∗ is V (x̂(z∗)) = 0.422, and the criterion specific portfolio values and the

sums of the projects’ scores are shown in Figure 5. The MILP model (20)–(28) in which V2, ..., V5

were approximated by piecewise linear extensions of weighting functions (i.e., χi = (0,1, ...,m)T ,

Ṽi(χi
d) = wi(χi

d), i = 2, ...,5, d = 1, ...,m + 1) produced the same optimal solution z∗ in less than a

second.

For comparison, we also computed optimal solutions for the additive-linear model

maxz∈ZF

∑50

j=1 zj

∑5

i=1 w̃ivi(x
go
ji ) with two sets of criterion weights w̃. First, za denotes the

optimal portfolio when the weights capture the entire ‘portfolio value swings’ x∗
Ji ← x0

Ji, i.e,

w̃ = (w1(50), ...,w5(50)) = (0.15,0.1,0.15,0.25,0.35). Second, zb denotes the optimal portfolio

when the weights correspond to the ‘project value swings’ (x∗
1i, x

0
2i, ..., x

0
50i) ← x0

Ji, i.e, w̃ =

(w1(1), ...,w5(1))/
∑

i wi(1) ≈ (0.08,0.46,0.46,0.00,0.01). The additive-multilinear overall values

were V (x̂(za)) = 0.366 and V (x̂(zb)) = 0.305, which correspond to 83% and 72% of the optimal

value of V (x̂(z∗)) = 0.422. The compositions of za and zb are presented in Table 2, and the crite-

rion specific values Vi(x̂Ji(za)) and Vi(x̂Ji(zb)) in Figure 5. The number of different project specific

decisions between z∗ and za is 13, and 18 between z∗ and zb. This exemplifies that applying the

additive-linear model in case where the assumption of constant marginal criterion specific portfolio

value does not hold can lead to substantial value loss and erroneous project specific decisions.

7. Discussion

The developed portfolio value functions can be readily integrated with existing project portfolio

selection models and processes based on the additive-linear portfolio value function. The phases

of structuring objectives, developing criteria to measure the achievement of these objectives and

eliciting criterion specific project value functions (i.e., project scoring) remain unchanged. For



Liesiö: Multiattribute Value Functions for Portfolio Decision Analysis
26

Table 2 Projects’ performances and costs
j = 1 x

go
j1 x

go
j2 x

go
j3 x

go
j4 x

go
j5 aj z∗

j za
j zb

j

1 2.3 173 Poor 18 0.7 213 0 1 1
2 4.1 72 Poor 32 6.1 438 0 0 0
3 1.7 156 None 9 7.5 139 0 1 1
4 3.3 172 Exc. 46 2.8 329 1 1 1
5 3.7 195 None 67 9.4 425 1 0 0
6 0.8 114 Exc. 26 9.1 92 1 1 1
7 0.9 72 Good 69 10 106 1 1 1
8 1.6 127 Exc. 67 1.3 157 1 1 1
9 2.1 155 Good 56 9.1 186 1 1 1
10 4.2 180 Poor 69 7.8 440 1 0 1
11 3.5 126 Poor 36 10 345 0 0 0
12 0.6 110 Poor 53 3.2 68 1 1 1
13 1.8 47 Exc. 23 8 147 1 1 1
14 2.1 140 Poor 8 6.6 233 0 1 1
15 1.5 34 Good 13 8.2 122 1 1 1
16 3 180 None 42 7.9 289 1 0 1
17 1.5 59 Good 99 6.3 125 1 1 1
18 2.2 78 Good 47 0.1 187 1 1 1
19 1.4 59 None 48 0.3 165 1 1 0
20 4.2 108 Good 25 1.3 342 0 1 1
21 3 148 Poor 76 9.2 325 1 1 1
22 5 39 Exc. 82 5.5 549 1 0 0
23 3.6 39 Good 96 6.2 383 1 1 0
24 0.5 119 Good 77 4.9 52 1 1 1
25 3 48 None 25 2.9 342 0 1 0
26 2.5 49 None 53 3.2 279 1 1 0
27 3.9 44 Poor 9 1.7 411 0 0 0
28 2.9 165 None 80 7.6 343 1 1 0
29 3 1 Exc. 92 9.3 292 1 1 1
30 3 132 Poor 18 7.4 354 0 0 1
31 4.2 73 Poor 47 8.6 490 0 0 0
32 1.5 149 Exc. 62 7.7 138 1 1 1
33 4.9 148 Poor 22 2.9 472 0 0 0
34 4.1 192 Exc. 68 8.9 340 1 1 1
35 4.7 184 Poor 10 5.9 442 0 0 1
36 1.6 137 Exc. 51 3.4 163 1 1 1
37 1.1 195 Poor 20 9.1 114 1 1 1
38 2.9 4 Good 76 7.5 273 1 1 0
39 0.6 91 Exc. 45 4.2 70 1 1 1
40 4.2 21 None 36 1.4 452 0 0 0
41 2.1 20 Good 31 4.4 249 0 1 0
42 1.3 124 None 34 8.8 156 0 0 1
43 2.1 28 Exc. 20 5.6 211 1 1 1
44 3.5 197 Poor 29 2.3 409 0 1 1
45 3 105 Good 36 5.4 318 0 1 1
46 4.8 51 Poor 18 3.5 503 0 0 0
47 4.6 124 None 25 8.5 473 0 0 0
48 2 176 Exc. 34 4.8 170 1 1 1
49 4.5 59 Good 59 2.4 516 1 0 0
50 3.5 82 Exc. 30 8.6 332 0 0 1

those criteria that have non-constant marginal value, a multilinear Vi can be elicited with methods

of Section 4.1. The choice among the additive, multiplicative or multilinear aggregation of the

criterion specific portfolio values can be determined by examining which one of these forms best

captures preferences over the performance levels of a single project X1 × ... × Xn. Hence, the

additive-multilinear portfolio value function may well be adequate in most applications.

The elicitation burden can be reduced by eliciting only the weighting function values that are

needed. For instance, if the value of not implementing a project is equal to vi(x0
i ) for all i∈ I, then

the weighting functions wi needs to be elicited only up to the point m′ which is the maximum

number of projects that can be included in any feasible portfolio, i.e., m′ = max{
∑m

j=1 zj |z ∈ZF}.

This is because in Equation (7) each wi(k) such that k > m′ is always multiplied by vi(x0
i ) = 0.
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For instance, if there are m = 200 project candidates, but at most 40 can be included in a feasible

portfolio, then only the values wi(1), ...,wi(40) need to be elicited. Furthermore, if m′ is increased

to m′′ due to additional resources or new project candidates, it suffices to elicit the missing values

wi(m′ +1), ...,wi(m′′).

The main results of this paper can be readily extended to decision making under uncertainty by

applying the multiattribute utility theory (MAUT; Keeney and Raiffa 1976), which uses a single

preference relation to compare probability distributions over multiattribute performance levels. In

MAUT, a set of attributes is utility independent (UI) if preference order of probability distribu-

tions on the attribute set is not affected by the fixed level of other attributes. Utility independence

implies the same restrictions on the utility function as weak difference independence does on the

measurable value function (Dyer and Sarin 1979). Hence, Theorems 1–3 hold if the terms ‘value

function’ and ‘WDI’ are replaced by ‘utility function’ and ‘UI’, respectively. This notwithstanding,

elicitation questions that harness preferences between changes (e.g. standard difference technique)

cannot be applied as such, but have to be replaced with comparisons of probability distribu-

tions. Furthermore, replacing the objective function in (18) with expected portfolio utility requires

evaluating multidimensional integrals, unless the attribute specific performances are stochastically

independent.

8. Conclusions

In this paper we have relaxed some common preference assumptions in multiobjective portfolio

decision analysis. Specifically, if each criterion is weak difference independent, both as a project

and portfolio performance measure, and preferences are independent of project indexing, then (i)

the criterion specific portfolio values are captured by symmetric multilinear functions and (ii)

these values can be aggregated with a (non-symmetric) multilinear function to obtain the overall

portfolio value. Furthermore, if preferences over the performances of a single project are captured

by an additive (a multiplicative) value function, then the overall portfolio value is an additive (a

multiplicative) function of the symmetric multilinear criterion specific portfolio values.
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This paper suggests several avenues for future research. First, preference elicitation procedures

need to be tested and further developed in real-life case-studies. Second, extending the value models

to admit incomplete preference information by modeling sets of feasible weighting functions can

be fruitful based on experiences from similar extensions to the additive-linear value model (Liesiö

et al. 2007). Finally, it would be interesting to examine the implications of the relaxed preference

assumptions to decision support models that prioritize projects based on their value-to-cost ratios.

Appendix A: Weak Difference Independence

The set of attributes XK , K ⊆ J × I, is WDI if

(xa
K , xK)← (xb

K , xK) �D (xc
K , xK)← (xd

K , xK)⇒

(xa
K , x′

K
)← (xb

K , x′
K

) �D (xc
K , x′

K
)← (xd

K , x′
K

) ∀ x′
K
∈XK .

Evaluating V over the set of attributes XK with other attributes XK fixed at any levels xa
K

must

imply exactly the same preferences �D as evaluating V with the other attributes at some other

level xb
K
∈XK and hence

V (xK , xa
K

) = α(xa
K

)V (xK , xb
K

)+ β(xa
K

) ∀xK ∈XK , (29)

where α,β depend only on attributes XK and α > 0 (Dyer and Sarin 1979, Theorem 2). WDI

extends naturally to situations where preferences over XK are independent of some attributes XK′ ,

K ′ ⊂K, but may depend on the other attributes XK′′ , K ′′ = K \K ′. More specifically, the set of

attributes XK is conditionally WDI of attributes XK′ , if for any fixed xK′′ ∈XK′′

(xa
K , xK′ , xK′′)← (xb

K , xK′ , xK′′) �D (xc
K , xK′ , xK′′)← (xd

K , xK′ , xK′′)⇒

(xa
K , x′

K′ , xK′′)← (xb
K , x′

K′ , xK′′) �D (xc
K , x′

K′ , xK′′)← (xd
K , x′

K′ , xK′′) ∀ x′
K′ ∈XK′ .

If XK is conditionally WDI of XK′ , then for any xK′′ ∈XK′′ V must satisfy

V (xK , xa
K′ , xK′′) = α(xa

K′)V (xK , xb
K′ , xK′′)+ β(xa

K′) ∀xK ∈XK , (30)

where α,β depend only on attributes XK′ and α > 0 (cf. conditional utility independence; Keeney

and Raiffa 1976).
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Appendix B: Properties of the Symmetric Multilinear Criterion Specific Portfolio Value

Among portfolios that have the sum of the projects’ scores equal to s, the greatest and lowest Vi

are obtained by portfolios with the composition 〈k1, x
∗
i ;k2, y〉 for some k1, k2 ≥ 0 and y ∈Xi such

that k1vi(x∗
i )+ k2vi(y) = k1 + k2vi(y) = s.

Theorem 5. Let i∈ I and xJi ∈XJi. Then Vi(xJi)∈ [V i(
∑m

j=1 vi(xji)), V i(
∑m

j=1 vi(xji))], where

V i(s) := min
k1,k2∈Z

{Vi(〈k1, x
∗
i ;k2, y〉) | k1 ∈ [0, s], k2 ∈ [s− k1,m− k1], vi(y) = (s− k1)/k2}

V i(s) := max
k1,k2∈Z

{Vi(〈k1, x
∗
i ;k2, y〉) | k1 ∈ [0, s], k2 ∈ [s− k1,m− k1], vi(y) = (s− k1)/k2}.

Using Equation (7) to evaluate the Vi in these optimization problems requires the enumeration

of all 2m−1 subsets J ′ ⊆ J , which is not practical since often in applications the number of projects

m can be in the dozens. However, an alternative form for (7) is Vi(xJi) =
∑m

k=0 wi(k)F i
k(xJi), where

the terms

F i
k(xJi) :=

∑

J′⊆J
|J′|=k

∏

j∈J ′

vi(xji)
∏

j /∈J ′

(1− vi(xji)), (31)

depend only on the project scores vi(xji) and can be evaluated with a computational effort pro-

portional to m2 (for details see, e.g., Chen and Liu (1997)).

Using this form in the additive-multilinear portfolio value (5) results in V (x) =

∑n

i=1

∑m

k=0 wi(k)F i
k(xJi), wherefore any statement that two changes are equally preferred corre-

sponds to a linear constraint on the weighting function values wi(0), ...,wi(m), i∈ I, i.e.,

xa← xb ∼D xc← xd⇔
n∑

i=1

m∑

k=1

wi(k)[F i
k(x

a
Ji)−F i

k(x
b
Ji)−F i

k(x
c
Ji)+ F i

k(x
d
Ji)] = 0

for any xa, xb, xc, xd ∈X.

Appendix C: Proofs

The proofs of Theorems 1–3 are listed in a reverse order since the proof of Theorem 1 builds on

Theorem 2, and the proof of Theorem 2 buils on Theorem 3. The following lemma provides some

general properties of multilinear mappings Md : [0,1]d→R that are used throughout the proofs.
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Lemma 1. Let d∈N+, Sd = {1, ..., d}, a∈ [0,1]d, b(S′)∈R+ for all S′ ⊆ Sd, c∈R and

Md(a) =
∑

S′⊆Sd

b(S′)
∏

s∈S′

as

∏

s∈Sd\S′

(1− as).

(i) If b(S′) = 1∀S′ ⊆ S, then Md(a) = 1.

(ii) If b(S′) =
∑

s∈S′ b({s})∀S′ ⊆ Sd, b(∅) = 0, then Md(a) =
∑

s∈Sd
asb({s}).

(iii) If 1+cb(S′) =
∏

s∈S′ [1+cb({s})]∀S′ ⊆ Sd, b(∅) = 0, then 1+cMd(a) =
∏

s∈Sd
[1+ascb({s})].

(iv) If b(S′) > b(S′′)∀S′′ ⊂ S′ ⊆ Sd, then Md is strictly increasing and linear in each as.

Proof. (i)-(iii) are proved by induction using the following result: Let S′ ⊆ Sd and denote

Ad(S′) :=
∏

s∈S′ as

∏
s∈Sd\S′(1−as). Then Md(a) =

∑
S′⊆Sd

b(S′)Ad(S′) =
∑

S′⊆Sd,d∈S′ b(S′)Ad(S′)+

∑
S′⊆Sd,d/∈S′ b(S′)Ad(S′) =

∑
S′⊆Sd−1

b(S′ ∪ {d})Ad(S′ ∪ {d}) +
∑

S′⊆Sd−1
b(S′)Ad(S′) =

∑
S′⊆Sd−1

b(S′ ∪{d})adAd−1(S′)+
∑

S′⊆Sd−1
b(S′)(1− ad)Ad−1(S′)⇔

Md(a) =
∑

S′⊆Sd−1

[b(S′ ∪{d})ad + b(S′)(1− ad)]Ad−1(S′). (32)

(i) For d = 1, M1(a) = (1− a1)+ a1 = 1. For d > 1 (32) gives

Md(a) =
∑

S′⊆Sd−1

[ad +(1− ad)]Ad−1(S′) =
∑

S′⊆Sd−1

Ad−1(S′) = Md−1(a).

(ii) For d = 1, M1(a) = b({1})a1 + b(∅)(1− a1) = a1b({1}). For d > 1 (32) gives

Md(a) =
∑

S′⊆Sd−1

[(b(S′)+ b({d}))ad + b(S′)(1− ad)]Ad−1(S′)

= b({d}))ad

∑

S′⊆Sd−1

Ad−1(S′)

︸ ︷︷ ︸
=1

+
∑

S′⊆Sd−1

b(S′)Ad−1(S′)

︸ ︷︷ ︸
=Md−1(a)

= b({d}))ad + Md−1(a).

(iii) For d = 1, 1+ cM1(a) = 1+ c[b({1})a1 + b(∅)(1− a1)] = 1+ cb({1})a1. For d > 1 (32) gives

1+ cMd(a) =

=1
︷ ︸︸ ︷∑

S′⊆Sd−1

Ad−1(S′)+
∑

S′⊆Sd−1

[cb(S′ ∪{d})ad + cb(S′)(1− ad)]Ad−1(S′)

=
∑

S′⊆Sd−1

[

=cb(S′∪{d})ad︷ ︸︸ ︷
(1+ cb({d}))(1+ cb(S′))ad− ad +1+ (1− ad)cb(S′)]Ad−1(S′)

=
∑

S′⊆Sd−1

[(1+ cb({d}))ad +1− ad](1+ cb(S′))Ad−1(S′)
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= [1+ cb({d})ad][
∑

S′⊆Sd−1

Ad−1(S′)

︸ ︷︷ ︸
=1

+c
∑

S′⊆Sd−1

b(S′)Ad−1(S′)

︸ ︷︷ ︸
=Md−1(a)

].

(iv) From (32) it is easy to see that for any t∈ Sd

Md(a) =
∑

S′⊆(Sd\{t})

[b(S′ ∪{t})at + b(S′)(1− at)]
∏

s∈S′

as

∏

s∈Sd\{t}\S′

(1− as)

= at

∑

S′⊆(Sd\{t})

[b(S′ ∪{t})− b(S′)]
∏

s∈S′

as

∏

s∈Sd\{t}\S′

(1− as)

︸ ︷︷ ︸
=α(a1,...,at−1,at+1,...,ad)

+
∑

S′⊆(S\{t})

b(S′)
∏

s∈S′

as

∏

s∈Sd\{t}\S′

(1− as)

︸ ︷︷ ︸
=β(a1,...,at−1,at+1,...,ad)

,

where α > 0, since [b(S′ ∪{t})− b(S′)] > 0.

C.1. Proof of Theorem 3

‘⇒’: Let V (x0) = 0 and V (x∗) = 1. Since each XJi is WDI (Assumption 3), (29) gives

V (xJi, xJi) = α(xJi)V (xJi, x
0
Ji

)+ β(xJi), ∀ (xJi, xJi)∈X. (33)

Evaluating (33) at xJi = x0
Ji gives V (x0

Ji, xJi) = α(xJi)V (x0) + β(xJi) = β(xJi). Evaluating

(33) at xJi = x∗
Ji gives V (x∗

Ji, xJi) = α(xJi)V (x∗
Ji, x

0
Ji

) + β(xJi), i.e, α(xJi) = [V (x∗
Ji, xJi) −

β(xJi)]/V (x∗
Ji, x

0
Ji

). Substituting α and β into (33) and denoting Vi(xJi) := V (xJi, x
0
Ji

) results in

V (xJi, xJi) =
V (x∗

Ji, xJi)−V (x0
Ji, xJi)

Vi(x∗
Ji)

Vi(xJi)+ V (x0
Ji, xJi)

=
Vi(xJi)
Vi(x∗

Ji)
V (x∗

Ji, xJi)+ (1−
Vi(xJi)
Vi(x∗

Ji)
)V (x0

Ji, xJi). (34)

Applying (34) repeatedly for each i = 1, ..., n to decompose V (x) gives

V (x) =
V1(xJ1)
V1(x∗

J1)
V (x∗

J1, xJ1)+ (1−
V1(xJ1)
V1(x∗

J1)
)V (x0

J1, xJ1)

=
V1(xJ1)
V1(x∗

J1)
V1(xJ2)
V1(x∗

J2)
V (x∗

J1, x
∗
J2, xJ12)+

V1(xJ1)
V1(x∗

J1)
(1−

V2(xJ2)
V2(x∗

J2)
)V (x∗

J1, x
0
J2, xJ12)

+(1−
V1(xJ1)
V1(x∗

J1)
)
V1(xJ2)
V1(x∗

J2)
V (x0

J1, x
∗
J2, xJ12)+ (1−

V1(xJ1)
V1(x∗

J1)
)(1−

V2(xJ2)
V2(x∗

J2)
)V (x0

J1, x
0
J2, xJ12)

...

=
∑

I′⊆I

[
∏

i∈I′

Vi(xJi)
Vi(x∗

Ji)

∏

i/∈I′

(1−
Vi(xJi)
Vi(x∗

Ji)
)V (x∗

JI′ , x
0

JI′
)].
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Denoting λ(I ′) = V (x∗
JI′ , x

0
JI′

) implies I ′′ ⊂ I ′⇒ λ(I ′′) < λ(I ′), V (x0) = λ(∅) = 0, V (x∗) = λ(I) = 1.

Since each Xji is WDI (Assumption 2), applying (29) to Vi(xJi) = Vi(xji, xji) = V (xji, xji, x
0
Ji

) gives

V (xji, xji, x
0
Ji

) = α(xji, x
0
Ji

)V (xji, x
0
ji
, x0

Ji
)+ β(xji, x

0
Ji

), ∀ (xji, xji)∈XJi⇔

Vi(xji, xji) = α(xji, x
0
Ji

)Vi(xji, x
0
ji
)+ β(xji, x

0
Ji

), ∀ (xji, xji)∈XJi. (35)

Evaluating (35) at xji = x0
i gives Vi(x0

ji, xji) = α(xji, x
0
Ji

)Vi(x0
ji, x

0
ji
)+β(xji, x

0
Ji

) = β(xji, x
0
Ji

). Eval-

uating (35) at xji = x∗
i gives Vi(x∗

ji, xji) = α(xji, x
0
Ji

)Vi(x∗
ji, x

0
ji
) + β(xji, x

0
Ji

) i.e., α(xji, x
0
Ji

) =

[Vi(x∗
ji, xji)−β(xji, x

0
Ji

)]/Vi(x∗
ji, x

0
ji
). Substituting α and β into (35) gives

Vi(xJi) =
Vi(xji, x

0
ji
)

Vi(x∗
ji, x

0
ji
)
Vi(x∗

ji, xji)+ (1−
Vi(xji, x

0
ji
)

Vi(x∗
ji, x

0
ji
)
)Vi(x0

ji, xji), (36)

where Vi(xji, x
0
ji
) = Vi(xj′i, x

0

j′i
) for any xji = xj′i, j, j′ ∈ J since the portfolios (xj′i, x

0

j′i
, x0

Ji
) and

(xji, x
0
ji
, x0

Ji
) are permutations of each other and thus project-symmetric preferences (Assumption

1) implies that they are equally preferred. Hence, we can define vi : Xi→ [0,1] as the function that

satisfies vi(xji) = Vi(xji, x
0
ji
)/Vi(x∗

ji, x
0
ji
) for all j ∈ J , xji ∈ Xi. With this notation (36) becomes

Vi(xJi) = vi(xji)Vi(x∗
ji, xji) + (1− vi(xji))Vi(x0

ji, xji), which can be used repeatedly for j = 1, ...,m

to decompose Vi(xJi) into Vi(xJi) =
∑

J ′⊆J Vi(x∗
J ′i, x

0

J ′i
)[
∏

j∈J ′ vi(xji)
∏

j /∈J ′(1 − vi(xji))]. Clearly,

(x∗
J ′i, x

0

J ′i
, x0

Ji
) can be permutated to obtain any (x∗

J ′′i, x
0

J ′′i
, x0

Ji
) as long as |J ′′|= |J ′|. By Assump-

tion 1 we may thus denote wi(k) = Vi(x∗
J ′i, x

0

J ′i
) for all |J ′| = k, k ∈ {0, . . . ,m}, and notice that

wi(0) = Vi(x0
Ji) = V (x0

Ji, x
0
Ji

) = V (x0) = 0, wi(m) = Vi(x∗
Ji) = V (x∗

Ji, x
0
Ji

) = λ({i}).

‘⇐’: Permutating rows of x will not change the criterion specific values Vi(xJi), wherefore V (x)

remains constant and thus Assumption 1 holds. V is linear in each Vi and Vi is linear in each vi

(see property (iv) of Lemma 1), which implies that each XJi and Xji is WDI (Assumptions 2 and

3).

C.2. Proof of Theorem 2

‘⇒: Since Assumptions 1–3 hold, Theorem 3 implies that V is multilinear (17). Choose arbitrary

j ∈ J , i′ ∈ I, I ′ ⊂ I such that i′ /∈ I ′ and denote I ′′ = I \ I ′ \ {i′}. Since Xji′ is conditionally WDI of

Xji′ (Assumption 5), (30) implies

V (x∗
jI′ , x

0
jI′′ , x

∗
ji′ , x

0
jI

) = α(x∗
ji′)V (x∗

jI′ , x
0
jI′′ , x

0
ji′ , x

0
jI

)+ β(x∗
ji′). (37)
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If I ′ = ∅ (37) implies β(x∗
ji′) = V (x∗

ji′ , x
0
ji′

) = wi′(1). Evaluating (37) with i′ = i2, I
′ =

{i1} gives V (x∗
ji2

, x∗
ji1

, x0
jI′′ , x

0
jI

) = α(x∗
ji2

)wi1(1) + wi2(1) and with i′ = i1, I
′ = {i2} gives

V (x∗
ji1

, x∗
ji2

, x0
jI′′ , x

0
jI

) = α(x∗
ji1

)wi2(1)+ wi1(1) (since V (x∗
ji, x

0
ji
) = wi(1)). These together imply

α(x∗
ji1

)− 1

wi1(1)
=

α(x∗
ji2

)− 1

wi2(1)
= κ,

for some κ. Since the choice of i1, i2 was arbitrary, this implies that for all i′ ∈ I, α(x∗
ji) = κwi′(1)+1.

Substituting α and β into (37) gives

V (x∗
jI′ , x

0
jI′′ , x

∗
ji′ , x

0
jI

) = [κwi′(1)+ 1]V (x∗
jI′ , x

0
jI′′ , x

0
ji′ , x

0
jI

)+ wi′(1). (38)

The left-hand side of (38) is equal to

∑

Ĩ⊆I′∪{i′}

λ(Ĩ)
∏

i∈Ĩ

wi(1)
λ({i})

∏

i∈I′∪{i′},i/∈Ĩ

(1−
wi(1)
λ({i})

)

=
wi′(1)
λ({i′})

∑

Ĩ⊆I′

λ(Ĩ ∪{i′})
∏

i∈Ĩ

wi(1)
λ({i})

∏

i∈I′,i/∈Ĩ

(1−
wi(1)
λ({i})

)

+(1−
wi′(1)
λ({i′})

)
∑

Ĩ⊆I′

λ(Ĩ)
∏

i∈Ĩ

wi(1)
λ({i})

∏

i∈I′i/∈Ĩ

(1−
wi(1)
λ({i})

)

and the right-hand side is equal to

[κwi′(1)+ 1]
∑

Ĩ⊆I′

λ(Ĩ)
∏

i∈Ĩ

wi(1)
λ({i})

∏

i∈I′,i/∈Ĩ

(1−
wi(1)
λ({i})

)+ wi′(1).

Thus (38) is equivalent to

∑

Ĩ⊆I′

[
wi′(1)
λ({i′})

λ(Ĩ ∪{i′})− (
wi′(1)
λ({i′})

+ κwi′(1))λ(Ĩ)]
∏

i∈Ĩ

wi(1)
λ({i})

∏

i∈I,i/∈Ĩ

(1−
wi(1)
λ({i})

) = wi′(1)

∑

Ĩ⊆I′

[λ(Ĩ ∪{i′})− (1+ κλ({i′}))λ(Ĩ)]
∏

i∈Ĩ

wi(1)
λ({i})

∏

i∈I,i/∈Ĩ

(1−
wi(1)
λ({i})

) = λ({i′}) (39)

For I ′ = {i′′} (39) gives

[λ({i′′, i′})− (1+ κλ({i′}))λ({i′′})]
wi′′(1)
λ({i′′})

+[λ({i′})− (1+ κλ({i′}))λ(∅)](1−
wi′′(1)
λ({i′′})

) = λ({i′})

⇒ λ(I ′ ∪{i′})− (1+ κλ({i′}))λ(I ′) = λ({i′}). (40)
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Thus, (40) holds for any i′ ∈ I and I ′ ⊂ I such that |I ′| = 1. Assuming that (40) holds for all

|I ′|< k < n and evaluating (39) for |I ′|= k yields

[λ(I ′ ∪{i′})− (1+ κλ({i′}))λ(I ′)]
∏

i∈I′

wi(1)
λ({i})

+
∑

Ĩ⊂I′

[λ(Ĩ ∪{i′})− (1+ κλ({i′}))λ(Ĩ)]
∏

i∈Ĩ

wi(1)
λ({i})

∏

i∈I′,i/∈Ĩ

(1−
wi(1)
λ({i})

)

= [λ(I ′ ∪{i′})− (1+ κλ({i′}))λ(I ′)]
∏

i∈I′

wi(1)
λ({i})

+ λ({i′})
∑

Ĩ⊂I′

∏

i∈Ĩ

wi(1)
λ({i})

∏

i∈I′,i/∈Ĩ

(1−
wi(1)
λ({i})

)

= [λ(I ′ ∪{i′})− (1+ κλ({i′}))λ(I ′)]
∏

i∈I′

wi(1)
λ({i})

+ λ({i′})(1−
∏

i∈I′

wi(1)
λ({i})

) = λ({i′}),

where
∑

Ĩ⊂I′

∏
i∈Ĩ

wi(1)

λ({i})

∏
i∈I′,i/∈Ĩ(1−

wi(1)

λ({i})) = 1−
∏

i∈I′
wi(xJi)

λ({i}) by property (i) of Lemma 1. Thus by

induction (40) holds for all I ′ ⊂ I. If κ = 0, (40) equals λ(I ′ ∪ {i′}) = λ(I ′) + λ({i′}) which can be

used repeatedly to obtain λ(Ĩ) =
∑

i∈Ĩ λ({i}) for any Ĩ ⊆ I. Substituting this into the multilinear

V gives (property (ii), Lemma 1) V (x) =
∑n

i=1 Vi(x), which is the additive-multilinear V . If κ 6= 0,

(40) equals 1+ κλ(I ′ ∪{i′}) = κ(1+κλ({i}))λ(I ′)+1+κλ({i′}) or equivalently 1+ κλ(I ′ ∪{i′}) =

(1 + κλ({i}))(1 + κλ(I ′)), which can be used repeatedly obtain 1 + κλ(Ĩ) =
∏

i∈Ĩ(κλ({i}) + 1) for

all Ĩ ⊆ I. Substituting this into the multilinear portfolio value function results in (property (iii),

Lemma 1 ) 1+ κV (x) =
∏n

i=1[1+ κVi(x)], which is the multiplicative-multilinear V .

‘⇐: Since the additive- and multiplicative-multilinear V are special cases of multilinear V , The-

orem 3 implies that Assumptions 1–3 hold. Also it is well known that additive and multiplicative

value functions imply that each subset of the attributes is WDI (Dyer and Sarin 1979) and hence

each XJI′ , I ′ ⊂ I is WDI. This implies that each XjI′ is conditionally WDI of XjI′ given XjI

(Assumption 5).

C.3. Proof of Theorem 1

We apply the following result in the proof: If the sets of attributes Y 1, Y 2 ⊂X are both WDI and

overlapping (i.e, Y 1∩Y 2 6= ∅ and neither is a subset of the other), then the (set-theoretic) difference

Y 1 \Y 2 is also WDI. This result was established in the context of multiattribute utility functions

(Keeney and Raiffa 1976, Theorem 6.7) and later shown to apply for measurable value functions

as well (Dyer and Sarin 1979, Corollary 2).
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‘⇒: Let I ′ ⊂ I and denote {i(1), ..., i(k)} = I ′. Then XjI′ can be constructed by a series of

differences, where each set is WDI and overlapping, i.e, XjI′ = XjI \XJi(1) \XJi(2) \ ∙ ∙ ∙ \XJi(k). The

above result states that XjI′ is WDI, which implies that XjI′ is also conditionally WDI of XjI′ given

XjI (Assumption 5). Thus, by Theorem 2 V is either additive- (5) or multiplicative-multilinear

(6). Take arbitrary i1, i2 ∈ I and j ∈ J . Let xji1 and xji2 such that (xji1 , x
0
ji1

)� x0, (xji2 , x
0
ji2

)� x0

and (xji1 , x
0
ji1

)← x0 ∼D (xji2 , x
0
ji2

)← x0. Since XjI is WDI (Assumption 4)

(xji1 , x
0
ji1

, xjI)← (x0
ji1

, x0
ji1

, xjI) ∼D (xji2 , x
0
ji2

, xjI)← (x0
ji2

, x0
ji2

, xjI) ∀ xjI ∈XjI

V (xji1 , x
0
ji1

, xjI) = V (xji2 , x
0
ji2

, xjI) ∀ xjI ∈XjI (41)

First, if V is multiplicative-multilinear (6), then evaluating (41) with xjI = x0
jI

gives 1 +

κvi1(xji1)wi1(1) = 1 + κwi2(1)vi2(xji2), i.e, wi2(1)vi2(xji2) = wi1(1)vi1(xji1). Now, if xjI is equal

to x0
jI

except for k elements in criterion i1, which are on the most preferred level x∗
i1

, then (41)

gives 1 + κ[vi1(xji1)wi1(k + 1) + (1− vi1(xji1))wi1(k)] = (1 + κwi1(k))(1 + κwi2(1)vi2(xji2))⇔ 1 +

κvi1(xji1)wi1(k + 1) = (1 + κwi1(k))κwi1(1)vi1(xji1) + 1 + vi1(xji1)wi1(k)⇔ 1 + κwi1(k + 1) = (1 +

κwi1(k))(1+κwi1(1)), which can be used repeatedly to obtain 1+ κwi1(k+1) =
∏k+1

j′=1(1+κwi1(1)).

Substituting this into the multilinear Vi1 (7) results in the multiplicative Vi1 , i.e., 1+ κVi1(xJi1) =

∏m

j′=1[1 + κwi1(1)vi1(xj′i1)] (Property (iii) of Lemma 1). Since the choice of i1 was arbitrary, each

Vi is multiplicative and thus V is multiplicative (2).

Second, if V is additive-multilinear (5), then (41) gives

vi1(xji1)wi1(k +1)+ (1− vi1(xji1))wi1(k) = wi1(k)+ wi2(1)vi2(xji2). (42)

With k = 0 this results in wi2(1)vi2(xji2) = wi1(1)vi1(xji1), which can be substituted back into

(42) to obtain wi1(k + 1) = wi1(k) + wi1(1). This implies that wi(k + 1) =
∑k+1

j′=1 wi(1) for any

k = 0, ...,m− 1 and i ∈ I. Property (ii) of Lemma 1 implies that each Vi is linear, i.e, Vi(xJi) =

wi(1)
∑m

j′=1 vi(xj′i), and hence V is additive-linear (1).

‘⇐: Additive-linear and multiplicative V are special cases of additive- and multiplicative-

multilinear V , respectively, wherefore Theorem 2 implies that Assumptions 1–3 hold. The multi-

plicative and additive-linear Vi can be viewed as a special cases of the general multiplicative and
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additive value functions over the n ∙m attributes and hence each subset of the attributes is WDI

(Dyer and Sarin 1979). Thus for any j ∈ J , the set of attributes XjI is also WDI (Assumption 4).

C.4. Proof of Corollary 1

‘⇒’: wi(j) − wi(j − 1) = ri[wi(j − 1) − wi(j − 2)] = r2
i [wi(j − 2) − wi(j − 3)] = ∙ ∙ ∙ = rj−1[wi(1) −

wi(0)] = rj−1wi(1), wherefore wi(k) =
∑k

j=1[wi(j) − wi(j − 1)] =
∑k

j=1 rj−1
i wi(1). If ri = 1, then

wi(k) =
∑k

j=1 wi(1), which can be substituted into the multilinear Vi (7) to obtain the linear

Vi (13) (property (ii) of Lemma 1). If ri 6= 1, then wi(k) = wi(1)(rk
i − 1)/(ri − 1) and denoting

c = (ri − 1)/wi(1) gives 1 + cwi(k) = rk
i =

∏k

j=1 ri =
∏k

j=1(1 + cw1(1)). Substituting 1 + cwi(k) =

∏k

j=1(1 + cw1(1)) into the multilinear Vi (7) gives 1 + cVi(xJi) =
∏m

j=1[1 + cwi(1)vi(xji)] (property

(iii) of Lemma 1), which is equal to the multiplicative Vi (14).

‘⇐’ If Vi is multiplicative, then wi(k) = Vi(〈k,x∗
i 〉) = wi(1)(rk

i − 1)/(ri− 1) for any k ∈ J . Thus,

for any k = 1, ...,m− 1

wi(k +1)−wi(k)
wi(k)−wi(k− 1)

=
rk+1

i − rk
i

rk
i − rk−1

i

=
rk

i (r− 1)

rk−1
i (r− 1)

= r. (43)

If Vi is linear, then wi(k) = Vi(〈k,x∗
i 〉) = wi(1)k for any k ∈ J . Thus, wi(k)−wi(k− 1) = wi(1) for

all k = 1, ...,m.

C.5. Proof of Corollary 2

Both value functions (15) and (16) represent the preferences xa
Ji � xb

Ji ⇔ (
∑m

j=1 xa
ji − x0

i ) ≥

∑m

j=1(x
b
ji − x0

i ), since they are strictly increasing in
∑m

j=1 xji. To show that (15) and (16) are

the only functions that represent such preferences, choose arbitrary y ∈ Xi = [x0
i , x

∗
i ] such that

y − x0
i ≤ x∗

i − y. Let y′ = x0 + 2(y − x0) ≤ x∗. Consider two portfolios xa
Ji = (y′, x0

i , . . . x
0
i ) and

xb
Ji = (y, y,x0

i , . . . x
0
i ). Since

∑m

j=1(x
a
ji−x0

i ) = 2(y−x0
i )+0 = (y−x0

i )+(y−x0
i )+0 =

∑m

j=1(x
b
ji−x0

i ),

xa ∼ xb must hold. Evaluating the multilinear criterion specific value (7) of these portfolios gives

Vi(xa
Ji) = Vi(xb

Ji)⇔wi(1)vi(y′) = wi(2)v2
i (y)+ 2wi(1)(1− vi(y))vi(y)⇔

wi(1)vi(y′) = [wi(2)− 2wi(1)]v2
i (y)+ 2wi(1)vi(y). (44)
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If wi(2)−2wi(1) = 0 then wi(2) = 2wi(1) and vi(y′) = 2vi(y), which implies vi is linear, i.e., vi(y) =

(y − x0
i )/(x∗

i − x0
i ). On the other hand, if wi(2)− 2wi(1) 6= 0, dividing both sides of (44) with it

and denoting D = wi(1)/[wi(2)−2wi(1)] gives Dvi(y′) = v2
i (y)+2Dvi(y). Adding D2 on both sides

gives Dvi(y′)+ D2 = v2
i (y)+ 2Dvi(y)+ D2⇔

vi(y′)+ D = (vi(y)+ D)2/D. (45)

By denoting t = y−x0 and g(t) = vi(t+x0)+D, (45) can we written as the well-known functional

equation g(2t) = g2(t)/D, whose solution is g(t) = DeCt for some C ∈ R. Thus, vi(y) + D = g(y−

x0
i ) = DeC(y−x0) and C 6= 0 (since otherwise vi ≡ 0), wherefore we can denote ρ =−1/C. Evaluating

vi(y) = D(e(y−x0
i )/ρ−1) at x∗

i gives the condition vi(x∗
i ) = wi(1)(e(x∗

i −x0
i )/ρ−1)/[wi(2)−2wi(1)] = 1,

which gives wi(2) = wi(1)(1 + e−(x∗
i −x0

i )/ρ) and vi(y) = (1− e−(y−x0
i )/ρ)/(1− e−(x∗

i −x0
i )/ρ). Thus vi is

either linear or exponential, and fixing wi(1) defines a unique value for wi(2) in both cases. Next,

we derive equations for wi(k), k = 3, ..,m:
∑m

i=1(xji − x0
ji) = k(x∗

i − x0
i ) for both of the portfolios

〈k,x∗
i 〉 and 〈k−1, x∗

i ; 2, (x∗
i +x0

i )/2〉, wherefore Vi(〈k,x∗
i 〉) = Vi(〈k−1, x∗

i ; 2, (x∗
i +x0

i )/2〉). Denoting

ν = vi((x∗
i + x0

i )/2) gives

wi(k) = (1− ν)2wi(k− 1)+ ν(1− ν)wi(k)+ ν(1− ν)wi(k)+ ν2wi(k +1)

−(1− ν)2wi(k− 1) = ν2wi(k +1)+ [−1+2ν(1− ν)]
︸ ︷︷ ︸

=−ν2−(1−ν)2

wi(k)

[wi(k)−wi(k− 1)]
(1− ν)2

ν2
= [wi(k +1)−wi(k)],

If vi is linear, then ν = 1/2 and wi(k + 1) − wi(k) = wi(k) − wi(k − 1), wherefore the Vi is lin-

ear (13) by Corollary 1. If vi is exponential, then (1/ν − 1)2 = e−(x∗
i −x0

i )/ρ ∈ (0,∞), wherefore

by Corollary 1 Vi is multiplicative (14) with ri = e−(x∗
i −x0

i )/ρ. Substituting exponential vi(xji) =

(1− e−(xji−x0
i )/ρ)/(1− ri) into (14) gives

Vi(xJi) =
wi(1)
ri− 1

[
m∏

j=1

(1+ (ri− 1)
1− e−(xji−x0

i )/ρ

1− ri

)− 1] =
wi(1)
ri− 1

[
m∏

j=1

e−(xji−x0
i )/ρ− 1]

= wi(1)
e−
∑m

j=1(xji−x0
i )/ρ− 1

ri− 1
= wi(1)

1− e−
∑m

j=1(xji−x0
i )/ρ

1− e−(x∗
i −x0

i )/ρ
,

which is equal to (16).
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C.6. Proof of Theorem 4

Removing the last two lines of the Forward-loop (which may terminate the loop before k = m)

results in a standard last-in-first-out type enumeration of all possible solutions z ∈ {0,1}m (see,

e.g, Martello and Toth 1990). For each solution the algorithm checks feasibility (
∑m

j=1 zjaj ≤ b),

evaluates the objective function value V (x̂(z)) and keeps the best solution so far stored in z∗ and

V ∗ (solution z = (0, ...,0)T is checked on the second line). For instance, with m = 3 the algorithm

evaluates the solutions (i.e., checks feasibility and computes V (x̂(z)); Second line of the Forward-

loop) in the following order: z = (0,0,0), k = 0; z = (1,0,0), k = 1; z = (1,1,0), k = 2; z = (1,1,1), k =

3; z = (1,0,1), k = 3; z = (0,1,0), k = 2; z = (0,1,1), k = 3; z = (0,0,1), k = 3. The Forward-loop is

terminated and the Backtrack-step started each time k = m = 3, and when z = (0,0,1), zm← 0

results in z = (0,0,0) and thus k← max({j ∈ J | zj = 1} ∪ {0}) results in k = 0, wherefore the

algorithm terminates. Output z = ∅ is given if and only if there are no feasible solutions.

Next we show that the two lines that may break the Forward-loop before k = m do not dis-

card the optimal solution. Assume the algorithm is on the second line of the Forward-loop,

with k ∈ {1, ...,m} and z ∈ {0,1}m such that zj = 0 for all j > k. An arbitrary solution z′ ∈

{0,1}m produced by continuing the Forward-loop is such that z′
j = zj for all j ∈ {1, ..., k}. First, if

∑k

j=1 zjaj +
∑m

j=k+1 min{0, aj}> b holds, then
∑m

j=1 z′
jaj =

∑k

j=1 zjaj +
∑m

j=k+1 z′
jaj ≥

∑k

j=1 zjaj +

∑m

j=k+1 min{0, aj}> b, i.e., z′ is infeasible and thus not the optimal solution. Second, assuming z′

is feasible, for all i∈ I,

m∑

j=1

vi(x̂ji(z′)) =
k∑

j=1

vi(x̂ji(z))+
m∑

j=k+1

[z′
jvi(x

go
ji )+ (1− z′

j)vi(xno
ji )]

≤
k∑

j=1

vi(x̂ji(z))+ max
z̃j∈[0,1]

k<j≤m

{
m∑

j=k+1

z̃jvi(x
go
ji )+ (1− z̃j)vi(xno

ji ) |
m∑

j=k+1

z̃jaj ≤ b−
k∑

j=1

zjaj})} := si,

wherefore Vi(x̂Ji(z′)) ≤ V i(
∑m

j=1 vi(x̂ji(z′))) ≤ V i(si). If g(V 1(s1), . . . , V n(sn)) < V ∗ holds, then

V (x̂(z′)) = g(V1(x̂J1(z′)), . . . , Vn(x̂Jn(z′))≤ g(V 1(s1), . . . , V n(sn)) < V ∗, since g is strictly increasing

in all its arguments. Hence z′ is not the optimal solution.
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C.7. Proof of Theorem 5

By denoting pj = vi(xji) and g(k) = wi(k) the multilinear Vi becomes Vi(xJi) =

∑
J ′⊆J g(|J ′|)

∏
j∈J ′ pj

∏
j /∈J ′(1− pj). This is equivalent to computing the expectation of a random

variable g, whose value depends on the number of successes in m independent experiments with

success probabilities p = (p1, . . . , pm). Hoeffding (1956) proves that with the expected number of

successes
∑m

j=1 pj fixed, minpEp[g] and maxpEp[g] are found when p contains at most three different

probabilities, only one of which is not equal to zero or one. �
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