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Abstract. Conventional Blind Source Separation (BSS) algorithms separate the sources assuming
the number of sources equals to that of observations. BSS algorithms have been developed based on
an assumption that all sources have non-Gaussian distributions. Most of the instances, these algo-
rithms separate speech signals with super-Gaussian distributions. However, in real world examples
there exist speech signals which are sub-Gaussian. In this paper, a novel method is proposed to
measure the separation qualities of both super-Gaussian and sub-Gaussian distributions. This study
measures the impact of the Probability Distribution Function (PDF) of the signals on the outcomes
of both sub and super-Gaussian distributions. This paper also reports the study of impact of mixing
environment on the source separation. Simulation improves the results of the separated sources by
7 dB to 8 dB, and also confirms that the separated sources always have super-Gaussian character-
istics irrespective of PDF of the signa ls or mixtures.

Keywords: blind source separation, probability distribution function, independent component
analysis, kurtosis, signal to interference ratio, sub-Gaussian, super-Gaussian.

1. Introduction

Audio source separation is the problem of automated separation of audio sources present
in a room, using a set of differently placed microphones, capturing the auditory scene
(Benaroya et al., 2006; Wilson, 2007; Dubnov et al., 2006; Foote, 1999). The whole
problem resembles the task a human can solve in a cocktail party situation, where using
two sensors (ears), the brain can focus on a specific source of interest, suppressing all
other sources present (cocktail party problem; Morita and Nanri, 2006; He et al., 2006;
Hyvarinen et al., 2001).

Recently, Blind Source Separation (BSS) using Independent Component Analysis
(ICA) has received a great deal of attention for its potential in acoustics, telecommu-
nication, medical and image signal processing (He et al., 2006; Stone, 2002; Cristescu
et al., 2000; De Martino et al., 2007). BSS is an emerging technique, which enables the
extraction of target speech from observed mixed speeches without the need for source
positioning, spectral construction, or a mixing system. To achieve this, attention was fo-
cused on a method based on source separation technique. ICA is an unsupervised statisti-
cal method used for decomposing a complex mixture of signals into independent sources.
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ICA’s main focus is finding underlying components that are statistically independent from
multivariate statistical data (Hyvarinen et al., 2001; Bell and Sejnowski, 1997).

ICA is being used routinely to separate signals from different independent and nearly
non-Gaussian sources. The applications of this include defence, surveillance, security,
communication and entertainment. In the recent past, many researchers have studied the
impact and quality of the sub- and super-Gaussian sources (Blaschke and Wiskott, 2003;
Eriksson and Koivunen, 2004; Zarzoso et al., 2006; Zarzoso and Nandi, 2002). While the
assumption of independence is important for the success of ICA, the impact of Probability
Distribution Function (PDF) of the sources has not yet been considered in detail. The
other issue is the impact of the mixing environment on the quality of separation of the
sources. In order to generate the hidden observations well, the probability density of the
source has to be estimated with accuracy. Additionally, the density estimate of the source
plays a significant role in the performance of the learning rule of the ICA algorithm. To
make the source separation more effective for security and surveillance, there is need to
determine the reliability of the use of ICA for obtaining the separated signals.

This research attempts to determine the answers for the following questions:

• What is the difference in the quality of separation for signals with different distri-
bution functions?

• What is the impact of the mixing matrix on the separation of sources?
• Does the probability distribution of the signals remain the same after separation

using ICA?
• Does the quality of the separated sources improves using ICA?

In this paper, a novel method for estimating the quality of audio mixtures with both
super- and sub-Gaussian distributions is proposed. The proposed method also compares
the source separation performance of the various BSS algorithms commonly used in lit-
erature.

2. Non-Gaussianity and Independence

There are several measures of non-Gaussianity that can be used. The classical one is
Kurtosis value or fourth order cummulant. This value is zero, negative and positive for
Gaussian, sub-Gaussian and super-Gaussian data respectively. The absolute value of Kur-
tosis is used frequently since it will be either zero or positive and will reach its maximum
value when the signal is independent. Furthermore, Gaussianity also implies the degree
of randomness of a signal and is related to information content of a signal. The less ran-
dom signal (more structured signal) carries less information than the random one and
vice versa. Gaussian signal is the most random signal among other signals and there-
fore it has the potential for the largest possible information content. According to central
limit theorem the distribution of a sum of independent signals with arbitrary distributions
tends toward a Gaussian distribution under certain conditions. The sum of two indepen-
dent signals usually has a distribution that is closer to Gaussian than distribution of the
two original signals. Thus a Gaussian signal can be considered as a linear combination
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of many independent signals. This also explains that separation of independent signals
from their mixtures can be achieved by finding a transformation that yields non-Gaussian
distributions (Hyvärinen, 1999; Bell and Sejnowski, 1995; Cichocki and Amari, 2002).

Non-Gaussianity is an important and essential principle in ICA estimation. To use
non-Gaussianity in ICA estimation, there needs to be quantitative measure of non-
Gaussianity of a signal. Before using any measures of non-Gaussianity, the signals should
be normalised (Cichocki and Amari, 2002; Lee, 1998). Some of the commonly used mea-
sures are kurtosis and entropy measures. Kurtosis is used as one of the measures in this
paper, which is explained next.

2.1. Kurtosis

Kurtosis is the classical method of measuring non-Gaussianity. When data is prepro-
cessed to have unit variance, kurtosis is equal to the fourth moment of the data. The
kurtosis of signal (s), denoted by kurt(s), is defined by

kurt(s) = E
{
s4

}
− 3

(
E

{
s4

})2
. (1)

This is a basic definition of kurtosis using higher order (fourth order) cumulant, this sim-
plification is based on the assumption that the signal has zero mean. To simplify things,
we can further assume that (s) has been normalised so that its variance is equal to one:
E{s2} = 1. Hence (1) can be further simplified to

kurt(s) = E
{
s4

}
− 3. (2)

(2) illustrates that kurtosis is a nomralised form of the fourth moment E{s4} = 1. For
Gaussian signal, E{s4} = 3(E{s4})2 and hence its kurtosis is zero. For most non-
Gaussian signals, the kurtosis is nonzero. Kurtosis can be both positive or negative. Ran-
dom variables that have positive kurtosis are called as super-Gaussian, and those with
negative kurtosis are called as sub-Gaussian. Non-Gaussianity is measured using the ab-
solute value of kurtosis or the square of kurtosis.

Kurtosis has been widely used as a measure of non-Gaussianity in ICA and related
fields because of its computational simplicity. Theoretically, it has a linearity property
such that

kurt(s1 ± s2) = kurt(s1) ± kurt(s2), (3)

and

kurt(αs1) = α4kurt(s1), (4)

where α is a constant. Computationally kurtosis can be calculated using the fourth mo-
ment of the sample data, by keeping the variance of the signal constant (Lee et al.,
1999; Lipeika, 2010; Peric et al., 2010). Kurtosis is extremely simple to calculate, how-
ever, it is very sensitive to outliers in the data set (Pham et al., 1992; Svecko et al., 2010).
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2.2. Sub- and Super-Gaussian Sources

There are actually two types of non-Gaussian signals. The two non-Gaussian signals are
known by various terms, such as super-Gaussian and sub-Gaussian or equivalently known
as “platy kurtotic” and “lepto kurtotic” respectively. sub- and super-Gaussian density are
represented using different forms. For a sub-Gaussian density, a symmetrical form in [4]
is adopted as follows

p(ui) =
1
2
(
N

(
μ, σ2

)
+ N

(
− μ, σ2

))
, (5)

where (N(μ, σ2) is the normal density with mean μ and variance σ2. In this paper, a sub-
Gaussian density with μ = 1 and σ2 = 1 is used.

• Super-Gaussian Sources

For the super-Gaussian density of speech signal, the Laplacian density can be represented
as follows

p(ui) =
1√
2σ

e−
√

2|μi |
σ , (6)

if the PDF of sub- and super-Gaussian functions are determined as of (5) and (6), respec-
tively. The non-linear function ϕ(μi) can be represented as

ϕ(μi; ki) =
{ √

2sign (ui) for ki = 1; super-Gaussian,

μi − tanh (μi) for ki = −1; sub-Gaussian,
(7)

where sign (μi) gives 1 when μi is positive and −1 when μi is negative. Hence, the
nonlinearity function is represented as ϕ(μi; ki) where ki is 1 for super-Gaussian func-
tion and −1 for sub-Gaussian function. The switching condition for ki between the sub-
and super-Gaussian distributions is determined according to the sign of the kurtosis of
estimated source (μi; ki) = 1 for positive kurtosis and ki = −1 for negative kurtosis.

A signal with super-Gaussian probability distribution function (PDF) has most of its
values clustered around zero. A speech signal is a typical example for a super-Gaussian
source. Figure 1 shows a typical super-Gaussian source (speech signals). From the figure
it is also evident that the super-Gaussian signals have PDFs that are more peaky than that
of a Gaussian signals.

The signals with sub-Gaussian pdf has a wide distributed function, which is illustrated
in Fig. 2. A saw-tooth signal, polyphonic music signal and white noise signals are typical
sub-Gaussian sources (Cristescu et al., 2000). The sub-Gaussian signals have PDFs that
are less peaky than that of a Gaussian signals.
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Fig. 1. Pdf of super-Gaussian (speech) signal.

Fig. 2. Pdf of sub-Gaussian signal.

3. Independent Component Analysis

Independent Component Analysis is a new statistical technique that aims at transform-
ing an input vector into a signal space in which the signals are statistically independent
(Hyvarinen et al., 2001; Jang and Lee, 2003; Lee et al., 2000).

ICA assumes the mixing process as linear, so it can be expressed as:

x(t) = As(t), (8)

where x = [x1(t), x2(t), . . . , xn(t)] are the recordings, s = [s1(t), s2(t), . . . , sn(t)]T
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Fig. 3. Independent component analysis (ICA) block diagram. s(t) are the sources. x(t) are the recordings,
ŝ(t) are the estimated sources A is mixing matrix and W is un-mixing matrix.

are the original signals, and A is the n × n mixing matrix. This mixing matrix and each
of the original signals are unknown. To separate the recordings to the original signals, an
ICA algorithm performs a search of the un-mixing matrix W by which observations can
be linearly translated to form Independent output components so that:

s(t) = Wx(t) = WAs(t), (9)

for this purpose, ICA relies strongly on the statistical independence of the sources s. The
block diagram approach of ICA for source separation is shown in Fig. 3. The ICA tech-
nique iteratively estimates the un-mixing matrix using the maximisation of independence
of the un-mixed signals as the cost function. Signals are statistically independent if the
joint probability density of those components can be expressed as a multiplication of their
marginal probability density. It is important to observe the distinction between indepen-
dence and uncorrelatedness, since decorrelation can always be performed by transform-
ing the signals with a whitening matrix to get the identity covariance matrix. Independent
signals are always uncorrelated but uncorrelated signals are not always independent. But
in case of Gaussian signals, uncorrelatedness implies independence. Transforming of a
Gaussian signal with any orthogonal un-mixing matrix or transform results in another
Gaussian signal, and thus the original signals cannot be separated. Hence Gaussian sig-
nals are forbidden for ICA. Thus the key of independent component estimation is mea-
suring the non-Gaussianity of the signals (Cardoso, 1998).

There exist many ICA methods which uses Higher order and Second order statis-
tics for separating the sources. In this paper, the detailed ICA algorithms employed are
FastICA, Joint Approximate Diagonalization of Eigen-matrices (JADE), SOBI (Second
Order Blind Identification) and Second Order Non-stationary source Separation (SONS).
One of the reasons for this choice is the large number of successful applications in various
fields of data mining, particularly audio signal processing (Benaroya et al., 2006; Wilson,
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2007; Morita and Nanri, 2006). The other factors are the broad availability of the algo-
rithms and the diversity in the way the source are estimated. The brief explanation of
these methods are explained next.

• FastICA

FastICA is a fixed point ICA algorithm that employs higher order statistics for the re-
covery of independent sources. FastICA has two algorithmic methods available for the
estimation of the unmixing matrix: one is the symmetric approach and the other is the
deflationary approach where independent components are estimated one by one like in
projection pursuit. The FastICA algorithm extracts independent components by sepa-
rately maximizing the Negentropy J(y) of each mixture FastICA uses simple estimates
of Negentropy based on the maximum entropy principle, which requires the use of ap-
propriate nonlinearities for the learning rule of the neural network (Hyvärinen and Oja,
1997; Hyvarinen et al., 2001; Hyvärinen, 1999).

• JADE

The JADE is an algorithm based on the joint diagonalization of cumulant matrices un-
der the assumption that the sources have non-Gaussian distributions. After whitening
and possible dimension reduction, a set of matrices obtained from Eigen matrices of
the fourth-order cumulant tensor is approximately diagonalized with a single orthogo-
nal transformation (Cardoso and A. Souloumiac, 1996; Joho and Rahbar, 2003; Moreau,
2002; Ziehe et al., 2004).

• SOBI

The SOBI (Belouchrani et al., 2002, 1993; Molgedey and Schuster, 1994) takes advan-
tage of the temporal structure in the observed data. SOBI exploits the time structure of the
data for source extraction. Moreover, SOBI relies only on stationary second order statis-
tics that are based on a simultaneous diagonalization of a set of covariance matrices for
the computation of an estimate of the unmixing matrix. The basis of the SOBI algorithm
is a set of time-lagged covariance matrices. To estimate the sources a joint diagonalisation
of the time-lagged covariance matrices is performed similar to the JADE algorithm.

• SONS

The SONS algorithm is used to perform both ICA (for arbitrary distributed non-stationary
sources with temporal structures) and BSS (for colored sources with different spectra),
depending on the time delays, the number of time windows, and the size of each window
(Choi, 2002; Saylani et al., 2009).

The successful separation of the original signals is dependent on the fulfilment of
these conditions (Hyvarinen et al., 2001).

• The sources must be statistically independent.
• The sources must have non Gaussian distributions.
• The number of available recordings must be at least the same as the number of the

independent sources.
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• The recorded signals must be (approximately) linear combination of the indepen-
dent sources and

• There should be no (little) noise common to the sources and there should be no
(minimal) delay between the signals of the different sources in the recordings.

While ICA has demonstrated success in the ability to separate signals, the output of ICA
suffers from the following ambiguities:

• The order of the independent components cannot be fixed and this may change for
each estimate.

• The amplitude and sign of the independent components cannot be determined.
While the relative amplitude within each signal is correctly estimated, relative am-
plitude between different signals cannot be estimated using ICA.

In most application such as the cocktail party problem, these are not serious problems.
The supervisor is able to identify the different sources and determine the quality of the
separation by listening to the sounds. To summarise from the above, the signals that can
be separated need to be non-Gaussian and independent. For the purpose of applying ICA
to audio recordings, there is a need to determine the conditions under which these signals
can be considered as independent and non-Gaussian.

4. Experiment

The experiments are conducted to evaluate the performance of the sub and super-
Gaussian audio mixtures. For this purpose, four recordings of speech, s1, s2, s3 and s4 are
recorded. The strength of the recording corresponded to 42 dB. The recordings are made
in an office environment using lapel microphones. Each recording is of average length 10
to 15 seconds, and sampled at 44,100 samples/second. The distance between the speaker
and the microphone is kept very close to circumvent multi paths for each emitted source
signal. The speaker read a short passage from a book. The recordings are played back
to colleagues and it is found that each of the observers could easily understand what is
being said by the speaker.

The experiments are evaluated in 3 steps.

• The first step is mixing the various audio sources with different mixing matrices
and to separate them using both second order and higher order ICA methods.

• The second step is using these separated signals to measure quality of separation
using SIR and

• The last step is to estimate the quality of the sources using the Kurtosis values and
also measure the PDF of the sources.

As a first step, computer simulations are conducted to perform the source separation in
sub-Gaussian and super-Gaussian mixing conditions. For this four different sub-Gaussian
signals and super-Gaussian signals are considered and are shown in Fig. 4. Four different
sub-Gaussian (Polyphonic music) and super-Gaussian signals (Speech signals) are mixed
using randomly generated sub-Gaussian and super-Gaussian mixing matrices. One of the
examples of the mixing matrices used in this research is shown in Table 1. The PDF of
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Fig. 4. PDF of sub- and super-Gaussian sources.

Table 1

Sub-Gaussian and super-Gaussian mixing matrices used for the experiment

Sub-Gaussian mixing matrix Super-Gaussian mixing matrix

⎛
⎜⎜⎝

−1.0000 −1.0000 1.0000 −1.0000

−0.5250 −3.4057 0.1582 −2.6094

−1.0000 −1.0000 1.0000 1.0000

2.2949 −1.1210 0.8096 −3.9043

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0790 0.0309 0.0049 0.0012

0.0111 0.0444 0.1000 0.1778

0.0309 0.2086 0.0000 0.0790

0.3568 0.2420 0.1494 0.0790

⎞
⎟⎟⎠

the signals and mixing matrices are plotted every time to confirm the validity of the sub-
and super-Gaussian sources. The PDF distribution of the sub- and super-Gaussian mixing
matrices are shown in Fig. 5.

Four independent audio recordings s1, s2, s3 and s4 are mixed in the following way:

• sub-Gaussian source + sub-Gaussian mixing matrix,
• sub-Gaussian source + super-Gaussian mixing matrix,
• super-Gaussian source + sub-Gaussian mixing matrix,
• super-Gaussian source + super-Gaussian mixing matrix.

The entire mixing process can be expressed in the vectors and matrix form as:

x1 = a11s1 + a12s2 + a13s3 + a14s4,

x2 = a21s1 + a22s2 + a23s3 + a24s4,

x3 = a31s1 + a32s2 + a33s3 + a34s4,

x4 = a41s1 + a42s2 + a43s3 + a44s4. (10)
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Fig. 5. PDF of sub- and super-Gaussian mixing matrices.

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

s1

s2

s3

s4

⎞
⎟⎟⎠ .

An example of the mixed signal in sub- and super-Gaussian environment are shown
in Fig. 6. The similar experiments are repeated for all the four above mentioned mixing
process.

4.1. Data Analysis

Quality of the source separation can be measured using different performance indices
such as:

• signal to Noise Ratio (SNR);
• signal to Distortion Ratio (SDR);
• signal to Artefacts Ratio (SAR) and
• signal to Interference Ratio (SIR).

In bio signal and audio applications, SIR is found to be a popular tool to measure the
quality separation (Cichocki and Amari, 2002).

Signal to Interference Ratio is the ratio of the power of the wanted signal to the total
residue power of the unwanted signals. This performance index could be used for full-
rank or non-full rank analysis (Cichocki and Amari, 2002). To determine the efficacy
of using SIR for an application, the authors have studied the quality of separation on
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Fig. 6. Examples of PDF of sub- and super-Gaussian mixed signals.

synthetically mixed data where the original source signals sj (j = 1, . . . , N), the mixing
matrix A, the observations xi (i = 1, . . . , M), the estimated separation matrix W , and
the estimated source signals yj (j = 1, . . . , N) are all available. For real world problems,
we have no access to the original signals sj and the mixing matrix A. In this scenario the
computation of the SIRest would be the SIR for real world data. Taking into account that
the global transfer function of the mixing-separating system can be defined as G = W ∗A,
one can formulate the SIR of the estimated signals as

SIR = SIRest = 10 log
E{(gjj ∗ sj)2}

E{(
∑N

k=1,k �=j(gjk ∗ sk)2}
. (11)

The mixed signals in sub- and super-Gaussian conditions are separated using four dif-
ferent ICA methods. For higher ICA methods FastICA and JADE are used, and for the
Second order ICA methods SOBI and SONS ICA algorithms are used. There are a num-
ber of parameters available that can be tuned in order to optimize the performances of
both higher and second order ICA algorithms. For this study, FastICA is using a tangent
hyperbolic as its non-linearity instead of the default third order polynomial, which is not
found to be a robust parameter, because it is only recommended when there are no out-
liers. In the case of JADE, all default parameters are used. On the other hand, SOBI and
SONS have only the number of temporal delays as adjustable parameters (Tang, 2005).
Hence for SONS and SOBI source separation, the default value of 50 delays ranging from
4 ms to 200 ms variations of the parameter between 2 and 250 delays (Naeem, 2009).

The kurtosis and SIR values are computed for each separated sources using the equa-
tion (2) and (11) respectively.
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Table 2

Overall ICA separated results for sub-Gaussian and super-Gaussian sources using SIR

Sub-Gaussian Super-Gaussian Sub-Gaussian Super-Gaussian SIR Kurtosis

sources sources mixing matrix mixing matrix (dB)

X X 13 2.0067

X X 15 5.0845

X X 20 8.5845

X X 26 12.4867

Table 3

Overall Kurtosis results for sub-Gaussian and super-Gaussian sources, mixing matrices and mixtures

Kurtosis Sub-Gaussian Super-Gaussian

FastICA JADE SOBI SONS FastICA JADE SOBI SONS

Mixed −1.6667 −1.7583 −2.0000 −1.2719 1.9333 1.7211 2.0077 1.6705

matrices

Source −8.3952 −10.4959 −11.5782 −6.0666 12.3952 10.4959 10.5782 4.0666

signals

Separated 4.6438 5.6044 3.5063 3.492 11.7766 13.6044 11.8955 13.516

signals 5.6879 4.6475 3.9081 3.467 12.068 5.6475 4.9431 5.502

(s1, s2, s3, s4) 4.6271 4.4692 3.0739 3.5573 13.5031 11.4692 11.135 11.5573

6.658 3.9323 3.5224 4.2988 5.6049 12.9323 11.8952 11.4029

Fig. 7. Examples of PDF of ICA separated sub- and super-Gaussian signals.
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Fig. 8. PDF of ICA separated sub-Gaussian signals.

Fig. 9. PDF of ICA separated super-Gaussian signals.

5. Results and Observations

The overall SIR results for four different categories have been tabulated in Table 2.
Figs. 7, 8, 9 and 10 represents the PDF of the separated source in sub- and super-Gaussian
mixing environment. From the results, it is observed that
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Fig. 10. PDF of ICA separated sub- and super-Gaussian signals together.

Fig. 11. Overall SIR results in dB. The four categories are mentioned first one as source and the second one as
mixing matrix Eg: sub + super.

• Kurtosis value is always positive, which indicates that after the source separation
using ICA algorithms, all separated sources remains as super-Gaussian (refer Ta-
bles 2, 3, Figs. 7, 8, 9 and 10).

• The SIR value increases from sub-Gaussian mixtures (sub-source+sub-matrix and
sub-source + super-matrix), to super-Gaussian mixtures (super-source+sub-matrix
and super-source + super-matrix) by 6 dB to 7 dB (average) (refer Table 1 and
Fig. 11).
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Table 4

Overall SIR results for sub-Gaussian and super-Gaussian sources

SIR Sub-Gaussian Super-Gaussian

Higher order ICA Second order ICA Higher order ICA Second order ICA

FastICA FJADE SOBI SONS FastICA FJADE SOBI SONS

SIR1 21.5603 19.2111 12.4887 13.4902 26.2026 26.2111 20.5035 20.9429

SIR2 20.5489 20.4629 12.2583 13.0029 25.7222 26.4629 21.1294 21.0907

SIR3 20.1011 19.594 13.2532 13.8534 26.5337 25.594 20.212 20.9274

SIR4 21.2085 20.6837 13.259 14.1995 26.6956 26.6837 20.8032 21.5251

SIR 20.8547 19.9879 12.8148 13.6365 26.2885 26.2379 20.6621 21.1215

Fig. 12. Overall SIR results in dB. The first class of results showing the sub-Gaussian separated sources and the
second class of figure showing the super-Gaussian sources.

• The SIR value increases from 16.83 dB (average) to 23.58 dB (average) from sub-
Gaussian to super-Gaussian mixtures (refer Table 4 and Fig. 12).

• The Higher order ICA methods showed significant improvement in the source sep-
aration (13.32 dB to 20.42 dB for sub-Gaussian and 20.89 dB to 26.26 dB for super-
Gaussian), as compared to second order ICA methods (refer Table 4, Fig. 12).

Theoretically, higher order ICA should be useful in quite all applications as standard
PCA, second order ICA and even beyond. The results of second order ICA are not im-
pressive. This is due to the fact that in second order ICA there are no assumptions w.r.t.
the non-Gaussianity of the sources. The method uses the fact that a signal containing har-
monic series plus noise lies in a linear (signal) subspace, spanned by the dominant Eigen
values of its correlation matrix.
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6. Discussions and Conclusion

In this paper, we study the performance of four major classes of algorithms for spatial
ICA, namely, maximization of non-Gaussianity, joint diagonalization of cross- cumulant
matrices and second-order correlation-based methods. We compare how different ICA
algorithms estimate audio mixtures in sub-Gaussian and super-Gaussian conditions. The
results demonstrate that the ICA algorithms using higher-order statistical information
prove to be quite consistent for audio data analysis. FastICA and JADE both yield reliable
results, with each having its strengths in specific areas. On the other hand, SOBI and
SONS, algorithms using second-order statistics, does not perform reliably for sub- and
super-Gaussian audio mixtures.

FastICA and JADE, which all implicitly or explicitly use higher-order statistics, yield
results that are consistent with each other. Among the ICA algorithms that are tested, Fas-
tICA yielded results with the highest SIR values, and SOBI yielded the lowest. FastICA
maximizes the non-Gaussianity of estimated components and, thus, provides a global
measure of separation, whereas SOBI uses the second-order correlation-based methods
to estimate components. Using FastICA as a reference with which to compare the other
algorithms proved to be reasonable since, visually, it is seen that FastICA yields results
that appear to be the best. We found that FastICA performed slightly better than JADE due
to higher contrast-to-noise ratio. JADE, on average, estimates smaller areas of activation
in comparison to FastICA. Lowering the threshold for JADE increases the size of activa-
tion areas; however, this also causes the inclusion of a large amount of irrelevant areas
(likely false positives), thus maki ng it evident that JADE yields estimates with a lower
contrast to-noise ratio. JADE uses fourth-order statistics and minimizes cross-cumulants
to achieve independence among estimated components in contrast to approaches such as
FastICA that implicitly incorporate all higher order statistics through a nonlinear func-
tion.

SOBI and SONS are based on second-order statistics, and results suggest that it shows
poor selectivity for audio analysis. It cannot differentiate between sources with similar
spectra, as in the case of sub- and super-Gaussian sources in the study. It places both
of these sources in the same component and also poorly estimates the time courses of
these components. The iterative algorithms FastICA and JADE yield consistent results
over runs, and the initialization of parameters does not cause large changes in results.
For FastICA, nonlinearities tanh and pow3 yield more consistent results than the gauss
nonlinearity.

The experiments shows that the most commonly used ICA approaches yield consistent
results for audio data analysis. FastICA and JADE yield reliable results for sub- and
super-Gaussian data and, thus, are useful algorithms for studying components on which
we have no prior information. In addition, iterative ICA algorithms yield results that are
quite consistent over runs for the components of interest. These results greatly increase
the confidence in the use of higher order ICA for audio data analysis.

It is concluded that the signals after separation using ICA are always super-Gaussian
in nature. It can be easily argued that higher order ICA methods which generally uses
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Skewness and Kurtosis for source separation are responsible for this. Usage of both
Higher and second order ICA methods justifies that by using any ICA methods, the sep-
arated sources always remains super-Gaussian.

While sub-Gaussian sources can also be separated, the quality of separation is poor,
and the outcome is always a super-Gaussian approximation of the original signal. Hence,
a signal such as polyphonic music would be separated into non-polyphonic music and
there would be greater emphasis on aspects of the audio such as voice or other super-
Gaussian sources. There is a strong impact of the mixing matrix distribution on the qual-
ity of source separation. If the mixing matrix is super-Gaussian in nature, the quality
of separation is better than when the mixing matrix is sub-Gaussian. The experimental
results also showed the significant improvement of the separated sources using Higher
order ICA methods as compared to that of Second order ICA methods. In near future, it
would be interesting to test the outcome of the research into noisy signals.
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Šaltini ↪u atskyrimo kokybės matas Gauso tipui artimiems mišiniams

Ganesh R. NAIK

Aklojo šaltini ↪u atskyrimo algoritmai paprastai naudojami su prielaida, kad nagrinėjamieji šal-
tiniai aprašomi kitokiais nei Gauso pasiskirstymo dėsniais. Daugumoje atvej ↪u nagrinėjami šnekos
signalai, aprašomi super-Gauso pasiskirstymo dėsniu (Gauso tipui artimu dėsniu su teigiamu
eksceso koeficientu). Tačiau praktiniuose uždaviniuose sutinkami ir sub-Gauso (su neigiamu
eksceso koeficientu) dėsniu aprašomi signalai. Šiame straipsnyje pasiūlytas ir eksperimentiškai
ištirtas šaltini ↪u atskyrimo kokybės matas, tinkantis tiek šaltiniams su super-Gauso, tiek su sub-
Gauso pasiskirstymo dėsniais. Eksperiment ↪u rezultatai parodė, kad šaltiniams atskirti taikant
nepriklausom ↪u komponenči ↪u analizės metodus, santykio signalas–pašalinis signalas pagerėjimas
siekia 7–8 dB, o atskirtieji šaltiniai vis ↪a laik ↪a gaunami super-Gauso tipo, nepriklausomai nuo sig-
nal ↪u ar j ↪u mišinio pasiskirstymo dėsni ↪u.




