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MEASURE PRESERVING CONTINUOUS
STRAIGHTENING OF FRACTIONAL

DIMENSIONAL SETS

Abstract

An s-set in Euclidean space is a set of finite, non-zero, Hausdorff
s-dimensional measure. Call an s-set straight if its s-measure agrees
with its Method I s-outer measure. Examples are given where there is
a continuous, one-to-one function f on Rn which is measure preserving
on E so that f(E) is straight (such an f will be called a straightening
of E). It is shown that any s-set can be written as a countable union of
sets for which there are straightenings.

The purpose of this paper is to show how to apply a continuous, one-to-
one function from Euclidean n space onto itself in such a way as to take a
subset E of an s-set onto one with nicer measure properties. First we will
need some standard definitions for generating Caratheodory measures: (See
e.g., [4] where methods I and II originated for details.)

Method I. Start with a sequential covering class C of a set X; that is, C is
a collection of subsets of X with ϕ ∈ C and a sequence of sets Xi ∈ C so that
X ⊂ ∪Xi . Let τ be a non-negative function, possibly infinite, defined on C
with τ(ϕ) = 0. Then τ generates an outer measure m∗

I on each subset E of X
given by

m∗
I(E) = inf{

∑
τ(Ei) : E ⊂ ∪Ei with Ei ∈ C}.

A subset E of X is measurable if for each set A ⊂ X, m∗
I(A) = m∗

I(A ∩
E) +m∗

I(A\E).
Method II. For each δ > 0, suppose Cδ is a sequential covering class of

X with Cδ ⊂ Cδ′ when δ < δ
′
. Let τ be a non-negative function defined on
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C = ∪Cδ. Using τ and method I, for each δ > 0, this generates m∗
δ . Then

m∗(E) = limδ→0 m
∗
δ(E) is an outer measure on the set of subsets of X.

In general, when method I and method II generate the same outer measure
on E, we will say that the set E is straight. A one-to-one map h from X onto
X will be called a straighening of E if h(E) is straight. Perhaps, the word flat
would be a better term for sets of dimension larger than 1.

We will be interested here in s-dimensional measure in Euclidean n-space.
But, if Cδ is the set of subsets of a metric space each of whose diameter is
less than or equal to δ and τ(E) = (diamE)s, the resulting outer measure is
denoted by s-m∗

δ and the outer measure obtained using method II (Hausdorff
s-dimensional measure) will be denoted by s-m∗. When a set is measurable,
one uses s-m to denote the measure (equal to the outer measure). The outer
measure which is obtained with no restriction on δ will be denoted by s-m∗

I .
Clearly, for each set E, s-m∗

I(E) ≤ s-m∗(E). (Note that sets of finite, non-zero
s-m∗

δ outer measure are in general not s-m∗ measurable.) A set is called an
s-set if it is measurable with respect to s-m and has finite, non-zero s-measure.

Examples:
1) For Lebesgue measure in n dimensional Euclidean space, C is the collec-

tion of ‘rectangles’ S = (a1, b1)×(a2, b2)× ...×(an, bn) with τ(S) = Π(bi−ai).
All subsets are straight because both methods I and II yield Lebesgue measure.

2) For any Caratheodory measure, all sets of measure 0 are straight.
3) The Cantor ternary set with s = log 2/ log 3 is smooth. Indeed, Falconer

(See [2] p.16) proves a result which he attributes to R.O. Davies: On the line,
if E0 = [0, 1], E = ∩En, En+1 ⊂ En and each set En is made up of a finite
collection of closed intervals I so that I ∩En+1 consists of m intervals of equal
length (m may vary with I) J1, ..., Jm equispaced in I so that diam(∪Ji) =
diam(I) and

∑
(diam(Ji))

s = (diam(I))s, then s-m(E∩J) ≤ |J |s. That such
sets are straight follows from:

Theorem 1. A necessary and sufficient condition for a set E to be straight
with respect to s-measure is that for each set A, (alternately, for each closed
convex set A) s-m∗(E ∩A) ≤ (diam(E ∩A))s.

Proof. Note that in order to compute the outer measure of E it suffices to
cover E with closed convex sets. Suppose the condition holds; that is, suppose
that for each set A, s-m∗(E ∩A) ≤ (diam(E ∩A))s. Then

s-m∗(E) = limδ→0 inf{
∑

(diam(Ei))
s : E = ∪Ei , diam(Ei) < δ}

≥ inf{
∑

(diam(Ei))
s : E = ∪Ei}

≥ inf{
∑

s-m∗(Ei) : E = ∪Ei} = s-m∗(E).

Since inf{
∑

(diam(Ei))
s : E = ∪Ei} = s-m∗(E), the equality s-m∗(E) = s-

m∗
I(E) follows and E is smooth. For the converse, suppose s-m∗(E) = s-
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m∗
I(E). If there were a set A so that s-m∗(E ∩A) > (diam(E ∩A))s , then A

could be chosen to be closed and convex so that, since A is then measurable
with respect to s-m∗,

s-m∗(E) = s-m∗(E ∩A) + s-m∗(E\A)
> diam(E ∩A)s + s-m∗(E\A) ≥ s-m∗

I(E) ,

a contradiction to the fact that the two measures are equal.
Note: Subsets of straight sets are straight. Given a set E and real number

k, let k ·E = {k · x : x ∈ E}. Then with respect to a given s-measure, k ·E is
straight if E is. In general, most sets are not straight. For example, any curve
other than a line segment is not straight with respect to 1-measure. Because
of theorem 1, the upper s-density of each straight s-set is less than or equal to
1 at each of its points. It is well known that the upper density of s-sets is less
than or equal to 1 at almost every point with respect to s-measure (see e.g.,
[2] p.24). The original paper establishing density properties is [3].

Examples:
4) If F (x) is absolutely continuous on [a, b] , the graph of F can be straight-

ened with respect to 1-measure; indeed, the map taking each point in the plane
of the form (x, F (x) + y) to the corresponding point (

∫ x

a

√
1 + F ′(t)2dt, y) is

a smoothing of the graph.
5) If F (x, y) is continuously differentiable,

(x, y, z + F (x, y)) → (x,

∫ y

0

(1 + F 2
x (x, v) + F 2

y (x, v))
1/2dv , z)

is a straightening of the graph of F . Here, the graph is ‘rolled out’ onto the
(x, y) plane in one direction. It is easy to see that this is a straightening by
comparing the area measure of the graph over rectangles to the area of the
image and noting that the two are the same.

6) The shape of a letter T cannot be straightened with respect to 1-measure.
(However, it is the union of two sets which are straight.)

7) In R2 , let S = {(x, y) : 0 ≤ y ≤ f(x) with x ∈ [0, 1]} where f(x) =
2−2n+1 if x = m · 2−n ; f(x) = 0, otherwise. Then S has length 2 and S is
not a finite union of sets which can be straightened. (It is a countable union
of straight sets, obviously.)

The theorem that follows gives an affirmative answer to the following ques-
tion: Is each s-set E ⊂ Rn the countable union of sets which can be straight-
ened? (with continuous, one-to-one maps of Rn onto Rn which are measure
preserving on each Ei where E = ∪Ei ) The general proof will only be sketched.
An affirmative answer to an interesting question would make the results some-
what moot.
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Problem 1: Is every s-set the countable union of straight sets? Alterna-
tively, if E is an s-set, is E = ∪Fi ∪ Z where s-m∗(Z) = 0 and each Fi is a
compact, straight set?

Conjecture: Yes. Motivation: One can observe that the circumference
of the circle is not straight with respect to 1-measure because for each point
on the circumference and each ball of radius r about the point, the measure
(length of the circumference) inside the ball is larger than the diameter of the
ball. However, consider a quarter circle of radius 1. By removing an arc of
length 1/2 from the middle of this set, then removing two arcs of length 1/8
from the middle of the remaining arcs and, in general, removing 2n arcs of
length 4−n/2 from each of the remaining arcs at the nth stage, the perfect
set which remains can be shown to be straight; the remaining set has positive
1-measure equal to π/2− 1. Thus the circumference contains a straight set of
positive 1-measure. By taking an appropriate countable collection of rotations
of this set along with a set of length 0, the circumference can be seen to be a
countable union of straight sets.

Perhaps, by ‘punching holes’ in an s-set, one can always leave behind a
straight subset of positive measure. Then continuing inductively through the
ordinal numbers one would obtain an at most countable collection of straight
sets of positive measure; the set of measure 0 that remains is necessarily
straight and it would follow that the set is a countable union of straight sets.

Every s-set contains a set of positive s-m measure which can be straight-
ened. We first prove that straightening can occur on the line; there a slightly
more general result is easily obtained. For this purpose and in what follows,
for each s ∈ (0, 1), we will need the following subset of [0, 1] : let Ps be the
symmetric perfect set of dimension s which for each natural number n is con-
tained in 2n intervals of size 2−n/s . (This is constructed by the method given
in Example 3) above using m = 2 ; Davies result implies that Ps is straight.)

Theorem 2. Let F be a compact s-set which is a subset of the real num-
bers. Then if s-m(c ·Ps) > s-m(F ) , there is a continuous, increasing function
on the real line which is measure preserving on F and takes a perfect subset
of F having the same measure as F to a subset of c · Ps .

Proof. It suffices to consider F ⊂ [0, 1] . Remove from F all open intervals
I for which s-m(F ∩ I) = 0. The remaining set P is perfect and has the
same s-measure as F . In each interval contiguous to P select a point xn and
define a measure m on E = P ∪ ∪n{xn} so that m(P ∩ I) = s-m(P ∩ I) and
m({xn}) = an where an are chosen so that

∑
an = s-m(c ·Ps)− s-m(P ) . On

E, let f(x) = y if m(E ∩ [0, x)) = s-m(Ps ∩ [0, y)). Then f is increasing on
P and contiguous intervals of P correspond to jumps of f |P . Thus when f
is extended linearly on the intervals contiguous to P , the resulting function is
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continuous, one-to-one and measure preserving and takes F\P onto a set of
s-measure 0 and P onto a subset of c · Ps so that it is a straightening of F .
This completes the proof.

We now turn to consider subsets of k-dimensional space. In Rk suppose
s < k and let Qs = Ps/k × Ps/k × ... × Ps/k . Then Qs is an s-set. It will
then be shown that if E is an s-set, there is a compact subset F ⊂ E with
s-m∗(F ) > 0 and a continuous, one-to-one map h from Rk onto Rk so that
h is measure preserving on F and h(F ) = c · Qs where c is chosen so that
s-m∗(F ) = s-m∗(c ·Qs).

That Qs is straight is due to an application of theorems which appear in
the literature. First of all, Qs is easily seen to be a self-similar set according
to the definition of Falconer given in [2] p.119. It is also shown there that such
sets are s-sets where s is the similarity dimension. And s is easily seen to be
the similarity dimension of Qs. Then proposition 3 in [1], asserts that if α is
the similarity dimension of a self-similar set A (here, a slightly more general
definition of self-similarity is used), then A satisfies α-m∗(B) = α-m∗

I(B) for
each α-measurable subset B of A. It follows that all self-similar sets as defined
in [2] are straight s-sets.

Theorem 3. Let E be a measurable set of σ-finite s-measure which is a
subset of Rk. Then E = ∪Ei ∪ Z where there are straightenings fi of Ei and
Z is a set of s-measure 0.

Proof. Without loss of generality, we may suppose that E is a compact
set of finite positive s-measure. We may also suppose that each intersection of
E with any hyperplane in Rk is of s-measure 0. For otherwise, by induction,
subsets can be founded in the intersection of E with a hyperplane for which
there are straightenings. We may also suppose that every open set which
intersects E meets it in a set of positive s-measure (otherwise such intersections
can be removed from E and adjoined to Z). Given any number p between 0
and 1, it will then be possible to construct a compact subset F of E with
s-m(F ) = p · s-m(E) and a straightening h of F which takes F onto a set of
the form c ·Qs where c is chosen to make s-m(c ·Qs) = p · s-m(E) = a.

The construction will be sketched for a compact subset ofR2 . Fix p ∈ (0, 1)
and let a = p · s-m(E). Determine x0 and x1 so that

E0 = E ∩ {(x, y) : x ≤ x0} and E1 = E ∩ {(x, y) : x ≥ x1}

are disjoint and s-m(Ei) = a/2+δ1 with δ1 < 1/2. Determine y00, y01, y10, y11
so that

Ei1,0 = Ei1 ∩ {(x, y) : y ≤ yi1,0} and Ei1,1 = Ei1 ∩ {(x, y) : y ≥ yi1,1}

are disjoint and of s-measure equal to a/4 + δ2 with δ2 < 1/4 . Enclose
the sets Ei1,i2 in four rectangles R

′

i1,i2
so that the sets Ei1,i2 have points
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on each edge of each corresponding rectangle. These rectangles can in turn
be enclosed in four slightly larger, pairwise disjoint rectangles Ri1,i2 . Then

c · Qs = c · (Ps/2 × Ps/2) is contained in four squares S
′

i1,i2
of side length

2−4/s · c . These squares are contained in four slightly larger squares Si1,i2
which are also pairwise disjoint. A map h1 is then defined so that it takes
the complement of the four slightly larger rectangles onto the complement of
the four slightly larger squares, takes the smaller rectangles onto the smaller
squares, takes sides of rectangles to the corresponding sides of squares, and
takes the remaining points onto the remaining ones in a continuous one-to-one
manner.

Continuing, each of the sets Ei1,i2 is divided into four sets which are each
enclosed in four rectangles and four slightly larger rectangles each contained
in a rectangle R

′

i1,i2
. Also c · Qs is contained in sixteen squares which are

contained in sixteen slightly larger pairwise disjoint squares. Then h2 can be
defined as above with the restriction that it agrees with h1 on the complement
of the union of the rectangles Ri1,i2 from the previous stage. If this is con-
tinued, it results in the desired compact set F and the sequence of functions
{hn} which converge uniformly to a one-to-one continuous function h defined
on R2 which is measure preserving on F . That is, h is a straightening of F ,
as required.

We conclude with some additional problems.
Problems.
2. Under what conditions are cross products of straight sets straight (with

appropriate dimension)?
3. When can one ‘roll out’ a set into a straight set? (By ‘roll out’ is meant

find a straightening h in which at least one of the coordinates of Rk is fixed.)
4. Given a totally disconnected compact subset A of Rk, is there a contin-

uous measure preserving straightening of A ?
5. Do such results hold in an abstract setting? E.g., if τ is non-decreasing

and, say lim supm∗(En)/τ(En) = 1 at m∗ a.e. x ∈ X where the lim sup is over
all sequences with τ(En) → 0 and x ∈ En, then is every method II measurable
set a countable union of straight sets?
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