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Abstract 
The measurement of the relative efficiency of a production process with the DEA approach considers the process 
itself as a "black box" that uses inputs to produce outputs. In reality, many production processes require the 
carrying out of many activities grouped into phases and interconnected with each other. For this reason, 
modeling a production process as a network system in which its sub-parts are differently interconnected certainly 
represents a modeling closer to reality. The NDEA approach born within the DEA methodology has developed 
several models to measure the relative efficiency of network systems such as independent models, or connected 
models or relational models. The latter differs from the other two in that it allows you to measure the relative 
efficiency of the entire process and its parts once the operations between the parts of the system have been 
considered. In this paper, as well as modeling a production process with four stages with shared variables, we 
propose a relational NDEA model under different preference systems in the distribution of resources between 
sub-processes to measure their relative efficiency. The proposed NDEA model is in the multiplicative version. 
We will use non-real data to solve the model. Our conclusions are that 1) a four-stage production process can 
represent numerous real processes, 2) the proposed NDEA model can therefore be used for multiple different 
applications and 3) the system of preferences on the distribution of resources among subs processes influences 
the measurement of relative efficiency both for the whole process and for its sub-processes.  
Keywords: network DEA, performances management, internal structure, inputs-outputs system 
1. Introduction 
Data Envelopment Analysis (DEA) (Cooper, Seiford, & Tone, 2007) occupies an important role within 
operational research (RO) and management science (SM) as a frontier non-parametric approach for measuring 
efficiency relative of a decision-making unit as well as a technique for modeling a system that uses inputs to 
produce outputs without considering its internal structure. In reality, production processes can be considered as a 
set of activities often grouped into phases or stages interconnected with each other, such as the production of cars, 
the production of wine, the production of jewelry, the production of clothes, but also the production of public and 
private services, and so on. In many of these sectors the applications of DEA have been many numerous [for a 
review of the literature on DEA applications see (Seiford, 1996), (Emrouznejad, Parker, B., & Tavares, 2008), 
(Emrouznejad, A., & Yang, 2017), (Liu, Lu, Lu, & Lin, 2013), (Hollingsworth, 2008)] In all DEA applications, 
decision-making units (or a production process or an entire organization) are modeled as "black boxes" that use 
inputs to be transformed into outputs. More or less recently, many authors have proposed, always remaining 
within the DEA methodology, to model the decision-making units as a network system [for example (Fare & 
Grosskopf, 2000), (Fa¨re R. &., 1996b), (Kao, 2009(a)), (Castelli, Pesenti, & Ukovich, 2010), (Castelli, Pesenti, 
& Ukovich, 2001)] in which the sub-parts of the system are interconnected with each other. In this last case the 
measurement of relative efficiency with the DEA can be carried out using different models that consider its 
internal structure such as independent models [for example (Wang, Gopal, & Zionts, 1997), (Seiford & Zhu, 
1999), (Sexton & Lewis, 2003)], or related models [for example (Fa¨re & & Grosskopf, 1996a), (Fare & 
Grosskopf, 2000)]. Differently from the independent models, which treat each part of the system as an 
independent DEA model, the connected models allow  taking into account the operations that occur between 
interconnected phases but do not, however, allow to measure the efficiency of each single part. Starting from the 
work of [ (Kao, 2009(a)) (Kao, 2009(b))] a new class of NDEA models have been developed to measure the 
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relative efficiency of both the entire process and its parts, taking into account the interconnections. The author 
defined his approach as a "relational" approach. The characteristics of the relational NDEA approach is that in it 
the same variables obtain the same weight variable, including the relational variables, so that it is possible to 
apply a multiplicative decomposition formula of the relative efficiency [ (Kao, 2009(a)) (Kao, 2014)]. In other 
words, in his work (Kao, 2009 (a)) he allows to obtain the efficiency of the sub-processes from the constraints of 
the NDEA model and then to obtain the efficiency of the entire process as the product of the individual 
efficiencies. In his works the author distinguishes models in series, in parallel (as basic models) and then adopts 
a solution with virtual sub-parts for more complex models [ (Kao, 2009(a)) (Kao, 2009(b)) (Kao, 2014)]. A more 
general classification for the internal structure of a decision-making unit and the development of related NDEA 
models to measure its relative efficiency can be found in [ (Castelli, Pesenti, & Ukovich, 2010)] and his other 
works. The NDEA approach, however, provides that the modeling (note 1) is adapted to the specific system. 
NDEA applications are relatively recent but growing [for example (Chodakowska & Nazarko, 2017), (Kao & 
Hwang, 2008), (Kawaguchi, Tone, & Tsutsui, 2014), (Pinto, 2016), (Prieto & Zofio, 2007), (Sexton & Lewis, 
2003), (Wanke & Barros, 2014), (Wanke, Maredza, & Gupta, 2017), ( (Despotis, Koronakos, & Sotiros, 2015), 
(Chilingerian & Sherman, 2004), (Cook, Hababou, & Tuenter, 2010)]. In this paper we develop a relational 
multiplicative type NDEA model assuming constant returns to scale for the entire process and for its parts and 
with four interconnected subsystems. The paper is structured as follows: in section 2 we offer a broader and 
more in-depth review of both the theoretical and applied literature of interest, in section 3 we present a graphic 
model of a system with four subsystems variously interconnected (subsection 3.1) and the related multiplicative 
type NDEA model (subsection 3.2), in section 4 we offer an example application of the model and finally in 
section 5 we present the discussion and conclusions. 
2. Material Studied 
The consideration of the internal structure of a production process/organization inside DEA context is relatively 
recent. A first application can be considered those in (Fa¨re & Whittaker, 1995). In their work the authors adopt a 
connected NDEA model and their network DEA approach can involve more than two stages and the operations 
among them. Their work consider an application of an input oriented two-stage DEA model to dairy farms and 
compare the results obtained with the ones obtained with a standard DEA model. Since the work of (Fa¨re & 
Whittaker, 1995) other works appeared in the applied economic and managerial literature. For example (Sexton 
& Lewis, 2003) apply a two-stages NDEA model to Major League Baseball considering both inputs and outputs 
orientation and each one under constant and variable return to scale assumptions. In their paper the authors using 
the envelopment form demonstrate as it is possible to make different assumptions for each sub-process in a 
context of network system. (Chilingerian & Sherman, 2004) apply the NDEA approach in a two stage process in 
measuring a physicians care. (Prieto & Zofio, 2007) applied network efficiency analysis within an input– output 
model initiated by (Koopmans, 1951). In their work the authors optimized primary input allocations, 
intermediate products and final demand products by way of Network DEA techniques and succeeded in applying 
their models to input–output database of OECD countries. (Kao & Hwang, Efficiency decomposition in 
two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, 2008) 
introduced for the first time in the context of two-stage network DEA the relational approach. They develop an 
multiplier input-oriented two-stage DEA model and apply it to measure the relative efficiency of non-life 
insurance companies in Taiwan. (Wanke & Barros, Two-stage DEA: An application to major Brazilian banks, 
2014) apply the network-DEA centralized efficiency model to optimize efficiency in Brazilian banking in both 
modelled stages simultaneously. (Wanke, Maredza, & Gupta, Merger and acquisitions in South African banking: 
A network DEA model, 2017) apply a network DEA approach to compute the impact of contextual variables on 
several types of efficiency scores of the resulting virtual merged banks: global (merger), technical (learning), 
harmony (scope), and scale (size) efficiencies. (Kawaguchi, Tone, & Tsutsui, 2014) employed a 
dynamic-network data envelopment analysis model (DN model) to perform the evaluation of the policy effect of 
the current reform of Japan’s municipal hospitals. (Despotis, Koronakos, & Sotiros, 2015) apply a network DEA 
approach to deal with efficiency assessments in two-stage processes and apply their  approach to the assessment 
of the academic performance of forty faculty members in a Greek University. (Pinto, 2016) apply both  constant  
and variable returns to scale Data Envelopment Analysis network model  to estimates the relational and 
sub-process efficiency of the production process of the hospital’s acute care services. (Chodakowska & Nazarko, 
2017) apply a network DEA models in evaluating courier and messenger companies. In their work the authors 
consider an hypothetical chains consisting of two types of members, i.e. nine leaders of the courier and 
messenger sector that had the share of nearly 95% of total revenue generated from provision of courier services 
in 2014. The second member was the bigger enterprise in the electronic shopping sector that does not have 
stationary shops e.g. Bonprix Sp. z o.o. Their approach consider envelopment form. For a review of applications 
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of NDEA see (Kao, 2014)  and (Cook, Liang, & Zhu, 2010). (Pinto, 2019) (from which this work comes), 
model a production process as a network of four sub-processes with shared variables and fixed preferences about 
the allocation of system resources between them. To measure the relative efficiency of the process and its parts 
the author develop an input-oriented NDEA model in the multiplier version.. (Pinto, 2020) hypothesized a 
production process, made up of three interconnected parts ad propose a new strategy to acquire relative 
efficiency consisting of building a block inside the system with at least two sub-processes. (Pinto, 2020) propose 
a way to use a relational NDEA model as a policy tool by exploiting the possibility of making assumptions about 
the model variables. 
3. Method 
3.1 A General Four Stages Production Process  
In this subsection we are modelling a general production process of four sub-process (see Figure 1). 

 
Figure 1. A network system of a production process with four sub-process 

 
The production process in Figure 1 considers four interconnected sub-processes. The process outputs are five  
(𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ) and the production process inputs are 5 (𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ), while the intermediate variables 
(Fa¨re & Whittaker, 1995) are two (𝑧 , 𝑧 ). In particular, the first sub-process produces two outputs (the 
intermediate variables 𝑧  𝑎𝑛𝑑 𝑧 ) where a part of it becomes the inputs of the second sub-process (𝑧 , 𝑧 ) and 
the remaining proportions are the inputs of the third sub-process (𝑧 , 𝑧 ). To produce its outputs (𝑦 ) the fourth 
subprocess uses a proportion of two input systems (𝑥 , 𝑥 ), while the second and third sub-processes use an 
exogenous variable for each (𝑥 𝑎𝑛𝑑 𝑥  respectively). In summary, the second subprocess to produce its two 
outputs (𝑦 , 𝑦 ) uses one exogenous input variable (𝑥 ), two shared relational variables (𝑧 , 𝑧 ) and two shared 
inputs system (𝑥 , 𝑥 ). he third subprocess to produce its two output (𝑦 , 𝑦 ) uses an exogenous variable (𝑥 ), 
two shared relational variables (𝑧 , 𝑧 ) and two shared inputs variables (𝑥 , 𝑥 ), and finally the fourth 
sub-process to produce its output (𝑦 ) use two shared inputs variables (𝑥 𝑎𝑛𝑑 𝑥 ).  The system has no 
feedback variables and has no shared outputs [ (Cook, Hababou, & Tuenter, 2010), (Castelli, Pesenti, & Ukovich, 
2010), (Chen, Du, Sherman, & Zhu, 2010 b)]. The model is very general and other configurations of inputs, 
outputs and intermediate variables are possible. So, for example, we can add a second exogenous variable to the 
second sub-process, or add a third intermediate variable and so on. In the following subsection we construct the 
relative NDEA model to estimate the relative efficiency of the manufacturing process in Figure 1. 
3.2 The NDEA Model 
In this subsection we build the multiplicative input-oriented relational NDEA model to measure the relational 
efficiency for the four-step manufacturing process such as those shown in Figure 1 above. The input version of 
the model, once adopted the linearization suggested by (Charnes & Cooper, 1962), can be writeen as follow: 

𝑚𝑎𝑥 𝑢 𝑌  
𝑠. 𝑡.   𝑣 𝑋 = 1  , 
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∑ 𝑢 𝑌 − ∑ 𝑣 𝑋 ≤ 0,                               (1) 

𝑤 𝑍 − 𝑣 𝑋 𝛽 ≤ 0 ,     

𝑢 𝑌 − 𝛼 𝑤 𝑍 − 𝑣 𝑋 − 𝛽 𝑣 𝑋 ≤ 0   

𝑌 𝑢 − 𝛽 𝑣 𝑋 − (1 − 𝛼 )𝑤 𝑍 − 𝑣 𝑋 ≤ 0 

𝑢 𝑌 − 𝑣 𝑋 ≤ 0 

𝑢, 𝑤, 𝑣 ≥ 0 
Where: 𝑌 = are the outputs of the system with 𝑟 ∈ 𝑅  for p outputs system (𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ). 𝑋 = are the inputs of the system with 𝑖 ∈ 𝑅  for q inputs system (𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ) including the exogenous 
variables of the sub-process (in this case the variables 𝑥 , 𝑥  ). 𝑍 = are the outputs of the first sub-process with ℎ ∈ 𝑅  (𝑧  𝑎𝑛𝑑 𝑧 ). The pedice 1 indicate the first 
sub-process.  𝑋 =are the inputs of the first sub-process (𝑥 , 𝑥 , 𝑥 ). In our NDEA model  all these variables are shared 
variables and for this reason we adopt the notation 𝑋 .  𝑌 =are the outputs of the second sub-process (=𝑌 )(𝑦 , 𝑦 ). The pedice 2 indicate the second sub-process. 𝑍 = are the relational shared inputs of the second sub-process (𝑧 , 𝑧 ) 𝑋 = are the exogenous variables of the second subprocess (𝑥 ). 𝑋 =are the shared inputs variables of the second sub process (𝑥 , 𝑥 ). 𝑍 = are the relational shared variables of the third subprocess (𝑧 , 𝑧 ). 𝑋 = are the shared inputs  variables of the sub-process three (𝑧 , 𝑧 ) 𝑋 = are the inputs of the third subprocess (𝑥 , 𝑥 ) 𝑌 = are the outputs of the third sub process(𝑦 , 𝑦 ) 𝑌 = are the outputs of the fourty sub process(𝑦 ) 𝑋 =are the inputs are of the fourth sub process(𝑥 ,𝑥 ) 
k= is the number of production units (k=1……N) 
u, v, w ,𝑤= are the weight of the model’s variables  𝜷(𝛽 , 𝛽 , 𝛽 , 𝛽 , 𝛽 , 𝛽 ) =is the vector of  inputs sharing proportions 
(𝛽 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡𝑠 2, 𝛽  𝑎𝑛𝑑 𝛽  𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡𝑠 3, 𝛽 𝑎𝑛𝑑 𝛽  𝑓𝑜𝑟  𝑖𝑛𝑝𝑢𝑡𝑠 4 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) 𝜶(𝛼 , 𝛼 ) = is the vector of the intermediate variables sharing  proportions 
(𝛼 𝑓𝑜𝑟 𝑧1, 𝛼 𝑓𝑜𝑟 𝑧2 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠). 
The system has p outputs (𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ) and q inputs (𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ). Some inputs system (in particular 𝑥 , 𝑥 , 𝑥 ) are shared among the four sub-process as follows: the first sub-process have n=3 shared inputs 
(𝑥 , 𝑥 , 𝑥 ) and m=2 outputs (𝑧 , 𝑧 ), the second sub-process have s=2 outputs (𝑦 , 𝑦 ), t =2intermediate 
shared variables (𝑧 , 𝑧 ),  U=2 shared inputs (𝑥 , 𝑥 ) and T=1 exogenous variables (𝑥 ), the third 
subprocess have z=2 outputs (𝑦 , 𝑦 ), l=1 exogenous variables (𝑥 ), L=2 intermediate shared variables (𝑧 , 𝑧 ) 
and M=2 shared inputs variables (𝑥 , 𝑥 ) (with the first subprocess), the fourth subprocess have o=1 outputs 
(𝑦 ) and O=2 shared inputs (𝑥 , 𝑥 ) (with the first subprocess). The first constraint is the normalization 
constraint (Charnes & Cooper, 1962). The second constraint is the system constraint, the third is the first 
sub-process constraint, and finally, the fourth and five constraints are the third and fourth stage constraints. To 
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consider the relationship between the phases / sub-process and treat the model as a relational NDEA model all 
variables, including relational variables (Z), have the same weights [ (Kao, 2009(a))], and obviously we attach 
the same weights and the same shared relational variables as well as the same non-relational shared variables 
(this solution has an obvious computational gain for us). The share ratio is based on the scalar vectors (𝜷, 𝜶). The 
output version of the NDEA model above is as following: 

min 𝑣 𝑋  

𝑠. 𝑡. 𝑢 𝑌 = 1 

− 𝑢 𝑌 ∓ 𝑣 𝑋 ≥ 0 (Note 1) 

− ∑ 𝑤 𝑍 + ∑ 𝑣 𝑋 𝛽 ≥ 0 ,                           (2) 

− 𝑢 𝑌 + 𝛼 𝑤 𝑍 + 𝑤 𝑋 + 𝛽 𝑣 𝑋 ≥ 0   

-∑ 𝑌 𝑢 + ∑ 𝛽 𝑣 𝑋 + ∑ (1 − 𝛼 )𝑤 𝑍 + ∑ 𝑣 𝑋 ≥ 0 

− 𝑢 𝑌 + 𝑣 𝑋 ≥ 0 

𝑢, 𝑤, 𝑣, 𝑤, 𝑤 ≥ 0 
 
The output-oriented multiplicative NDEA model in (2) gives us the measure of how much the output of the 
process can be improved once we consider the relationship between the sub-process within it. As you can see (1) 
and (2) assume a constant return of scale for the whole system as well as for each sub-process. Figure 1a below 
illustrates the CRS efficient frontier for sub-process 1 (the straight line 𝑂𝐶  ) on the right and the efficient 
frontier of the CRS for sub-process 2 (straight line 𝑂𝐷(𝑛𝑜𝑡𝑒 2)) on the left side. 

 
Figure 1a. CRS efficient frontier of first and second sub process 

 
On the right side of the Figure 1a sub-process 1 apply an input vector X (𝑥 , 𝑥 , 𝑥 ) to produce a vector of 
intermediate product Z (𝑧 ,𝑧 ), and the left side show a sub-process 2 that applies intermediate product Z (𝑧 , 𝑧 ) 
to produce a vector of outputs Y (𝑦 , 𝑦 ). The superscripts associated with the DMU indicate the subprocess. For 
example the DMU B is overall inefficient in the first as in the second sub-process. These measure are 𝐵 𝑍 /
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(𝐵 𝑍⁄ ) and(𝐵 𝑍⁄ )/ 𝐵 𝑍 , respectively. 
4. Data and results 
In this section we will proceed with the application of the model to a virtual input / output of vector data 
generated as a random number using the uniform distribution (note 3). Once set.seed = 4 has been fixed in R, we 
proceed with the calculation of its descriptive statistics (see Table 1 below) (note 4). Our virtual data set consists 
of 5 inputs (x), 5 outputs (y) and 2 relational variables (z). 
 
Table 1. The data description 

Variables Descriptive statistic 

Inputs mean s.d. 

X1 10,41 2,86 

X2 72,55 36,61 

X3 103,98 60,88 

X4 89,37 51,34 

X5 27,21 15,25 

Outputs   

Y1 58,73 22,01 

Y2 131,41 44,75 

Y3 176,3 90,71 

Y4 385,77 200,1 

Y5 30,53 16,26 

Relational variables   

Z1 87,09 46,71 

Z2 54,67 31,04 

 
Once the NDEA model has been applied with different preference systems by researchers / managers on the 
allocation of resources between sub processes (see Table 2), the following results are obtained (see Table 3,4,5 
and 6). 
 
Table 2. Managerial/researchers preferences on the allocation of the resources among the sub-process 

Scalar System of preferences 

 1 2 3 4 β  0.5 0.85 0.35 0.85 β  0.3 0.5 0.2 0.6 β  0.3 0.2 0.5 0.3 β  0.3 0.4 0.1 0.6 β  0.2 0.2 0.3 0.1 β  0.2 0.3 0.1 0.1 α  0.5 0.4 0.7 1 α  0.5 0.4 0.4 1 

 
The first system of preferences allocates through the parameter 𝛼  the relational variable 𝑧  in the same 
proportion between the sub-process 2 (𝑧 ) and 3 (𝑧 ) in the proportion of (50/50), through the parameter 𝛼  
the relational variable 𝑧  is allocated between the sub-process 2 (𝑧 ) and 3 (𝑧 ) in the same proportion (50/50). 
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The parameter 𝛽  allocates the variable 𝑥  in the same proportions (50/50)  between the sub-process 1 (𝑥 ) 
and 4 (𝑥 ), the parameter 𝛽  and 𝛽  allocates the variable 𝑥  among the sub-process 1(𝑥 ), 2(𝑥 ) and 
3( 𝑥 ) in the following proportions 0.3,0.3 and (1-0.3-0.3)=0.4, respectively, finally the parameters 𝛽 ,𝛽  𝑎𝑛𝑑 𝛽  allocates the variable 𝑥  among the sub-process 1(𝑥 ), 2(𝑥 ), 3(𝑥 ) and 4(𝑥 ) in the 
following proportions 0.3, 0.2,0.2 and (1-0.3-0.2-0.2)=0.3, respectively. The second system of preferences 
allocates through the parameter 𝛼  the relational variable 𝑧  in the proportions of (40,60) between the 
sub-process 2 (𝑧 ) and 3 (𝑧 ), through the parameter 𝛼 allocates the relational variable 𝑧  between the 
sub-process 2 (𝑧 ) and 3 (𝑧 ) in the proportions of (40/60). The parameter 𝛽  allocates the variable in the 
proportions (0.85/0.15)  between the sub-process 1 (𝑥 ) and 4 (𝑥 ), the parameters 𝛽  𝑎𝑛𝑑 𝛽  allocate the 
variable 𝑥  among the sub-process 1(𝑥 ),2(𝑥 ) and 3(𝑥 ) in the following proportions 0.3,0.3 and 
(1-0.3-0.3)=0.4, respectively finally the parameters 𝛽 , 𝛽  𝑎𝑛𝑑 𝛽  allocates the variable 𝑥 among the 
sub-process 1(𝑥 ),2(𝑥 ),3(𝑥 ) and 4(𝑥 ) in the following proportions 0.3, 0.2,0.2 and (1-0.3-0.2-0.2)=0.3, 
respectively. The third system of preferences allocates through the parameter 𝛼  the relational variable 𝑧  in 
the proportions of (0.7/0.3) between the sub-process 2 (𝑧 ) and 3 (𝑧 ), through the parameter 𝛼 allocates the 
relational variable 𝑧  between the sub-process 2 (𝑧 ) and 3 (𝑧 ) in the  proportions of (0.4/0.6). The 
parameter 𝛽  allocates the variable 𝑥  in the proportions of (0.35/0.65)  between the sub-process 1 (𝑥 ) and 
4 (𝑥 ), the parameters 𝛽 𝑎𝑛𝑑 𝛽  allocates the variable 𝑥  among the sub-process 1(𝑥 ),2(𝑥 ) and 3(𝑥 ) in 
the following proportions 0.2,0.5 and (1-0.2-0.5)=0.2, respectively. Finally, the parameters 𝛽 , 𝛽  𝑎𝑛𝑑 𝛽  
allocates the variable 𝑥 among the sub-process 1(𝑥 ),2(𝑥 ),3(𝑥 ) and 4(𝑥 ) in the following proportions 0.1, 
0.3,0.1 and (1-0.1-0.3-0.1)=0.5, respectively. In the first system of preferences, managers express a more 
balanced allocation of the outputs of the first sub-process between sub-processes 3 and 4 than in the third system. 
In other words, managers evaluate with equilibrium the interrelation between sub-processes 1, 2 and 3, while in 
the third, managers consider the second sub-process as a sub-process with a higher consumption of the relational 
resources produced by the first sub-process. A moderate imbalance in the allocations of relational variables 
characterizes the second system of preferences. The second, on the other hand, is characterized by the imbalance 
in the allocation of variable 2 between sub-process 2 and 4, and the third by the unbalance in the allocation of 
variable 𝑥 , that privilege the sub-process 4 in its allocation. Finally, the fourth system of preferences radically 
changes the role of relational variables, now the outputs of the first sub-process are totally intermediate variables 
for the second sub-process, so it has lost the characteristic of variables shared with the third sub-process, which 
will now use only a part of the inputs of the system (the variables 𝑥 𝑎𝑛𝑑 𝑥 . Following the four system of 
preferences the relative efficiency of the system and of its sub-process will be those reported in the Tables 3, 4 ,5 
and 6. 
 
Table 3. Efficiency estimation (Preferences system 1) 

  Descriptive statistics 
Efficiency  mean s.d. median I Q(25%) IIIQ(75%)
 Obs Input oriented measurement 
Relational efficiency 150 0,830525 0,186378 0,884463 0,681019 1 
Calculated relational 
efficiency 

150 0,830525 0,186378 0,884463 0,681019 1 

First sub process efficiency 147 148,6852 230.9413 70,87663 21,81416 194,2922 
Second sub-process 
efficiency 

150 0,333558 0,685407 0,076669 0,026964 0,212165 

Third sub-process efficiency 150 0,160628 0,187252 0,084133 0,038834 0,211517 
Fourth sub-process 
efficiency 

150 0,233376 0,362507 0,123434 0 0,288108 

  Output oriented measurement 
Relational efficiency 150 0,131051 0,083731 0,113904 0,070589 0,172138 
Calculated relational 
efficiency 

150 0,131051 0,083731 0,113904 0,070589 0,172138 

First sub process efficiency 150 0,078706 0,133399 0,033797 0,017131 0,092712 
Second sub-process 
efficiency 

141 2,596546 6,536574 0,729086 0,457538 1,141824 

Third sub-process efficiency 148 2,104779 5,713056 0,398516 0 1,71706 
Fourth sub-process 
efficiency 

76 0,018975 0,044954 0,003759 0 0,018601 
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Table 4. Efficiency estimation (Preferences system 2) 
  Descriptive statistics 
Efficiency Obs mean s.d. median I Q (25%) IIIQ (75%) 
  Input oriented measurement 
Relational efficiency 150 0,829052 0,186871 0,884463 0,680454 1 
Calculated relational efficiency 150 0,829052 0,186871 0,884463 0,680454 1 
First sub process efficiency 147 92,799 179,178 34,314 12,0,93 90,659 
Second sub-process efficiency 150 0,36926 0,722343 0,099617 0,034076 4,349306 
Third sub-process efficiency 150 0,161123 0,194164 0,081659 0,039466 0,937963 
Fourth sub-process efficiency 150 0,241008 0,359038 0,13812 0 2 
  Output oriented measurement 
Relational efficiency 150 0,131051 0,083731 0,113904 0,070589 0,172138 
Calculated relational efficiency 150 0,131051 0,083731 0,113904 0,070589 0,172138 
First sub process efficiency 150 0,078706 0,133399 0,033797 0,017131 0,092712 
Second sub-process efficiency 138 1,05 2,144 0,772125 0,788 1,927 
Third sub-process efficiency 82 0,049982 0,075322 0,021215 0 0,0788 
Fourth sub-process efficiency 76 0,018975 0,044954 0,003759 0 0,0186 

 
Table 5. Efficiency estimation (Preferences system 3) 

  Descriptive statistics 

Efficiency Obs. mean s.d. median I Q (25%) 
IIIQ 
(75%) 

  Input oriented measurement 
Relational efficiency 150 0,831071 0,185908 0,884463 0,68126 1 
Calculated relational 
efficiency 

150 0,831071 0,185908 0,884463 0,68126 1 

First sub process efficiency 147 158,8529 299,333 67,9760 24,092 181,448 
Second sub-process efficiency 150 0,250094 0,435956 0,084716 0,033912 0,248641 
Third sub-process efficiency 150 0,148958 0,171433 0,078124 0,043175 0,208608 
Fourth sub-process efficiency 150 0,242129 0,355655 0,139277 0 0,307079 
  Output oriented measurement 
Relational efficiency 150 0,131051 0,083731 0,113904 0,070589 0,172138 
Calculated relational 
efficiency 

150 0,131051 0,083731 0,113904 0,070589 0,172138 

First sub process efficiency 150 0,078706 0,133399 0,033797 0,004885 0,02357 
Second sub-process efficiency 150 0,7608 2,010 0,39914 0,18386 0,69647 
Third sub-process efficiency 150 0,050295 0,075452 0,02217 0 0,072741 
Fourth sub-process efficiency 150 0,018975 0,044954 0,003759 0 0,018601 
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Table 6. Efficiency estimation (Preferences system 4) 
  Descriptive statistics 
Efficiency  mean s.d. median I Q(25%) IIIQ(75%) 
 Obs. Input oriented measurement 
Relational efficiency 150 0,733114 0,227461 0,721897 0,574061 0,984066 
Calculated relational 
efficiency 

150 0,733114 0,227461 0,721897 0,574061 0,984066 

First sub process efficiency 142 68,876 136.879 21,014 4,985 63,499 
Second sub-process 
efficiency 

150 0,421303 0,945323 0,110512 0,052987 0,313501 

Third sub-process efficiency 150 0,115892 0,184034 0,028536 0,000974 0,154049 
Fourth sub-process efficiency 150 0,270046 0,386234 0,156098 0 0,375528 
  Output oriented measurement 
Relational efficiency 150 0,131051 0,083731 0,113904 0,070589 0,172138 
Calculated relational 
efficiency 

150 0,131051 0,083731 0,113904 0,070589 0,172138 

First sub process efficiency 150 0,078706 0,133399 0,033797 0,017131 0,0927 
Second sub-process 
efficiency 

82 0,256 0,16520 0,2322 0,12992 0,37127 

Third sub-process efficiency 141 0,0943 0,0847 0,07131 0,03457 0,13199 

Fourth sub-process efficiency 150 0,034205 0,056005 0,0161 0,005218 0,0328 

 
The cell “Calculated relational efficiency” contain the relative efficiency of the whole process calculated the 
multiplicative formula (Kao, 2009(a)) once solved the model NDEA in (1). While the cell with 
“Calculated …sup-process” contain the result of the application of the decomposition formula for calculating the 
efficiency of each sub-process (Kao, 2009(a)) once solved the NDEA model in (1). The differences in the 
measurements are outlined to the comparison among the empirical cumulative distribution of the efficiency 
scores in the Figures 1,2,3 and 4. The graph refer to the relational efficiency (not calculated) of the whole 
process and the efficiency of the four sub-process 1,2 under the four system of preferences. 

 
Figure 2. Ecdf of the efficiency scores in the case of CRS-Input orientation 
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Figure 3. Ecdf of the efficiency scores in the case of CRS-Output orientation 

 
The degree of correlation between the efficiency of each thread can be related to the allocation of resources 
between them. In the following tables we report the correlation analysis (note 5). 
 
Table 7. CRS- efficiency scores correlations 
 Correlation  

Efficiency 
Relational 
efficiency 

Calculated relational 
efficiency 

First sub 
process 
efficiency 

Second 
sub-process 
efficiency 

Third 
sub-process 
efficiency 

Fourth 
sub-proces
s 
efficiency 

 INPUT ORIENTATION  
 I  
Relational efficiency 1 1 -0,02413 0,263478 0,179014 0,321939 
Calculated relational 
efficiency 

1 1 -0,02413 0,263478 0,179014 0,321939 

First sub process efficiency -0,02413 -0,02413 1 -0,08982 -0,06575 -0,05966 
Second sub-process 
efficiency 

0,263478 0,263478 -0,08982 1 0,35512 0,196161 

Third sub-process efficiency 0,179014 0,179014 -0,06575 0,35512 1 0,235418 
Fourth sub-process efficiency 0,321939 0,321939 -0,05966 0,196161 0,235418 1 
 II  
Relational efficiency 1 1 -0,01367 0,268164 0,128934 0,281771 
Calculated relational 
efficiency 

1 1 -0,01367 0,268164 0,128934 0,281771 

First sub process efficiency -0,01367 -0,01367 1 -0,0987 -0,09887 -0,08982 
Second sub-process 
efficiency 

0,268164 0,268164 -0,0987 1 0,145396 0,225273 

Third sub-process efficiency 0,128934 0,128934 -0,09887 0,145396 1 0,177881 
Fourth sub-process efficiency 0,281771 0,281771 -0,08982 0,225273 0,177881 1 
 III 
Relational efficiency 1 1 -0,01367 0,268164 0,128934 0,281771 
Calculated relational 
efficiency 

1 1 -0,01367 0,268164 0,128934 0,281771 

First sub process efficiency -0,01367 -0,01367 1 -0,0987 -0,09887 -0,08982 
Second sub-process 
efficiency 

0,268164 0,268164 -0,0987 1 0,145396 0,225273 

Third sub-process efficiency 0,128934 0,128934 -0,09887 0,145396 1 0,177881 
Fourth sub-process efficiency 0,281771 0,281771 -0,08982 0,225273 0,177881 1 
 IV 
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Relational efficiency 1 1 -0,0094 0,2068 0,170763 0,203507 
Calculated relational 
efficiency 

1 1 -0,0094 0,2068 0,170763 0,203507 

First sub process efficiency -0,0094 -0,0094 1 -0,14678 -0,08184 -0,10184 
Second sub-process 
efficiency 

0,2068 0,2068 -0,14678 1 0,191021 0,047469 

Third sub-process efficiency 0,170763 0,170763 -0,08184 0,191021 1 -0,01198 
Fourth sub-process efficiency 0,203507 0,203507 -0,10184 0,047469 -0,01198 1 
 OUTPUT ORIENTATION 
       
 I  
Relational efficiency 1 1 0,258596 0,092688 0,099812 0,243368 
Calculated relational 
efficiency 

1 1 0,258596 0,092688 0,099812 0,243368 

First sub process efficiency 0,258596 0,258596 1 -0,1991 -0,20888 0,0949 
Second sub-process 
efficiency 

0,092688 0,092688 -0,1991 1 0,608915 -0,20888 

Third sub-process efficiency 0,099812 0,099812 -0,20888 0,608915 1 -0,15114 
Fourth sub-process efficiency 0,243368 0,243368 0,0949 -0,20888 -0,15114 1 
 II  
Relational efficiency 1 1 0,258596 #NUM! 0,701031 0,243368 
Calculated relational 
efficiency 

1 1 0,258596 #NUM! 0,701031 0,243368 

First sub process efficiency 0,258596 0,258596 1 #NUM! 0,407389 0,0949 
Second sub-process 
efficiency 

#NUM! #NUM! #NUM! 1 #NUM! #NUM! 

Third sub-process efficiency 0,701031 0,701031 0,407389 #NUM! 1 0,352086 
Fourth sub-process efficiency 0,243368 0,243368 0,0949 #NUM! 0,352086 1 
 III 
Relational efficiency 1 1 0,307872 #NUM! 0,927164 #NUM! 
Calculated relational 
efficiency 

1 1 0,307872 #NUM! 0,927164 #NUM! 

First sub process efficiency 0,307872 0,307872 1 #NUM! 0,347914 #NUM! 
Second sub-process 
efficiency 

#NUM! #NUM! #NUM! 1 #NUM! #NUM! 

Third sub-process efficiency 0,927164 0,927164 0,347914 #NUM! 1 #NUM! 
Fourth sub-process efficiency #NUM! #NUM! #NUM! #NUM! #NUM! 1 
 IV 
Relational efficiency 1 1 0,307872 0,118829 0,927164 0,295091 
Calculated relational 
efficiency 

1 1 0,307872 0,118829 0,927164 0,295091 

First sub process efficiency 0,307872 0,307872 1 0,015969 0,347914 0,036728 
Second sub-process 
efficiency 

0,118829 0,118829 0,015969 1 0,116996 0,110918 

Third sub-process efficiency 0,927164 0,927164 0,347914 0,116996 1 0,269173 
Fourth sub-process efficiency 0,295091 0,295091 0,036728 0,110918 0,269173 1 
 
The correlation analysis reported in Table 7, among other possible observations, highlights that the efficiency of 
the first sub-process is, albeit slightly, negatively correlated with the efficiency scores of all the remaining 
sub-processes under all the different allocation systems of intra-process resources. While the efficiency of the 
second sub-process is positively correlated with the efficiency of the third sub-process although its correlation 
with the third sub-process is greater under the first system (0.35) of preferences than all other systems of 
preferences (0.145, 0.145 and 0.191 respectively under the second, third and fourth). The latter is also the highest 
positive correlation we observe in Table 7. While the lowest positive correlation is ≅0.0475 and occurs between 
the fourth and second sub-processes under the fourth preference system. In Figure 2 below we report the path of 
efficiencies. 
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4.1 Which System of Preferences? 
The goal of the empirical application is to measure the relative efficiency of the whole system and its parts. 
Another goal is to compare the effect of preference systems on the measurement of relative efficiency. In 
principle, for researchers / managers, a system of preference for allocating resources between sub-processes that 
allows for greater relative efficiency of process and sub-process is preferable to any other. Here, we will show 
the results of the Wilcoxon-Mann-Whitney test (note 6) once we have verified that the data (the vectors of our 
efficiency scores) do not belong to the normal distribution (note 7) and that their variance is homogeneous (note 
8). All test results allow us to infer that the calculated efficiency scores do not belong to a normal distribution, 
that their variances are homogeneous, that the relational efficiency scores in preference system 1, 2 and 3 come 
from the same distribution, and that the 'Relational efficiency scores with preference system 4 do not belong to 
the same distributions as systems 1, 2 and 3. The results are in Table 7 below. 
 
Table 8. Wilcoxon-Mann-Whitney test  

 Comparison between the four preference systems (I ,II, III, IV) 
 INPUT 
 Two side test 
 I vs II I vs III I vs IV II vs III II vs IV III vs IV 
Calculated 
Statistic 
Value 

11412 11454 14302 11316 14196 14161 

p-value 0.8285 0.7858 4.734e-05 0.9292 8.529e-05 0.0001047 
 One side 𝜇 > 𝜇 , 𝜇 , 𝜇  
Calculated 
Statistic 
Value 

  8198.5  8304 8339 

p-value   1  1 0.9999 
 OUTPUT 
 Two side test 
 I vs II I vs III I vs IV II vs III II vs IV III vs IV 
Calculate 
Statistic 
Value 

11250 11250 11250 11250 11250 11250 

p-value 1 1 1 1 1 1 
 
As we can see, in the case of input measurement, the preference system IV would be preferred because the 
average of the relational efficiency of the whole process (see Figure 2) is larger than the average of the relational 
efficiency estimates under the remaining preference systems (see the values of the p-values in the case of One 
side test (note 9) in Table 7). Instead, in the case of output measurement there are no statistically significant 
differences in the relative efficiency scores of the entire process. Differences appear at level of sub-process 
efficiency (see the plot on ecdf Figures 2 ). Yet, in the case of output orientation measurement there are no 
differences in the distributions (see Figure 3). 
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Figure 4. Barplot of the scalars 
 
The plot of the efficiency scores are in  Figure 5 and 6 , while the comparison of the system preferences are in 
Figure 4.  
 

 
Figure 5. Simple plot input CRS 

 

 
Figure 6. simple plot output CRS 

5. Discussion  
The paper developed a relational NDEA model in the multiplicative version to measure the efficiency of a 
generic production process modeled as a system composed of four interconnected sub-processes. The 
measurement was conducted for both input orientation and output orientation, assuming constant returns to scale 
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(CRS) for both the entire system and its sub-parts. The interrelationships of the sub-processes of the system were 
defined on the author's discretion without any reference to real processes. In particular, the model considered 
shared intermediate variables between sub-processes 1 and 2 (𝑧 , 𝑧 ) and between sub-processes 1 and 3 
(𝑧 , 𝑧 ). The configuration of the interrelations can be modified by acting on the system of intra-system 
resource allocation weights as done with system IV. With this last allocation system, for example, sub-process 3 
no longer has shared relational variables but is sharing its inputs with sub-process 1. If the objective is to 
increase the outputs of the system the output-NDEA model should be solved. All the NDEA models presented 
here have been solved with the simplex method. The application show that when we adopt the same weights for 
the same variables in the model (in other words we estimate a relational NDEA model [ (Kao, 2009(a)), (Kao, 
2009(b)) (Kao, 2014)]) the relative efficiency of the sub-process can be calculated applying the multiplicative 
decomposition formula proposed by (Kao, 2009(a)) and the sources of inefficiency can be individuated at 
sub-process level. The characteristic of our model is that the proportion of resources that sub-process are sharing 
is defined apriori to the researcher or/and manager of the organization where the process is running. This is 
traducing in the apriori fixing of the vector parameters 𝜶 𝑎𝑛𝑑 𝜷  of our model. This leaves the 
researcher/manager to define his preferences about the proportions of resources to be allocated to each 
sub-process. In other words, the latter parameters are assigned exogenously rather than being calculated 
endogenously inside the NDEA model. The interpretation of the optimal weights is the same as that given in the 
standard DEA models, they represent the contribution of the resource to the improvement of the relative 
efficiency of the sub-process as that of the process. The estimation of relative efficiency (see Table 3,4,5 and 6) 
through our NDEA model is strictly dependent on preferences (see Table 2) on the distribution of resources 
among the sub-processes defined by the researcher. Unlike the literature on the topics, the document develops a 
four-step system process, sharing all the limitations and advantages of the relational NDEA approach. However, 
we believe that the model proposed here covers a wide range of real-world manufacturing processes, so the 
NDEA model developed here can be applied for many applications with real data. 
6. Conclusion 
We can conclude in that the paper offers, in our opinion, a wide possibility to conduct relative efficiency analysis 
research for 4-stage production processes using the NDEA methodology. The paper also shows how it is possible 
to define an intra-system resource allocation system based both on managerial preferences and deriving from 
objective internal and / or external needs. 
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Notes 

Note 1. As in the DEA we can have a multiplier, envelopment and slacked NDEA models 
Note 2 .To write: ∑ 𝑢 𝑌 − ∑ 𝑣 𝑋 ≤ 0 is the same that to write: − ∑ 𝑢 𝑌 + ∑ 𝑣 𝑋 ≥ 0, 
Note 3. The function used in R is runif(). 
Note 4. We decided to do so because our work at this step is not purely applicative. 
Note 5. To run the correlation analysis in R we use the function “cor” with the option” use="complete.obs"”, that 
eliminate all missing values in the observations 
Note 6. The Wilcoxon-Mann-Whitney assume that the population distribution to which the sample are extract are 
not normally distributed, that the true population’s variance is unknown and that the sample variance are 
homogeneous. This later hypothesis can be tested using the test F of Fisher. 
Note 7. At this end we conduct five tests: 1) Jarque-Brera normality test 2) Shapiro-Wilk normality test 3) 
Lilliefors (Kolmogorov-Smirnov) normality test 4) Shapiro-Francia normality test 5) Pearson chi-square 
normality test. 
Note 8. At this end we conduct the test F di Fisher. 
Note 9. The null hypothesis in this case is: the mean of the relational efficiency under the preference system IV 
(𝜇 ) is greater (>) that the mean of the relational efficiency under all others preference systems. 
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