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Abstract Risks embedded in asset price dynamics are taken to be accumulations of

surprise jumps. A Markov pure jump model is formulated on making variance gamma

parameters deterministic functions of the price level. Estimation is done by matrix

exponentiation of the transition rate matrix for a continuous time finite state Markov

chain approximation. The motion is decomposed into a space dependent drift and a

space dependent martingale component. Though there is some local mean reversion

in the drift, space dependence of the martingale component renders the dynamics

to be of the momentum type. Local risk is measured using market calibrated mea-

sure distortions that introduce risk charges into the lower and upper prices of two

price economies. These risks are compensated by the exponential variation of space

dependent arrival rates. Estimations are conducted for the S&P 500 index (S P X),

the exchange traded fund for the financial sector (X L F), J. P. Morgan stock prices

(J P M), the ratio of JPM to XLF, and the ratio of XLF to SPX.

Keywords Variance Gamma · Hunt process · Markov chain approximation · Matrix

exponentiation · Momentum function · Measure distortion
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Introduction

Asset prices in financial markets, following Madan and Schoutens (2016b), must

change of necessity to support the price with a return for the investor. Furthermore,

the changes must be surprises, if all available information has already entered the
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price. As a consequence the changes must occur at surprise times. The simplest model

for such times are the arrival times of a Poisson process. The price process is then

rendered to be a pure jump process with no continuous component, either determin-

istic or random. The process for the logarithm of the price is therefore described by

the structure for the arrival rates of jumps for all jump sizes x, −∞ < x < ∞. This

arrival rate function may be denoted by k(x, t) where the dependence on t is in all

generality, adapted to all information available at time t.

It was noted in Madan and Schoutens (2016b) that when the local motion is

described by the generalized class of limit laws (Khintchine 1938; Lévy 1937; Sato

1999), of which the Gaussian law is an example, that then, in the non-Gaussian limit

cases, the integral of the arrival rate function must be infinite. Such processes were

termed infinite activity processes in Carr et al. (2002). The random variables at a

finite horizon with arrival rate functions, that only depend on the jump size x, are

then self-decomposable laws (Sato 1999). The models investigated in the paper are

infinite activity processes.

It is then possible for the small jumps to be so frequent as they get smaller that the

sum of all the small positive jumps is infinite and the sum of all the small negative

jumps is negative infinity. Such processes are called processes of infinite variation.

On the contrary, for finite variation processes the sum of all the small positive and

negative jumps are separately finite, in any interval. More generally one may take the

sum of all positive and negative jumps and their squares to be finite, and not just the

small ones. These considerations require that

∫ ∞

−∞

xk(x, t)dx < ∞;

∫ ∞

−∞

x2k(x, t)dx < ∞.

The processes being considered for the logarithm of the price are then infinite

activity processes of finite variation and quadratic variation.

The use of an infinite activity process is motivated by recognizing that though the

number of price moves in reality will be finite it is often quite large for daily data.

Such observations inspire the use of limit laws. The limit laws are a special case of

infinitely divisible laws termed self decomposable laws with a special structure to

their arrival rate functions (Sato 1999). The arrival rate functions when scaled by

the absolute jump size must be decreasing functions of the absolute jump size. In

particular they are all infinite activity processes.

Finite quadratic variation is a consequence of working with semimartingales

that is a maintained hypothesis for arbitrage free price dynamics (Delbaen and

Schcharemayer 1994). Finite variation is a simplification that allows one to describe

the price process as the difference of two increasing processes, one for the price up

ticks and the other for the down ticks. In addition there is considerable evidence (see

for a recent example Madan 2016c) that such processes are empirically adequate for

describing the physical as well as the risk neutral process.

The stock price process S(t), with X (t) = ln(S(t)) then satisfies

X (t) = X (0) +
∑

s≤t

�X (s)

�X (s) = X (s) − X (s−).
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Additionally, associated with such a jump process is an integer valued random

measure μ(dx, dt) that counts the jumps occurring in measurable subsets of space

and time. One may then write

X (t) = (x ∗ μ)t

=

∫ t

0

∫ ∞

−∞

xμ(dx, ds).

The counting measure μ has a compensator ν(dx, dt) announcing the arrival rate

for jumps at all times that is supposed to be defined by the arrival rate function k(x, t)

where

ν(dx, dt) = k(x, t)dxdt.

All information about the log price process is then embedded in the arrival rate

function and all modeling and estimation efforts are directed to the specification and

estimation of arrival rate functions.

In particular there is no room for modeling drifts with or without mean reversion

as the price process has no purely deterministic time component. Furthermore, there

is also no room for a diffusive volatility given that there is no continuous martingale

component in the price process. At the instantaneous level one may only speak of

variation and quadratic variation but not directly of drift and volatility. Madan and

Schoutens (2016b) shows that the limit of the continuously compounded drift over a

horizon h, denoted by say mt (h) tends on division by h, to the exponential variation.

Specifically, it may be observed that

lim
h→0

mt (h)

h
=

∫ ∞

−∞

(

ex − 1
)

k(x, t)dx .

The concept of reward compensating for risk defined in terms of arrival rate

functions is then the exponential variation.

Madan and Schoutens (2016b) model the risk of holding stock positions by an

assessment of their necessary fluctuations. The view taken is that prices must move

to afford positions with a return and the risk is then that of how far up and down

they may go. A temporally conservative evaluation of the magnitude of motion in

both directions is constructed from the upper and lower prices prevailing in two price

economies that not only exclude arbitrage but also eliminate highly acceptable trades.

The acceptable trades may be defined following Artzner et al. (1999) by a convex

cone containing the nonnegative random variables. Every such cone may equiva-

lently be defined by the class of random variables with a nonnegative expectation

under a convex collection of test probability measures. The upper and lower prices

are then suprema and infima of expectations under all test probabilities (see for

example Cherny and Madan (2010), also Madan and Schoutens 2016a). Model-

ing the test probabilities as those delivering event probabilities bounded above by

a concave distribution function evaluated at the physical event probability, leads to

upper and lower prices as distorted expectations. The upper/lower distorted expecta-

tions (Kusuoka 2001) evaluate expectations using the distorted distribution function

obtained by composing a convex/concave distribution function with the physical

distribution function of the random variable in question.
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Risk exposures are then measured by the gap between the upper price and the

expectation and the expectation less the lower price. Parametric distortions are

employed with parameters calibrated to enforce the absence of acceptable opportuni-

ties in the options market for the S&P 500 index. The convex and concave distorted

physical distribution functions then sandwich the risk neutral distribution of the S&P

500 index. In the continuous time limit probability distortions may be replaced by

measure distortions (Madan et al. 2016) of arrival rate functions to construct upper

and lower prices and their associated risk exposures. Such option calibrated risk

exposures are then observed to be compensated by observed exponential variations

across a wide variety of stock days. The result is an alternative asset pricing the-

ory based on risk premia for two sided price fluctuations in opposition to classical

covariation principles.

Efficient frontiers for risk and reward in terms of multidimensional arrival rate

functions are presented in Madan (2016a). Optimal portfolios are here based on max-

imizing the lower price of the portfolio. This lower price may also be written as

the exponential variation, seen as the reward, less the risk measured by the upper

price for the centered and negated risk exposure. The continuous time centering is

accomplished by subtracting the exponential variation.

Questions about the presence of local mean reversion or momentum in price pro-

cesses are then to be addressed and answered by modeling and estimating arrival rate

functions. Such considerations lead us to write arrival rate functions that depend on

both the space variable X and the jump size x. The data set on which the models will

be estimated are short horizon returns from one to, say, five or ten days and hence

time homogeneous models with arrival rate functions that do not specifically depend

on calendar time are considered. Pure jump Markov processes with arrival rate func-

tions depending on the space variable are called Hunt processes (Hunt 1966). They

were formulated and estimated risk neutrally in Madan (2016b) using data on option

prices. By way of contrast, the objective of this paper is on their estimation as a

physical process from time series data. Mean reversion and momentum are impor-

tant aspects of price dynamics influencing responses to abnormal price movements.

With strong mean reversion one would sell on an extraordinary uptick while with

momentum the appropriate action would be to buy on such upticks. Furthermore the

structure of mean reversion and momentum can be different with respect to upward

and downward moves and this is commented on in greater detail later. For exam-

ples of other applications of Hunt processes in the literature we cite Cont and Minca

(2013) and Cousin et al. (2012).

Local mean reversion and momentum may be evaluated in the first instance by

determining the effects on drift of down and up moves. Positive drifts associated

with down moves and vice versa for the up moves represent mean reversion. The

opposite result constitutes momentum. Beyond the drift one may address the impact

on conditional probabilities of up moves of a given size conditional on such a move.

If the conditional probability falls after such an up move then one has mean reversion

upwards while if it rises then there is momentum upwards. Similar evaluations may

be made for mean reversion and momentum downwards. This second approach was

employed in Madan (2016b) to address mean reversion and momentum of risk neutral

martingales where these aspects are absent in risk neutral drifts by construction.
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The outline of the rest of the paper is as follows. “Spatially inhomogeneous vari-

ance gamma processes” section introduces the spatially inhomogeneous variance

gamma process to be estimated. “Estimation on time series data” section presents

two estimation procedures based on matching digital moments and maximum likeli-

hood. Results are presented for a variety of asset price time series in “Digital moment

estimation result” section. “Drift structure of SIVG” section discusses the structure

of mean reversion and momentum in the implied drift structure. “Mean reversion

and momentum in the process” section reports on the structure of momentum and

mean reversion for the process in aggregate, combining the drift and the martingale

components. “Risk compensation” section reports on the implicit risk reward rela-

tionships. “The S&P 500 index during the financial crisis” section presents results

for the S&P 500 index for the period of the financial crisis covering the years 2007

to 2009. “Conclusion” section concludes this paper.

Spatially inhomogeneous variance gamma processes

The variance gamma process X (t) (Madan and Seneta 1990; Madan et al. 1998) was

originally defined as a Brownian motion with drift θ and volatility σ time changed

by a gamma process with unit mean rate and variance rate ν. For a standard Brow-

nian motion W (t) and a gamma process g(t; ν) the variance gamma process with

parameters σ, ν, θ is

X (t; σ, ν, θ) = θg(t; ν) + σ W (g(t; ν)).

The gamma process is a positive increasing process with independent and identi-

cally distributed increments over nonoverlapping intervals of length h that are gamma

distributed with density

f (x) =
1

ν
h
ν Ŵ

(

h
ν

)

x
h
ν
−1 exp

(

−
x

ν

)

.

The variance gamma process is a Lévy process with characteristic function

E
[

exp (iu X (t))
]

=

(

1

1 − iuθν + σ 2ν
2

u2

)
t
ν

.

It is a pure jump process with Lévy density l(x) parameterized by C, G, M (Carr

et al. 2002) with

l(x) =
C

|x |
(1x<0 exp (−G|x |) + 1x>0 exp (−Mx)) , (1)
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where

C =
1

ν

G =
1

σ

√

(

2

ν
+

θ2

σ 2

)

+
θ

σ 2

M =
1

σ

√

(

2

ν
+

θ2

σ 2

)

−
θ

σ 2
.

The variance gamma process is a process of finite variation and it can be written

as the difference of two increasing process.

The spatially inhomogeneous variance gamma process (SI V G) is constructed by

making the parameters of the variance gamma process in the CGM parameterization

deterministic functions of the space variable to form the jump compensator

νX t (dx, dt) = k(X t , x)dxdt

=
C(X t )

|x |
(1x<0 exp (−G(X t )|x |) + 1x>0 exp (−M(X t )x))

for uniformly bounded and positive deterministic functions C(X), G(X), and M(X).

For details on the existence and uniqueness of the spatially inhomogeneous vari-

ance gamma process as a solution to the associated martingale problem described

in Stroock (1975) and Stroock and Varadhan (1979), we refer the reader to

Angelos (2013). Angelos (2013) follows Bass (1988) to demonstrate the existence

and uniqueness of the spatially inhomogeneous variance gamma process.

The specific bounded functions employed, accommodate a local linearity around

the current level tapering off to fixed levels at the two extremes. This is accomplished

by the use of logistic functions of the form

Y (X) = L +
R − L

1 + exp (−ηX)

with parameters L , R,for the left and right limits and η a speed of adjustment. There

are then three parameters in each of the three deterministic functions C(X), G(X),

and M(X) that we denote by CL , CR, Cη, GL , G R, Gη, ML , MR, and Mη. The

result is a nine parameter spatially inhomogeneous Markov process for the evolution

of jumps in the logarithm of the prices.

Defining

δ(X) =

∫ ∞

−∞

xk(X, x)dx

and μX (dx, dt) as the random measure with compensator νX (dx, dt),the process for

X (t) may also be written as

d X = δ(X)dt + d [x ∗ (μX − νX )]t (2)

with a space dependent drift δ(X) and driven by the compensated jump martingale

M(t) = [x ∗ (μX − νX )]t .
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Apart from mean reversion appearing via the implied drift δ(X), there may be

mean reversion or momentum upwards or downwards depending on the dependence

of G and M on X as well as the presence of leverage via the dependence of C on X.

We present graphs comparing a Lévy process to one that endogenized leverage by

raising C on the down side relative to the up side. For mean reversion and momen-

tum up and down the structure of M and G responses to the level of the process

may be accordingly adjusted. For mean reversion up, M(X) must rise with X and

fall with X to have momentum up. Similarly for the downside and the dependence

of G on X.

Figure 1 presents a graph for the quarterly return density endogenizing leverage.

Figure 2 presents the four cases of mean reversion down and up, momentum down

and up, mean reversion down with momentum up, and momentum down with mean

reversion up. The construction of the densities is described in the next section.

Estimation on time series data

For the estimation of a spatially inhomogeneous variance gamma process using data

on the daily time series of prices, one needs to access the probabilities of returns

over various horizons in the model. In this regard, we follow Pistorius and Mijatovic

(2011) who show how to approximate a Lé vy process by a continuous time finite

state Markov chain and use the approximation to price barrier options. They develop a

matrix representation for the infinitesimal generator which on time scaling and matrix

exponentiation delivers transition probability elements for the time scales involved.

The states of the chain are constructed using a non-uniform grid. The generator is

built by integrating the Lévy density between jumps sizes represented by the inter-

grid points for the large moves away from the immediate grid on the two sides of

a current grid point. The transition rates to the immediate neighbours are built by a

diffusion approximation. In the spatially inhomogeneous case considered here, we

have a relevant Lé vy density at each grid point with parameters that vary with the
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Fig. 1 Quarterly return densities with Leverage contrasted with that from a Lévy process
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Fig. 2 Four Cases of Mean Reversion and Momentum on the Up and Down Sides

grid point. The grid is defined with respect to returns and not price levels and the

return is always relative to the current stock price of the day.

For the grid, the current spot price is 100 and we employ a 1600 point non-uniform

grid ranging from levels 50 to 200 for the spot price. In order to have a substantial

variance for the diffusion approximation to the immediate neighbours, the parame-

ters CL , CR are scaled by a thousand. Therefore to build the density at, say, n days

we scale the generator by n/1000 before evaluating its matrix exponential. The prob-

ability element is constructed at the 1600 return points on matrix exponentiation for

one-, five-, and ten-day returns.

This probability element is used by interpolation to construct an unnormalized

density evaluated on a uniform grid of 10,000 points ranging from the minimum

to the maximum return on the original grid. The normalization factor is evaluated

by numerical integration. The result is a density and a distribution function. The

density is for used in maximum likelihood estimation and the distribution func-

tion is employed to evaluate digital tail probabilities for lower tails of negative

returns and upper tails for positive returns. For maximum likelihood, the sum of

the log likelihoods are evaluated for one-, five- and ten-day returns using over-

lapping data for the five and ten day returns. For digital moment estimation, the

root mean square error between observed and model tail probabilities separately

for one-, five- and ten-day returns are evaluated and then these three fit statistics

are averaged. Digital moment estimation of parameters as developed and reported

in Madan (2015b) gives a better fit to tail probabilities than maximum likelihood.

We found this to be the case here as well and report results for just digital moment

estimation. Figure 3 presents the fit to observed tail probabilities using digital
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Fig. 3 Digital Moment and MLE fit to tail probabilities for one-, five- and ten-day returns. The observed

probabilities are in circles while the estimated model probabilities are represented by dots

moments and maximum likelihood for the one case in which both estimations were

conducted.

Digital moment estimation results

The spatially inhomogeneous variance gamma model was estimated for three under-

liers, one stock and two indexes, and two ratios of underliers. The stock ticker

was JPM and the two indices were the Exchange Traded Fund for the financial

sector with ticker XLF and the S&P 500 index with ticker S P X. The two ratios

were that of JPM to XLF and XLF to S P X. In each case the 9 parameters of the

model were estimated. Graphs of the fit of model digital tail probabilities to the

observed tail probabilities are also presented. We present in separate subsections the

graphs for the functions C(X), G(X), and M(X) and the graphs for the fit to tail

probabilities. The data period ranged for a thousand days from August 2, 2012 to

July 26, 2016.

JPM

In this case G, M were independent of X, and Fig. 4 presents a graph of the func-

tion C(X). The constant values for G and M were, respectively, 160 and 143. The

presence of leverage may be observed in the behaviour of C.

The fit to one-, five- and ten-day returns is presented in Fig. 5.
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Fig. 4 The function C(X) for JPM

XLF

Figure 6 presents the parameters as functions of the log price relative. The behavior

of C reflects leverage while that of M and G suggest mean reversion upwards but

momentum downwards in the structure of shocks. Figure 6 presents the function

C(X) over a much narrower range than Fig. 4 and focuses in on the behavior near

zero as opposed to the tails.

Figure 7 presents the graph for the fit to one-, five- and ten-day tail probabilities.

SPX

Figure 8 presents the graphs for the parameters as functions of the log price rela-

tive. The general picture is similar to XLF reflecting leverage in C, mean reversion

upwards in M and momentum down in G.

The graph for the fit to one-, five- and ten-day returns is presented in Fig. 9.
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Fig. 5 Fit of spatially inhomogeneous variance gamma to one-, five- and ten-day returns on JPM.

Observed tail probabilities in circles. Model probabilities shown by dots
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Fig. 6 The CGM parameters as functions of the log price relative for XLF

JPM2XLF

Figure 10 graphs the parameters as functions of the log price relative for the ratio

of JPM to X L F. This ratio reflects leverage in C, mean reversion down in G but

momentum upwards for JPM relative to X L F.

The fit to one-, five- and ten-day returns is presented in Fig. 11.

XLF2SPX

Figure 12 presents the graphs for the parameters as functions of the log price relative.

This ratio reflects a rise in volatility when X L F rises relative to SPX with mean

reversion upwards and momentum downwards.
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Fig. 7 Fit of spatially inhomogeneous variance gamma to one-, five- and ten-day returns on XLF.

Observed tail probabilities in circles. Model probabilities shown by dots
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Fig. 8 Parameters as functions of the log price relative for SPX

The graphs for the fit to one-, five- and ten-day returns is presented in Fig. 13.

Drift structure of SIVG

The SIVG process inherits all its properties from the structure of the inhomogeneous

jump compensator. If we ask, for example, whether there is a limiting stationary dis-

tribution, then we need to consider the evolution as described by Eq. (2). Suppose,
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Fig. 9 Fit of spatially inhomogeneous variance gamma to one-, five- and ten-day returns on SPX.

Observed tail probabilities in circles. Model probabilities shown by dots



Probability, Uncertainty and Quantitative Risk  (2017) 2:8 Page 13 of 21

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

1

2
C(X)

-100 -80 -60 -40 -20 0 20 40 60 80 100
159.5

160

160.5
G(X)

-100 -80 -60 -40 -20 0 20 40 60 80 100
100

150

200
M(X)

Fig. 10 Parameters as functions of the log price relative for the JPM XLF ratio

for example, we have δ(X) ≡ 0, then X (t) is a martingale with time independent

compensator. We cannot then have any decrease in forward variances as would be

required for convergence to a limiting stationary distribution. Hence the structure

of δ(X) is critical for the answer to such questions. For the models estimated, on

occasion, we find local mean reversion with δ(X) negatively sloped near zero. Over

a wider range, however, there can be momentum effects with δ(X) > 0 for large

positive X and negative for large negative X. In some cases we may have global

mean reversion with δ(X) > 0 for X < 0 and the other way around for X > 0.
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Fig. 11 Fit of spatially inhomogeneous variance gamma to one-, five- and ten-day returns on the JPM

XLF ratio. Observed tail probabilities in circles. Model probabilities shown by dots
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Fig. 12 Parameters as functions of the log price relative for the ratio of XLF to SPX

We comment here on the structure of local mean reversion especially if we replace

δ(X) by its local linear approximation to get a non-Gaussian Ornstein-Uhlenbeck

equation (Barndorff-Nielsen and Shephard 2001). Figure 14 presents the five esti-

mated functions for δ(X) along with their local linear approximations. We observe

that JPM is estimated with mean reversion around an upward trend. X L F, SPX

and the ratio of XLF to S P X display local mean reversion with global momen-

tum on both sides of the drift. The ratio of JPM to XLF has drift momentum on

both sides.
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Fig. 13 Fit of spatially inhomogeneous variance gamma to one-, five- and ten-day returns on the XLF

SPX ratio. Observed tail probabilities in circles. Model probabilities shown by dots
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Fig. 14 The function δ(X) and linear approximations. α is the intercept and κ, when positive, is the rate

of mean reversion

Mean reversion and momentum in the process

We evaluate the ratio of the conditional probability for an x% move or greater, down

and up in the next five days, conditional on an x% move down or up just having

occurred to the unconditional probability for such a move. If the conditional prob-

ability of an up move rises relative to its unconditional probability, then we have

momentum upwards. Similarly for a down move. If the probabilities of down moves

rise conditional on an up move, then we have mean reversion.

Figure 15 presents the ratios of conditional tail probabilities to their unconditional

probabilities. The conditional probabilities condition on up and down moves in five

days of 50 and 100 basis points for the five estimated models.

We observe, by and large, the presence of momentum. For the ratio of XLF

to SPX the probabilities of large up moves rise on a down move fall on an up

move. Hence there is some mean reversion conditional on large moves in this

case. The other cases all support a momentum hypothesis with up and down

probabilities rising and the down and up probabilities falling with an up and

down move.
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Risk compensation

Classically, the motion of a stock has been described as a random variable over some

horizon with a mean and some volatility. Risk compensation then relates attributes of

the random component to the mean return. At the level of surprise moves captured in

the arrival rate function there is no mean return to be explained and neither is there

a volatility. We only have the arrival rate function. Madan and Schoutens (2016b)

shows and the introduction summarized the reward concept to be derived from the

arrival rate function as the exponential variation. This is the limiting drift rate for

the process that now depends on the spatial variable for a spatially inhomogeneous

process. We may then ask what the risk is and how and whether the reward is related

to this risk.

In economies satisfying the law of one price, there is a price to be explained

and rewards are explained by covariations of returns with the change of mea-

sure from probability to price. All events are viewed as having both a price and

a probability with a change of measure essentially given by the ratio of the two.

It then follows algebraically that excess returns may be related to the covariation

of returns with the measure change. Different asset pricing models propose dif-

ferent and diverse candidate models for the measure change (see Skiadis (2009)

for example).

With financial markets taken to be in a state of continuous and surprising motion

the law of one price is suspended as the price is always in a state of flux. Transactions

occur at a myriad of prices arising out of negotiations in the process of price discov-

ery. We go on instead to consider the possibility of coupling no arbitrage with the

fiction of a two price economy, replacing the fiction of the law of one price. In a one

price economy the terms of trade are invariant to the direction of trade as one may

buy or sell any amount at the going price. Hence zero cost cash flows or cash flows

net of their prices form a subspace closed under negation. For two price economies

the terms of trade vary with the direction of trade with purchases from market occur-

ing at higher prices than sales to the market. The set of zero cost cash flows remains

a convex cone but is no longer closed under negation and hence is not a subspace.

Under no arbitrage it fails to meet the nonnegative cash flows and convex set separa-

tion principles yield a class of measures under which the zero cost cash flows have a

nonpositive expectation (see Madan 2015a).

Describing acceptable risks as those with a positive expectation under a set of

test measures in keeping with the structure of such risks in Artzner et al. (1999) the

upper and lower prices of the two price economy are seen as suprema and infima

of expectations under a suitable set of test measures. Modeling the test measures as

those with event probabilities bounded above by a probability distortion of the physi-

cal or true probability renders the upper and lower prices to be distorted expectations

as presented for example in Kusuoka (2001). One merely composes the distribution

function of the random variable to be evaluated with a concave distribution function

on the unit interval to form a distorted distribution function, before taking expec-

tations. The result is a distorted expectation. Passing to the continuous time limit

one replaces probability distortions by measure distortions of arrival rate functions

(Madan et al. 2016).
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Madan and Schoutens (2016b) investigate the relationship in the economy

between exponential variations as reward related to two sided risk concepts based on

the shave in value embedded in the lower price and the add-on to value embedded

in the upper price. Madan and Schoutens (2016b) show that exponential variations

as rewards reflect premia for both of the two sided risk concepts embedded in two

price economies. Hence covariation based risk exposures and premia are replaced by

explicit risk charges related to the risk of price fluctuations as assessed by the lower

and upper prices existing in two price economies.

Here this very same relationship is investigated for the five estimated processes

separately, relating spatially contingent exponential variations to the two sided spa-

tially contingent risk measures of the lower price shave and the upper price add-on.

For the lower and upper price construction one needs to specify the measure dis-

tortions. These are the same distortions as employed in the Madan and Schoutens

(2016b) study. These distortions were calibrated to bring risk neutral prices embed-

ded in option markets to lie within the measure distorted physical arrival rates for

data on the S&P 500 index. Both the option and time series data on index options

were employed for the calibration.

The measure distortions are two increasing concave/convex functions of the pos-

itive half line that are bounded below/above by the identity. The specific parametric

distortions employed are

Ŵ+(x) = x + a
(

1 − e−cx
)

1
1+γ

Ŵ−(x) = x −
b

c
(1 − e−cx ).

The values for a, b, c, and γ are 3.1191, 0.9694, 0.3108, and 0.4877. For an arrival

rate function k (X, x) define the measure of a measurable subset A of the real line by

K (X, A) =

∫

A

k(X, x)dx .

Now the lower price L , the exponential variation V, and the upper price U may

be written as

L = −

∫ ∞

0

Ŵ+
(

K
(

X,
[

(

ex − 1
)−

> v
]))

dv+

∫ ∞

0

Ŵ−
(

K
(

X,
[

(

ex −1
)+

>v
]))

dv

V = −

∫ ∞

0

K
(

X,
[

(

ex − 1
)−

> v
])

dv +

∫ ∞

0

K
(

X,
[

(

ex − 1
)+

> v
])

dv

U = −

∫ ∞

0

Ŵ−
(

K
(

X,
[

(

ex − 1
)−

>v
]))

dv+

∫ ∞

0

Ŵ+
(

K
(

X,
[

(

ex − 1
)+

> v
]))

dv.

So the risk charge for the shave to lower price is

−L + V .
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Also the upper price add-on is

U−V=

∫ ∞

0

(

I −Ŵ−
)

◦

(

K(X, [
(

ex −1
)−

>v])
)

dv+

∫ ∞

0

(Ŵ+−I )◦
(

K(X, [
(

ex −1
)

+ >v])
)

dv.

If the variation is related to the risk charges with premia α, β then

V = α (V − L) + β (U − V ) .

As a consequence,

V =
βU − αL

1 + (β − α)

Therefore, a relationship is sought between V, U, L . Conditional on X, the

regression

V (X) = a + bL(X) + cU (X),

is estimated. The estimated values for a were near zero and then solving for α, β

yields

α = −
b

1 − (b + c)

β =
c

1 − (b + c)
.

Table 1 provides the values for α, β for the five estimated processes.

All the estimated SIVG processes have rewards linearly related to risk as embodied

in the lower and upper prices and this is the case whether we work with assets or their

ratios. The coefficients reflect the response of exponential variations to tail-risk on

both sides. A positive coefficient on the lower price suggests that a rise in the down

tail attains return compensation suggestive of mean reversion on the down side. A

negative coefficient lowers future returns suggestive of momentum on the down side.

Similarly, a negative coefficient on the upper price represents mean reversion on the

up side while a positive coefficient reflects momentum on the up side.

The S&P 500 index during the financial crisis

We report here on the SIVG model fitted for data on the S&P 500 index for the years

2007 through 2009. Figure 16 presents a graph of the dependence of the parameters

Table 1 Premia for lower shave and upper add-on

Asset α β

JPM 3.3013 −3.2174

XLF −3.9919 3.9366

SPX −2.5735 2.7636

JPM/XLF −0.7864 0.6773

XLF/SPX −0.5514 0.4355
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Fig. 16 Graphs for the spatial dependence of C, G, and M for the period 2007 to 2009

C, G, and M on the logarithm of the price relative. We observe the presence of

leverage, mean reversion on the down side, and momentum upwards.

The graphs for the fit to one, five and ten day returns are presented in Fig. 17.

Figure 18 graphs the drift as a function of the spatial variate presented as a return.

Mean reversion is present locally.

Figure 19 presents the momentum function. The momentum though positive is

considerably reduced when compared to the non-crisis period.

Finally, we estimated the up and down side risk premia, and they were both posi-

tive suggesting a downside mean reversion coupled with an upward momentum. The

values for α, and β were, respectively, 0.4657 and 0.0012.

Conclusion

The dynamics of movements in prices are modeled as the accumulation of surprise

jumps in the logarithm. As a consequence, there are no deterministic time com-

ponents or any continuous martingale components. All the information about price

changes is embedded in the arrival rate function compensating the surprise jumps.
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Fig. 17 The fit to digital tail probabilities for one-, five- and ten-day returns
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Fig. 18 The drift as a function of X

A Markov pure jump model is formulated for the motion by making the parameters

of the variance gamma Lévy measure deterministic functions of the level of prices.

Estimation is conducted by employing a continuous-time finite-state Markov chain

approximation that yields probability elements on matrix exponentiation of the transi-

tion rate matrix. The dynamics is then decomposed into a space dependent drift and a

space dependent martingale component. Though there is some local mean reversion,

by and large, the dynamics estimated is that of the momentum type. Risk compensa-

tion is estimated via a linear relation between the exponential variation and measure

distorted variations for the lower and upper prices of two-price economies. Estima-

tions are conducted for the S&P 500 index (SPX), the exchange traded fund for the

financial sector (XLF), J. P. Morgan stock prices (JPM), the ratio of JPM to XLF, and

the ratio of XLF to SPX.
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Fig. 19 Momentum function for the period 2007 to 2009
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Pistorius, M, Mijatović, A: Continuously Monitored Barrier Options under Markov Processes. Math.

Finance 23, 1–38 (2011). Also available at https://ssrn.com/abstract=1462822
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