
 

ECARES 
ULB - CP 114/04 

50, F.D. Roosevelt Ave., B-1050 Brussels BELGIUM 
www.ecares.org 

 

 

 

 

 

 
Measure Transportation and 

Statistical Decision Theory 

 
 
 
 
 
 

Marc Hallin 
ECARES, Université libre de Bruxelles 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

January 2021 
 

 

ECARES working paper 2021-04 

 



Measure Transportation and

Statistical Decision Theory

Marc Hallin

ECARES and Department of Mathematics
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Abstract

Unlike the real line, the real space, in dimension d ≥ 2, is not canonically ordered. As

a consequence, extending to a multivariate context fundamental univariate statistical tools

such as quantiles, signs, and ranks is anything but obvious. Tentative definitions have been

proposed in the literature but do not enjoy the basic properties (e.g., distribution-freeness

of ranks, their independence with respect to the order statistic, their independence with

respect to signs, etc.) they are expected to satisfy. Based on measure transportation ideas,

new concepts of distribution and quantile functions, ranks, and signs have been proposed

recently that, unlike previous attempts, do satisfy these properties. These ranks, signs, and

quantiles have been used, quite successfully, in several inference problems and have trig-

gered, in a short span of time, a number of applications: fully distribution-free testing for

multiple-output regression, MANOVA, and VAR models, R-estimation for VARMA param-

eters, distribution-free testing for vector independence, multiple-output quantile regression,

nonlinear independent component analysis, etc.
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1 INTRODUCTION

Unlike the real line, the real space, in dimension two and higher, is not canonically ordered. As

a consequence, a number of fundamental univariate probabilistic concepts and essential statis-

tical tools—distribution and quantile functions, signs, ranks, values-at-risk, expected shortfalls,

survival probabilities, risk dominance, concentration indices, . . . —all strongly related to the

canonical ordering of the real line—do not canonically extend to a multivariate setting.

This problem is not new, and many attempts have been made to provide solutions. In

particular, several proposals have been made for multivariate concepts of ranks and signs, hence

distribution and quantile functions. In a sense, the theory of copulas and the concept of statistical

depth were motivated by the same need of a meaningful ordering of Rd. A new approach, based

on measure transportation ideas, has been taken recently (Chernozhukov et al. (2017), Hallin

et al. (2021a)), yielding notions of center-outward distribution and quantile functions, ranks, and

signs in Rd for arbitrary d. Contrary to previous proposals, these measure-transportation-based

notions enjoy all the properties that make their traditional univariate counterparts successful

tools for statistical inference.

In the past decades, measure transportation has emerged as one of the most active and

vigourous subjects of pure and applied mathematics, with successful applications in a number

of fields, ranging from fluid dynamics to economics, operations research, probability, and ma-

chine learning. Statistics was somewhat slow to join that tendency. Statistical applications

of Wasserstein distances came first. The Wasserstein distance indeed metricizes convergence

in distribution, hence naturally comes into the picture as a powerful tool in the derivation of

asymptotic results but also as an obvious instrument for goodness-of-fit testing. These statistical

aspects of Wasserstein distances are carefully covered in a recent Annual Reviews (Panaretos

and Zemel, 2019) and will not be considered here. Nor do we consider risk-analysis-, microe-

conomics, and tail-behavior-related papers such as Beirlant et al. (2020), Chernozhukov et al.

(2020), or de Valk and Segers (2019). Rather, we concentrate on more recent developments

where measure transportation is used as a way to define an ordering of Rd leading to concepts

of distribution and quantile functions, ranks, and signs, with applications in distribution-free
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rank-based inference.

2 MEASURE TRANSPORTATION IN A NUTSHELL

Measure transportation goes back to Gaspard Monge (1746-1818) and his 1781 Mémoire sur

la Théorie des Déblais et des Remblais.1 Starting from a very practical problem—How should

one best move a given pile of sand (clearing) to fill up a given hole of the same total volume

(filling)?—Monge actually initiated a profound mathematical theory anticipating various ar-

eas of differential geometry, linear programming, nonlinear partial differential equations, fluid

mechanics, and probability.

In mathematical notation and probabilistic form, the simplest formulation of Monge’s prob-

lem is as follows. Let P1 and P2 denote two probability measures over (for simplicity) (Rd,Bd)
and let L : R2d → [0,∞] be a Borel-measurable loss function such that L(x1,x2) repre-

sents the cost of transporting x1 to x2. The objective is to find a measurable (transport)

map TP1;P2 : Rd → Rd solving the minimization problem

infT

∫
Rd

L
(
x, T (x)

)
dP1 subject to T#P1 = P2 (1)

where T ranges over the set of measurable map from R
d to Rd and T#P1 is the so-called push

forward of P1 by T .2 For simplicity, and with a slight abuse of language, we will say that T is

mapping P1 to P2. A map TP1;P2 achieving the infimum in (1) is called an optimal transport

map, in short, an optimal transport, of P1 to P2. In the sequel, we shall restrict to the quadratic

(or L2) loss function L(x1,x2) = ‖x1 − x2‖22.; problem (1) then takes the form

infT

∫
Rd

L
(
‖x− T (x)‖22

)
dP1 subject to T#P1 = P2 (2)

of a minimization, over all measurable mappings (transports) T from R
d to Rd, of the expected

squared distance traveled from the (random) original location X ∼ P1 to the planned destina-

tion T (X) ∼ P2.

Monge’s problem may look straightforward but it is not. The transportation cost to be

minimized in (1) and (2) indeed is nonlinear in T and the set
{
T |T#P1 = P2

}
of admissible

transports over which this cost is to be minimized is not convex. Monge himself (who, moreover,

was considering the more delicate loss L(x1,x2) = ‖x1 − x2‖2) did not solve it, and relatively

little progress was made until 1942 and the pathbreaking approach by Leonid Kantorovich (who

in 1942 was unaware of the relation between his work and Monge’s). The problem Kantorovich

was dealing with is the minimization

infγ

∫
Rd×Rd

L
(
x,y

)
dγ(x,y) subject to γ ∈ Γ(P1,P2) (3)

1Memoir on the Theory of Clearings and Fillings.
2In statistics, a more classical but heavier notation for T#P1 would be PTX

1 or TP1, where T is the transfor-

mation of P induced by T ; see Chapter 6 of Lehmann and Romano (2005).
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where Γ(P1,P2) denotes the collection of all distributions (over Rd ×Rd, say; but Kantorovich

is working with abstract metric spaces) with given marginals P1 and P2. Kantorovich’s problem

clearly constitutes a relaxation of Monge’s problem. The huge advantage of this new formulation

is that the class of feasible solutions (the collection Γ(P1,P2) of distributions with marginals P1

and P2) now is convex, so that (3) reduces to a linear optimization problem over a convex

set for which Kantorovich develops a powerful duality approach. For the quadratic loss func-

tion L(x1,x2) = ‖x1 − x2‖22 and under continuity assumptions, the solutions of Kantorovich’s

problem (3) are of the form

γ =
(
Identity× T

)
#P1

with
(
Identity× T

)
X := (X, TX) where the transport T solves Monge’s problem (2).

The topic attracted a renewed surge of interest in the 1990s. Still for the quadratic loss

function, Cuesta-Albertos and Matrán (1989) established (under continuity assumptions and

the existence of finite second-order moments) the existence of solutions for Monge’s problem.

Rüschendorf and Rachev (1990) characterized these solutions in terms of gradients of convex

(potential) functions. Brenier (1991), with his celebrated polar factorization theorem, indepen-

dently obtained the same results and, moreover, proved the (a.s.) uniqueness of the solution.

Whether described as in (1), or relaxed into the more general coupling form (3), the so-called

Monge-Kantorovich problem remains an optimization problem, though, which only makes sense

under densities for which expected transportation costs are finite—under finite variances, thus,

for quadratic loss. In a context of nonparametric or semiparametric inference, one clearly would

like to avoid such an assumption. This is made possible thanks to a remarkable result by McCann

(1995), hereafter McCann’s theorem, the nature of which is geometric rather than analytical.

Contrary to Monge, Kantorovitch, and Brenier, McCann does not require any moment restric-

tions; his theorem implies that, for any given absolutely continuous distributions P1 and P2

over Rd, there exist convex functions ψ : Rd → R the a.e. gradients3 ∇ψ of which are push-

ing P1 forward to P2. Although ψ may not be unique, ∇ψ is P1-a.s. uniquely determined.4

Moreover, under the existence of finite moments of order two, ∇ψ is an L2-optimal (in the

Monge-Kantorovich sense) transport pushing P1 forward to P2.

We refer to Villani (2003, 2009) for background reading and an authoritative survey of the

subject, along with the two volumes by Rachev and Rüschendorf (1998), where the scope is

closer to probabilistic and statistical concerns.

3 DISTRIBUTION AND QUANTILE FUNCTIONS, RANKS,

AND SIGNS

Distribution functions and their inverses, the quantile functions, along with their empirical

counterparts involving ranks and signs, play a central role in probability theory and statistical

3Recall that a convex function is a.e. differentiable.
4Meaning that if two convex functions ψ1 and ψ2 are such that ∇ψ1#P1 = P2 = ∇ψ2#P1,

then P1 [{x : ∇ψ1(x) 6= ∇ψ2(x)] = 0.
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decision theory. Many attempts have been made, therefore, to extend the well-understood

univariate concepts to higher dimension.

3.1 Ranks in dimension d = 1

Before reviewing these attempts, however, an obvious preliminary question arises: what are the

properties expected from these concepts? In other terms, what is it that makes them natural

and successful tools for statistical inference in a univariate context? Focusing on ranks (hereafter

ranks and signs) and their role in testing problems, an immediate answer is distribution-freeness:

ranks enter the picture in semiparametric statistical models under which the distribution P
(n)
θθθ,f

of some real-valued observation X = (X1, . . . , Xn)′, besides a finite-dimensional parameter of

interest θθθ ∈ ΘΘΘ, also depends on the unspecified density f ∈ F1 (F1 the family of Lebesgue

densities over R) of some unobserved univariate noise Zi(θθθ), say. More precisely, models under

which X ∼ P
(n)
θθθ,f iff some θθθ- residuals Z1(θθθ), . . . , Zn(θθθ) =: Z(n)(θθθ) are i.i.d.with density f .5 In such

models, testing the null hypothesis H
(n)
0 : θθθ = θθθ0 (that is, P

(n)
θθθ,f ∈P

(n)
θθθ0

:={P(n)
θθθ0,f
|f ∈F1}) reduces to

the problem of testing that Z1(θθθ0), . . . , Zn(θθθ0) are i.i.d. with unspecified density f ∈ F1. Rank

tests of H
(n)
0 are based on the ranks R(n)(θθθ0) := (R

(n)
1 (θθθ0), . . . , R

(n)
n (θθθ0)) of Z1(θθθ0), . . . , Zn(θθθ0).

These ranks, underH
(n)
0 , are uniform over the n! permutations of {1, . . . , n} irrespective of f ∈ F1

and rank tests, therefore, are distribution-free.

Ranks, thus, are distribution-free—in other terms, the σ-field they generate is ancillary.

Ranks are not the only distribution-free statistics, though: for instance, denoting by Z(1/2)

the median of Z1(θθθ0), . . . , Zn(θθθ0), the signs S(n)(θθθ0) := (S
(n)
1 (θθθ0), . . . , S

(n)
n (θθθ0)), where S

(n)
i (θθθ0)

is the sign of Zi(θθθ0) − Z(1/2), are (assuming, for simplicity, that n is even) uniform over

the n(n−1) . . . (n/2−1) permutations with repetition of a set of n/2 “+1”s and n/2 “-1”s. The

σ-field generated by the signs thus is ancillary, but a strict sub-σ-field of the σ-field generated

by the ranks. Actually, it can be shown (Hallin et al., 2021a, Appendix D.1) that the σ-field of

the ranks is essentially maximal ancillary—that is, maximal, in the sense of set inclusion and

up to sets with Lebesgue measure zero, in the collection of all ancillary σ-fields: intuitively, the

ranks are “maximal distribution-free.”

Ancillarity, furthermore, is strongly related, via Basu’s theorems (see, again, Appendix D.1 in

Hallin et al. (2021a)), to independence with respect to the order statistic of Z1(θθθ0), . . . , Zn(θθθ0),

which is minimal sufficient for the family {P(n)
θθθ,f |f ∈ F1 (F1} and thus contains the relevant

information, the whole relevant information, and nothing but the relevant information, about the

nuisance f . Accordingly, an essentially maximal ancillary σ-field carries the residual information

about the parameter of interest θθθ. This, which explains the success of univariate rank methods

in inference about θθθ in the presence of an unspecified f , has been formalized in Hallin and

Werker (2003).

5Typical examples are linear models, with Zi(θθθ) = Xi − c′iθθθ (ci a q-vector of covariates, θθθ ∈ Rq), or autore-

gressive models, with Zi(θ) = Xi − θθθ′(Xi−1, . . . , Xt−q (where i denotes time and θθθ ∈ Rq; see, e.g., Hallin and

Werker (1998)), etc.
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Besides their role in statistical decision theory, univariate ranks also are intimately connected

to the fundamental probabilistic concepts of distribution and quantile functions. When com-

puted at Zi, indeed, the empirical distribution function of Z1, . . . , Zn takes the form6 F (n)(Zi) =

R
(n)
i /(n+ 1); this entirely characterizes F (n), as all other values are obtained from an arbitrary

non-decreasing7 interpolation of the n-tuple (Z1, F
(n)(Z1)), . . . , (Zn, F

(n)(Zn)). The emblematic

property of F (n) is the Glivenko–Cantelli Theorem connecting it with the underlying population

distribution function F , namely,

lim
n→∞

sup
z∈R

(
F (n)(z)− F (z)

)
= 0 or, equivalently, lim

n→∞
max
1≤i≤n

(
F (n)(Zi)− F (Zi)

)
= 0 a.s.

where the Zi’s are i.i.d. with distribution function F .

Distribution functions (hence quantile functions) and ranks, thus, cannot be separated: a

sound multivariate extension of the traditional concept of ranks should come with an extension of

the corresponding concept of distribution (hence quantile) function. The two concepts should be

related via some Glivenko–Cantelli property, while the proposed ranks (together, as we shall see,

with the signs) should enjoy the maximal ancillarity property of their univariate counterparts.

3.2 Ranks in dimension d > 1: a survey

Let us now, in the light of the previous section, briefly review the various concepts of ranks for

multivariate data that have been considered in the literature. To facilitate the exposition, let

us focus on ranks and their role in testing problems: most existing rank tests belong to one of

the following four types.

(i) Componentwise ranks. In line with the traditional copula-transform-related definition of

distribution functions in Rd, componentwise ranks simply rank univariate marginals: see Hodges

(1955) for an early example, the monograph by Puri and Sen (1971) for a systematic coverage

of classical multivariate analysis problems with independent observations, Hallin et al. (1989)

for time series applications. Rather than addressing the tricky problem of ordering Rd, com-

ponentwise ranks bypass it by considering d univariate marginal rankings. As a consequence,

they crucially depend on the choice of a coordinate system. Unless the underlying distribu-

tion has independent components coinciding with the chosen coordinates, componentwise ranks

are not even asymptotically distribution-free—let alone maximal ancillary; marginal Glivenko–

Cantelli properties hold, but the d-tuple of marginal distribution functions fails to characterize

the underlying distribution.

(ii) Spatial ranks and signs and related concepts. This class of multivariate ranks and signs

includes various very ingenuous and elegant concepts, developed by several authors; we refer

to Oja (1999), Marden (1999), Oja and Randles (2004), and the monograph by Oja (2010) for

details, systematic reviews and exhaustive lists of references. A related concept of quantile has

been proposed by Chaudhuri (1996); on this point, see also Serfling (2002). Appealing as they

6We divide by (n+ 1) rather than by n in order for F (n) to take values in the open unit interval (0,1).
7The conventional choice is a càdlàg step function interpolation, but any non-decreasing interpolation is equally

fine, containing the same information and satisfying the same Glivenko–Cantelli theorem.
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are, however, none of them is enjoying distribution-freeness nor is clearly associated with any

definition of a distribution function for which a Glivenko–Cantelli property might hold.

(iii) Depth-based ranks. The various concepts of statistical depth were introduced, mainly,

as an attempt to define quantile regions and quantile contours in Rd. Depth itself is a scalar-

valued function and the ranks of the depths of i.i.d. residuals accordingly are well defined and

distribution-free. Those ranks have been considered in Liu (1992), Liu and Singh (1993), Zuo and

He (2006), Zuo and Serfling (2000), among others; see Serfling (2002) for a general introduction

on statistical depth, Hallin et al. (2010a) for the related concept of quantile, Lòpez-Pintado and

Romo (2012) for functional extensions, Zuo (2018) for a state-of-the art survey in a regression

context. Unfortunately, depth-based ranks fail to generate a maximal ancillary σ-field: they

carry no directional information and do not satisfy, e.g., Basu’s condition for (essential) maximal

ancillarity (Basu, 1959).

(iv) Mahalanobis ranks and signs. These ranks are obtained (Hallin and Paindaveine,

2002) as the ranks R
(n)
i of the Mahalanobis moduli

[
(Zi − µ̂µµ)′Σ̂ΣΣ

−1
(Zi − µ̂µµ)

]1/2
of i.i.d. resi-

duals Z1, . . . ,Zn and, denoting by µ̂µµ and Σ̂ΣΣ an consistent empirical location vector and a

consistent empirical scatter matrix, respectively, the corresponding signs are the unit vec-

tors S
(n)
i :=Σ̂ΣΣ

−1/2
(Zi − µ̂µµ)/‖Σ̂ΣΣ

−1/2
(Zi − µ̂µµ)‖; interdirections (Randles, 1989) or hyperplane-based

signs (Oja and Paindaveine, 2005) can be used as well. Under ellipticity assumptions, these ranks

and signs can be shown to satisfy Basu’s sufficient condition for (essential) maximal ancillarity

(Basu, 1959), while the ranks yield an immediate Glivenko–Cantelli result for the radial distri-

bution function F . The Mahalanobis ranks and signs, thus, satisfy all the properties desired for

ranks and signs in a multivariate context—for the restricted family of elliptical distributions,

though, whereas we would like this to hold for the whole family of absolutely continuous dis-

tributions. They have been used, tough, quite successfully, in a number of problems, ranging

from multivariate location to homogeneity of scatter, VARMA models, and common principal

components (Um and Randles, 1998, Hallin and Paindaveine, 2002, 2004, 2006, 2008b, Hallin

et al., 2010b, 2013).

A few other concepts have been proposed as well, such as Belloni and Winkler (2011) or

Hamel and Kostner (2018), which are related to cone ordering and require some subjective

(or problem-specific) preliminary choices; they similarly fail to achieve distribution-freeness,

hence (DF+).

3.3 Center-outward distribution and quantile functions, ranks, and signs

To facilitate the exposition, we assume throughout that Zi, i = 1, . . . , n is an i.i.d. sample

with distribution P in the family Pd of Lebesgue-absolutely continuous distributions over Rd

admitting a nonvanishing density f (see (4) for a precise definition); the notation Zi is used

for d = 1. Denote by Sd and Sd−1, respectively, the open unit ball and the unit sphere in Rd.
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3.3.1 Center-outward distribution and quantile functions, ranks and signs, d = 1

The linear left-to-right ordering of the real line cannot be expected to extend as such to higher

dimension, where left and right make no sense. We therefore start with a center-outward version

of classical univariate distribution functions and ranks.

The value at z ∈ R of the traditional distribution function F is the probability F (z) of

the half-line (−∞, z]. Define the center-outward distribution function as F± := 2F − 1: the

value at z ∈ R of F± then is minus the probability of the interval [z, F−1(1 − F (z))] if z is

smaller than the median z(1/2) and the probability of the interval [F−1(1 − F (z)), z] if z is

larger than z(1/2). Boldface is used in order to stress the nature of F± as a vector in the unit

ball S1: the modulus ‖F±‖ then is a probability and F±/‖F±‖ is a sign, with values in the unit

sphere S0 = {−1,+1}. It is easy to see that Z has center-outward distribution function F±

iff F±(Z) is uniform over S1, the open unit ball in R; moreover, ‖F±‖ and F±/‖F±‖ are mutually

independent. The regions C±(τ) := F−1± (τS1), τ ∈ [0, 1), are closed, connected, and nested, with

P-probability content τ : thus, C±(τ) qualifies as a center-outward quantile region of order τ ,

its boundary C±(τ) := F−1± (τS0) as the corresponding center-outward quantile contour, and the

inverse Q± of F± as a center-outward quantile function.

Obviously, F± is monotonically increasing, hence the gradient of a convex function, map-

ping R to S1. In case P has finite second-order moment, McCann’s theorem implies that it is

the P-a.s. unique8 optimal (for quadratic costs) transport pushing P to the uniform over the

unit ball.

Traditional ranks, hence the empirical version F (n) of the distribution function, are obtained

as the monotone increasing mapping of the sample values Z1, . . . , Zn to a grid of the form

G(n) :=

{
1

n+ 1
, . . . ,

n

n+ 1

}
,

yielding ranks 1, . . . , n. An empirical version F
(n)
± of F± similarly is obtained as a monotone

increasing mapping of the sample values, now to the grid

2G(n) − 1 =

{
±1

n+ 1
, . . . ,

±dn/2e
n+ 1

}
,

along with the origin in case n is odd; this yields center-outward ranks 1, . . . , dn/2e (0 in case n

is odd) and center-outward signs {−1,+1}.
These new ranks and signs are essentially equivalent to the traditional ones, of which they

are simple bijective functions: see the left-hand panel of Figure 1 for a graph. Accirdingly,

they define the same (essentially maximal ancillary) σ-field. They obviously satisfy a Glivenko–

Cantelli property with respect to the center-outward distribution function.

3.3.2 Monge-Kantorovich depth, vector quantiles, and vector ranks, d ≥ 1

Chernozhukov et al. (2017), in a very general approach, propose measure transportation-based

definitions of a broad class of statistical depths, quantile, and ranks. More precisely, for every

8For P ∈ P1, the Lebesgue-a.e. unique one.
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choice of a compactly supported absolutely continuous reference distribution U, they define a

Monge-Kantorovich vector quantile function as the a.e. unique gradient QMK = ∇ψ of a convex

function ψ pushing U to P and the corresponding Monge-Kantorovich vector rank function as

the gradient FMK := ∇ψ∗ of ψ’s Legendre-Fenchel convex conjugate9 ψ∗.

Several natural choices are possible for the reference U, which provides much flexibility to

the concept. The spherical uniform Ud over the unit ball yields the center-outward quantiles,

ranks, and signs described in Section 3.3.3 which, for d = 1, reduce to the center-outward

concepts described in Section 3.3.1. The Lebesgue uniform U[0,1]d over the unit (in the canonical

basis) hypercube [0, 1]d yields vector ranks and quantiles that reduce, for d = 1 to the classical

distribution and quantile functions, respectively. Uniforms over other unit hypercubes, over

centered hypercubes [−1, 1]d, or the spherical multinormal are possible as well.

The empirical versions of Monge-Kantorovich vector ranks and quantiles are obtained as em-

pirical optimal transports between sequences {P̂(n)} and {Û(n)} of measures converging weakly,

as n → ∞, to P and U, respectively. This, again, allows for much flexibility in the choice of

an estimation method. Obvious choices for P̂(n) are the empirical distribution of an i.i.d. sam-

ple from P, or smoothed versions thereof. As for Û(n), since U, as a rule, is known, one may

consider U itself or a uniform over some discrete grid of n points in the support of U. That

grid can be random (e.g., an i.i.d. sequence simulated from U) or deterministic (see Chapter 9

of Judd (1998)). The transports, accordingly, are either discrete/discrete, discrete/continuous

(“semidiscrete”),10 continuous/discrete, or continuous/continuous; algorithms for each type ex-

ist in the measure transportation literature (see, e.g., Peyré and Cuturi (2019) for references).

For each case, Chernozhukov et al. (2017) establish weak11 consistency results under the assump-

tion that QMK and FMK are homeomorphisms and the inverse of each other12, for compactly

supported13 P and U.

3.3.3 Center-outward distribution and quantile functions, ranks and signs, d ≥ 1

Hallin et al. (2021a) are revisiting the concept of vector rank with reference distribution the

spherical uniform over the unit ball Sd—from a totally different perspective, however, putting

9The Legendre-Fenchel convex conjugate ψ∗ of ψ is defined as

x ∈ Rd 7→ ψ∗(x) := sup
u∈Rd

[〈u,x〉 − ψ(u)] .

10Computationally, this type of transport, yielding (random) tesselation of the support of U, is particularly

attractive. Each tile is associated with a unique observed point; a point estimation of the corresponding vector

rank can be obtained as a centroid of the tile. Although the tesselation itself is not distribution-free, Ghosal

and Sen (2019) show that defining the centroid via an external uniform randomization over each tile restores

distribution-freeness.
11Actually, uniform convergence in outer probability, see van der Vaart and Wellner (1996).
12The set of sufficient conditions (borrowed Theorem 4.14 in Villani (2003)) provided for this, however, requires

both P and U to have bounded densities, a condition which is not satisfied when the reference distribution is the

spherical uniform Ud over the unit ball (the density of Ud is unbounded at the origin).
13Assuming P to be compactly supported, hence having finite second-order moments, is unfortunate when

defining concepts of ranks and quantiles.
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emphasis on the role of the vector rank function as a distribution function extending the univari-

ate concept of center-outward distribution function introduced in Section 3.3.1 and satisfying,

along with the empirical transport from the sample distribution function to a regular grid of Sd,
the properties developed in Section 3.1. This justifies the terminology center-outward distribu-

tion and quantile functions (with the notation F± and Q±) instead of Monge-Kantorovich vector

ranks and vector quantiles.

For simplicity, we limit our description to distributions P in the family Pd of all Lebesgue-

absolutely continuous distributions over Rd with probability density f satisfying the “nonvan-

ishing density” condition

for all D ∈ R+, there exist constants ΛD;f and λD;f ∈ (0,∞) (4)

such that λD;f ≤ f(x) ≤ ΛD;f for all x ∈ (D Sd).

The support of P ∈ Pd thus is Rd; Hallin et al. (2021a), however, also consider absolutely

continuous distributions supported on strict subsets of Rd.

More precisely, assuming that Z ∼ P ∈ Pd, the center-outward distribution function F± of P

(of Z) can be defined as the a.e. unique gradient of a convex function pushing P forward to Ud.

A regularity result by Figalli (2018) implies that F± actually is unique and a homeomorphism

between the punctured ball Sd\{0} and Rd \F−1± ({0}); over these domains, thus, F± has a well-

defined and homeomorphic inverse Q± which is easily extended as a multivalued function with

domain the entire ball by letting Q±(0) := F−1± ({0}); Q± naturally qualifies as a center-outward

quantile function, Q±(0) as a center-outward median.14 Note that Figalli’s result establishes,

under a slightly weaker form (the continuity of Q± may not hold at the origin) and for P ∈ Pd,

the regularity properties that Chernozhukov et al. (2017) need to assume for their consistency

results.

The empirical counterparts F
(n)
± and Q

(n)
± of F± and Q± are obtained via an optimal discrete

transport of the sample distribution to a deterministic regular grid G(n) of Sd—an optimal

pairing between the n sample points Z1, . . . ,Zn (possibly, residuals) and the gridpoints. That

grid is obtained as follows. Factorizing n into nRnS + n0 where n0 < min(nR, nS), consider

a “regular array” SnS
:= {snS

1 , . . . , snS
nS
} of nS points on Sd−1 (see the comment below); G(n)

consists of the nRnS points of the form
(
r/
(
nR + 1

))
snS
s for r = 1, . . . , nR and s = 1, . . . , nS ,

along with n0 copies of the origin in case n0 6= 0; see the right-hand panel of Figure 1 for a graph

in dimension two. By “regular” we mean “as uniform as possible”, in the sense, for example,

of the low-discrepancy sequences of the type considered in numerical integration and Monte-

Carlo methods (see, e.g., Niederreiter (1992), Judd (1998), Dick and Pillichshammer (2014), or

Santner et al. (2003)). The only mathematical requirements (in asymptotic statements) is the

convergence to infinity of both nR and nS as n→∞ and the weak convergence, as nS →∞, of

the uniform discrete distribution over SnS to the uniform distribution over Sd−1.
Call center-outward rank of Zi the integerR

(n)
i;± := (nR+1)

∥∥F(n)
± (Zi)

∥∥ (with value in {1, . . . , nR}
or {0, . . . , nR} according as n0 = 0 or not) and center-outward sign of Zi the unit

14That median region, moreover, is a convex compact subset of Rd, with Hausdorff dimension at

most d− 1; for 1 ≤ d ≤ 3, it consists of a single point.
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Figure 1: A classical distribution function F and its empirical counterpart F (n) for n = 7 (top

left panel), along with (bottom left panel) their center-outward versions F± and F
(n)
± , the latter

with left-continuous piecewise constant interpolation on the left-hand side of the (empirical)

median, right-continuous piecewise constant interpolation on the right-hand side of the median;

a regular grid of n = nRnS points over S2 (right panel).
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vector S
(n)
i;± := F

(n)
± (Zi)/

∥∥F(n)
± (Zi)

∥∥ for F
(n)
± (Zi) 6= 0; for F

(n)
± (Zi) = 0 (Zi then is an empiri-

cal median), put S
(n)
i;±s = 0.

Some desirable finite-sample properties, such as strict independence between the ranks and

the signs, only hold for n0 = 0 or 1, due to the fact that the mapping from the sample to the

grid is no longer injective for n0 ≥ 2. This, which has no asymptotic consequences (since the

number n0 of tied values involved is o(n) as n → ∞), is easily taken care of by an appropriate

tie-breaking modification of G(n) (see Section 2.2 of Hallin et al. (2021a)). The modified grid no

longer has multiple points, and the optimal pairing between the sample and the grid is bijective;

the n0 smallest ranks, however, take the non-integer “mid-rank” value 1/2. Below, we tacitly

assume that either n0 = 0 or n0 > 0 and the tie-breaking device is adopted.

Hallin et al. (2021a) then establish the following main properties:

(i) F± is a probability integral transformation of Rd: namely, Z ∼ P iff F±(Z) ∼ Ud; by

construction, ‖F±(Z)‖ is uniform over the interval [0, 1], F±(Z)/‖F±(Z)‖ uniform over the

sphere Sd−1, and they are mutually independent;

(ii) for Z1, . . . ,Zn i.i.d. with distribution P ∈ Pd and center-outward distribution function F±,(
F
(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

is uniformly distributed over the n! permutations of the grid-

points in Gn;

(iii) the n-tuple
(
R

(n)
1;±, . . . , R

(n)
n;±

)
of center-outward ranks and the n-tuple

(
S
(n)
1;±, . . . ,S

(n)
n;±

)
of center-outward signs are mutually independent;

(iv) the n-tuple
(
F
(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

is strongly essentially maximal ancillary;

(v) the center-outward quantile regions Q±(τSd), τ ∈ [0, 1) are closed, connected and nested,

with probability content τ ;

(vi) (Glivenko–Cantelli) max
1≤i≤n

∥∥∥F(n)
± (Zi)− F±(Zi)

∥∥∥→ 0 a.s. as n→∞.

These properties nicely extend to dimension 2 and higher the properties (see Section 3.3.1) of

the univariate concepts. In particular, maximal ancillarity guarantees that center-outward ranks

and signs carry all the available “distribution-free information.” Some of these properties also

may hold for other particular cases of Monge-Kantorovich vector ranks and empirical ranks: for

instance, vector ranks based on transports to the unit cube also constitute probability integral

transformations and their empirical versions, when associated with a deterministic grid over

the unit cube, also enjoy maximal ancillarity. But the corresponding quantile regions are not

well defined, or make little sense (see Section 3.4); the resulting vector ranks very much depend

on the coordinate system (their behavior under orthogonal transformations, for instance, is

quite complicated, whereas center-outward distribution functions are nicely equivariant). While

keeping the Glivenko–Cantelli behavior of their center-outward counterparts, empirical center-

outward ranks and signs based on a grid of randomly generated spherical uniform points no longer

are mutually independent. Empirical vector ranks resulting from semi-discrete transportation
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are not distribution-free (unless an additional randomization is performed: see Ghosal and Sen

(2019)), etc.

Empirical center-outward distribution functions, however, only are defined at the observa-

tions; empirical center-outward quantile contours are just a collection of discrete points. Hallin

et al. (2021a) therefore propose a smooth interpolation F̄
(n)
± of F

(n)
± within the class of center-

outward distribution functions15—the d-dimensional version of a smooth monotone nondecreas-

ing interpolation of the n points (Zi,F
(n)
± (Zi)) for d = 1. The proposed interpolation F̄

(n)
± , based

on Moreau envelopes and Yosida regularization (Yosida, 1964), is the gradient of some convex

function, carries the same information as F
(n)
± , and satisfies a Glivenko–Cantelli property under

sup form:

sup
z∈Rd

∥∥∥F̄(n)
± (z)− F±(z)

∥∥∥→ 0 a.s. as n→∞.

Figure 2 provides the picture of the smooth interpolation F̄
(n)
± of the empirical cebter-outward

dostribution function obtained from n = 20000 i.i.d. observations from a mixture of three bi-

variate Gaussian distributions (we refer to Hallin et al. (2021a) for a detailed descriprion of the

mixture). Notice the quantile contours (in red) and the sign curves (in blue).

Figure 2: Empirical center-outward quantile contours and sign curves (n = 20000) for a mixture

of three bivariate Gaussian distributions.

15That class is the collection of all gradients of convex functions mapping Rd to Sd, characterized by the

property of cyclical monotonicity.
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3.4 Unit cube or unit ball?

The Lebesgue uniform over the unit cube [0, 1]d and the spherical uniform over the unit ball Sd
yield transformations FMK and F± reducing, for d = 1, to the traditional distribution function F

and the center-outward distribution function 2F −1, respectively. Thus, both can be considered

as extending the univariate concept of a distribution function.

An inconvenient feature of unit cubes, however, is is that there are many of them: be-

sides [0, 1]d, constructed over the canonical coordinate system, all orthogonal transformations

of [0, 1]d are equally “natural.” The corresponding vector ranks FKM and vector quantiles QKM

all carry the same information but their equivariance properties at best are unclear. While

each orthogonal transformation provides a distinct unit cube and distinct vector rank/quantile

maps with poor equivariance properties, the unit ball and Ud are orthogonally invariant, and F±

and Q± are nicely equivariant.

Poor equivariance properties, however, are not the main drawback of the vector ranks FKM

and vector quantiles QKM associated with U[0,1]d : the very interpretation of QKM as a quan-

tile is problematic. Indeed, QKM(u) is characterized by a d-dimensional quantile order u =

(u1, . . . , ud), where each uj has a probabilistic interpretation that strongly depends on the coor-

dinate system (the choice of the reference unit cube) and does not yield straightforward notions

of quantile regions and contours. To palliate this, Chernozhukov et al. (2017) define the Monge-

Kantorovich depth region of order τ as the image by QKM of the depth region with probability

content τ of U[0,1]d—viz. the region of all points in the unit cube with halfspace depth at

least D = D(τ), where D(τ) is such that the U[0,1]d-probability of that region is τ . Monge-

Kantorovich depth regions and contours of order τ are to be interpreted as quantile regions

and contours of order τ .16 As a consequence, the concepts of vector quantile map and those of

quantile region and contour, if not totally unrelated, are somewhat disconnected.

When the unit ball and Ud are considered instead of the unit cube and U[0,1]d , the concept of

(center-outward) quantile contour of order τ ∈ [0, 1) and the concept of depth contour of order τ

(now the images by Q± of Ud’s depth contour of order τ—viz. the hypersphere centered at

the origin with radius τ , hence probability content τ)—coincide. This not only fully reconciles

depth and quantiles, it eventually achieves the ultimate goal of the theory of statistical depth.

Bibliographic note

Galichon and Henry (2012) and Ekeland et al. (2012) with their concept of multivariate comono-

tonicity were early forerunners in the developments that eventually led to the concepts of center-

outward distribution functions, ranks, signs, and quantiles. Their objective was a theory of

coherent risk measurement, though, not a contribution to statistical decision theory. Based on

similar ideas, the definitions of Section 3.3.2 were developed in Carlier et al. (2016) with the ob-

jective of extending to the multiple-output context the classical theory of quantile regression and

in Chernozhukov et al. (2017) where the focus is on depth rather than distribution functions and

16The shape of that region, again, strongly depends on the choice of the reference unit cube; its probability

content (its order τ as a quantile region) does not and is a monotone decreasing function of D.
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asymptotics (weak consistency rather than Glivenko–Cantelli) requiring compactly supported

distributions, hence finite second-order moments. This triggered Faugeras and Rüschendorf

(2017), who are bypassing the compact support assumption by performing a copula transform

prior to the transport to the reference distribution U. That copula transform and the resulting

ranks and quantiles, however, strongly depend on the choice of the coordinate system—a choice

that is often irrelevant. The first sections of Hallin et al. (2021a), introducing center-outward

distribution and quantile functions, insisting on avoiding compact support and finite moment

assumptions, and emphasizing the role of center-outward ranks as fundamental statistical tools,

were made available as Hallin (2017). Boeckel et al. (2018) also are revisiting, under the ter-

minology Brenier distribution function, the concepts of Chernozhukov et al. (2017) and Hallin

(2017). Their empirical Brenier distribution function is obtained as a discrete transport from the

sample to a grid of i.i.d. simulated observations from some arbitrary reference distribution U.

Under the assumptions of compact supports (finite second-order moments) and continuous Bre-

nier distribution functions, they establish the Glivenko–Cantelli property for any interpolation

by a gradient of convex function of their empirical Brenier mapping; they do not provide, how-

ever, any constructive way to produce such an interpolation. Such a construction was proposed

by del Barrio et al. (2018), which eventually was merged with Hallin (2017) to form Hallin et al.

(2021a). The continuity of vector quantile and center-outward quantile functions is an essential

issue if meaningful quantile or depth contours and regions are to be defined. In Chernozhukov

et al. (2017) and Boeckel et al. (2018), that continuity is an assumption. Solicited for a reference

on the regularity of the solutions of Monge-Ampère equations, Alessio Figalli kindly provided

(Figalli, 2018) an original proof of the continuity of the center-outward distribution and quantile

functions of distributions with non-vanishing densities. His result later on was extended by del

Barrio et al. (2020) to distributions with more general supports. In Hallin et al. (2021a), the

continuity of F± and Q± thus is no longer an assumption but a result.

4 APPLICATIONS IN STATISTICAL INFERENCE

4.1 Center-outward rank tests and R-estimators

The most natural applications of ranks in statistical inference is the construction of rank tests

and R-estimators of the parameter of interest θθθ in semiparametric models under which the

density f of some driving noise remains unspecified in some family F of densities.

Of daily practice, in this context, is the pseudo- or quasi-Gaussian approach. Gaussian tests

indeed remain asymptotically valid (i.e., have asymptotic size less than or equal to the nominal

size α) for any f ∈ F with finite fourth-order moments. One should be aware, however, that

this asymptotic validity is far from being uniform with respect to f . Denoting by P
(n)
θθθ;f the

distribution under parameter θθθ and density f of a sequence φ(n) of pseudo-Gaussian tests of the

hypothesis H
(n)
0 := {P(n)

θθθ0;f
| f ∈ F},

lim
n→∞

P
(n)
θ0,f

[
φ(n) = 1

]
≤ α for any f ∈ F . (5)
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This is not sufficient and, for φ(n) to be asymptotically valid, the stronger condition

lim
n→∞

sup
f∈F

P
(n)
θ0,f

[
φ(n) = 1

]
≤ α, (6)

which in general does not follow from (5), is required. When, however, φ(n) is rank-based, its

distribution-freeness under the null automatically implies that (6) is satisfied.

A key role in the construction of rank tests is played by the so-called Hájek representation

results establishing, under exchangeability, the asymptotic equivalence (usually, in quadratic

mean) between a rank-based statistic and a random variable that no longer involves ranks and

satisfies the conditions for standard asymptotic central-limit17 behavior. Hájek representation

results can be used to obtain the asymptotic distribution of a given rank-based test statistic

and, via Le Cam’s third lemma, the power of the resulting tests against contiguous alternatives

(see Chapter VI of Hájek and Šidák (1967)). Starting with Hallin and Puri (1994), Hájek

representation results also have been used in the rank-based reconstruction of central sequences

yielding locally and asymptotically optimal rank tests in locally asymptotically normal (LAN)

families.

4.1.1 Multiple-output regression models and MANOVA

Rank tests for single-output linear models (this includes multiple regression, two-sample loca-

tion, and ANOVA models) have been thoroughly studied in the literature: see Hájek and Šidák

(1967) or Puri and Sen (1985). The key role in that literature is played by a Hájek represen-

tation result for square-integrable score functions with bounded variation18 J : R→ R (earlier

asymptotic results mainly could handle bounded score functions J). Let Z
(n)
1 , . . . , Z

(n)
n denote

a triangular array of i.i.d. variables Z
(n)
i with distribution function F and ranks R

(n)
1 , . . . , R

(n)
n ,

and let c
(n)
1 , . . . , c

(n)
n , with mean c̄(n), be a triangular array of regression constants satisfying the

classical Noether conditions). Then, rank statistics of the form

T∼
(n)
c

:=
( n∑
i=1

(c
(n)
i − c̄

(n))2
)−1/2 n∑

i=1

(c
(n)
i − c̄

(n))J

(
R

(n)
i

n+ 1

)
(7)

(in Hájek’s terminology, approximate-score linear rank statistics) admit the asymptotic repre-

sentation

T
(n)
c :=

( n∑
i=1

(c
(n)
i − c̄

(n))2
)−1/2 n∑

i=1

(c
(n)
i − c̄

(n))J(F (Z
(n)
i )),

in the sense that n1/2
(
T∼
(n)
c − T (n)

c

)
tends to zero in quadratic mean (hence in probability)

as n → ∞: the statistic T∼
(n)
c , thus, is a rank-based, hence distribution-free reconstruction

of T
(n)
c (which is an oracle rather than a statistic since it involves the unspecified F ).

17Rank-based statistics, indeed, typically involve sums of non-mixing sequences of non-independent summands

for which traditional central-limit results do not apply.
18Recall that a function from R to R has bounded variation iff it is the difference between two monotone

nondecreasing functions.
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The same reconstruction, based on center-outward ranks and signs, for multiple-output re-

gression and MANOVA requires a new type of asymptotic representation for the approximate-

score center-outward rank statistics (notation of Section 3.3.3)

T∼
(n)
c

:=
( n∑
i=1

(c
(n)
i − c̄

(n))2
)−1/2 n∑

i=1

(c
(n)
i − c̄

(n))J(F
(n)
± (Z

(n)
i ))

=
( n∑
i=1

(c
(n)
i − c̄

(n))2
)−1/2 n∑

i=1

(c
(n)
i − c̄

(n))J

(
R

(n)
i;±

nR + 1
S
(n)
±;i

)

with score functions J : Sd → Rd such that
∫
Sd J′ (u)J(u)dUd <∞ and asymptotic representa-

tions of the form n1/2
(
T∼

(n)
c −T

(n)
c

)
= oq.m.(1) as n→∞ with

T
(n)
c :=

( n∑
i=1

(c
(n)
i − c̄

(n))2
)−1/2 n∑

i=1

(c
(n)
i − c̄

(n))J(F±(Z
(n)
i )); (8)

random vectors of the form (8), indeed, appear in central sequences for multiple-output linear

models. Hallin et al. (2020a) first establish that multivariate extension of Hájek’s result, then use

it in the reconstruction of fully distribution-free optimal tests for for multiple-output regression

and MANOVA.

4.1.2 VAR and VARMA models

LAN for time-series models such as VAR and VARMA yield central sequences of the serial

type, with scores involving lagged residual values (Garel and Hallin, 1995). In order to con-

struct locally optimal R-estimators and tests based on center-outward ranks and signs, Hallin

et al. (2020b,c) therefore also first establish asymptotic representation results, now for serial

matrix-valued center-outward rank statistics (to be interpreted as rank-based cross-correlation

matrices).

Consider a matrix-valued function a : Sd×Sd → Rd×d and two continuous score functions J1

and J2 from Sd to Rd, define, for 1 ≤ i ≤ n− 1,

Γ∼
(n)
i,J1,J2

:= (n− i)−1
n∑

t=i+1

a(F
(n)
±,t,F

(n)
±,t−i) and Γ

(n)
i,J1,J2

:= (n− i)−1
n∑

t=i+1

J1(F±,t)J
′
2(F±,t−i),

where F
(n)
±,t is the value at Z

(n)
t of the empirical center-outward distribution function computed

from the i.i.d. n-tuple Z
(n)
1 , . . . ,Z

(n)
n with center-outward distribution function F± and F±,t

stands for F±(Z
(n)
t ). Assume that a satisfies

lim
n→∞

E
∥∥∥vec

(
a(F

(n)
±,2,F

(n)
±,1)− J1(F±,2)J

′
2(F±,1)

)∥∥∥2 → 0 as n→∞, (9)

let m(n) := E[a(F
(n)
±,2,F

(n)
±,1)] and m := E[J1(F±,2)J

′
2(F±,1)]. Clearly, m(n), which does not

depend on the density f of Z1, is centering Γ∼
(n)
i,J1,J2

, while m = mf , which depends on f
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through F±, is centering Γ
(n)
i,J1,J2

; none of them depends on i. Then, for any i ∈ N,

(n− i)1/2vec
(
Γ∼
(n)
i,J1,J2

(θ0)−m(n) − Γ
(n)
i,J1,J2

(θ0) +m
)

= oq.m.(1) (10)

as n→∞. This asymptotic representation is used, in Hallin et al. (2020c), to construct locally

asymptotically optimal center-outward rank tests for VAR parameters and the identification of

VAR order. Hallin et al. (2020b) consider a weaker form of (10), with spherical score functions

of the form J`(F±) = J`(‖F±‖)F±/‖F±‖, in the definition of locally asymptotically optimal

center-outward R-estimators in VARMA models.

4.1.3 Vector independence

The problem of consistent (against any form of dependence) testing of the hypothesis of inde-

pendence between random vectors has a long history, and many attempts have been made to

construct distribution-free solutions; see the introduction sections of Shi et al. (2021a) and Deb

et al. (2020) for references. The measure-transportation-based concepts introduced in Cher-

nozhukov et al. (2017) and Hallin (2017) are bringing such a solution and have triggered no

less than five papers of increasing generality—Ghosal and Sen (2019), Deb and Sen (2019), Shi

et al. (2021a), Shi et al. (2020), and Deb et al. (2020)—proposing, in a very short span of time,

distribution-free solutions to that important problem.

Ghosal and Sen (2019), Deb and Sen (2019), and Shi et al. (2021a) (posted almost simul-

taneously on arXiv in 2019) came first. Starting from the observation that the consistent tests

available in the literature—among them, the kernel-based tests (Gretton et al. (2005b), Gretton

et al. (2005c), Gretton et al. (2005a), Gretton et al. (2008), Sejdinovic et al. (2013)) and the

distance covariance-based tests (Bakirov et al., 2006, Székely et al., 2007, Székely and Rizzo,

2009)—are not distribution-free (not even asymptotically so), which is methodologically regret-

table and computationally costly, the three papers propose, for the same problem, consistent

tests based on the concepts of ranks introduced by Chernozhukov et al. (2017) and/or Hallin

(2017).

Before describing their tests, Ghosal and Sen (2019) establish, for vector ranks and quantiles,

several general results paralleling, completing, or extending those by Chernozhukov et al. (2017)

and Hallin et al. (2021a) (the latter, however, are focusing on the reference distribution U = Ud

while Ghosal and Sen (2019) consider general U). In particular, they show that if P and U

(notation of Section 3.3.2) are absolutely continuous with bounded convex supports, with the

density f of P satisfying (4) over its support and U having bounded density, then the vector

rank and quantile maps FMK and QMK are homeomorphisms. The pole of Ud at the origin thus

explains the possibility of a singularity of Q± at 0 in the corresponding results of Figalli (2018)

and del Barrio et al. (2020). Ghosal and Sen (2019) also establish a Glivenko–Cantelli property

for homeomorphic vector rank maps FMK. That result reinforces the weak consistency result

in Chernozhukov et al. (2017) which, moreover, requires finite moments of order two. But it

does not imply the Glivenko–Cantelli result in Hallin et al. (2021a): indeed, F±, because of the
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possible singularity of Q± at 0, needs not be a homeomorphism on Sd hence satisfy Ghosal and

Sen’s necessary (their Remark 4.2) condition.19 Finally, a few steps are made in the direction

of deriving the local uniform rates of convergence of the empirical vector quantile and rank

functions—a difficult problem that deserves further attention.

The main applications of the Ghosal and Sen (2019) paper is the construction of rank-based

tests for testing independence between random vectors and two-sample goodness of fit (see Sec-

tion 4.1.4). The test statistics they are proposing are of the Cramér-von Mises type, with vector

rank maps (based on the uniform over [0, 1]d reference distribution U = U[0,1]d) substituting the

traditional empirical distribution functions. More precisely, denote by F
(n)
MK;X, F

(n)
MK;Y, and F

(n)
MK

the empirical vector rank maps computed from (X1, . . . ,Xn), (Y1, . . . ,Yn) and (Z1, . . . ,Zn),

respectively, where Zi = (X′i,Y
′
i)
′, i = 1, . . . , n are i.i.d. copies of Z = (X′,Y′)′, with dX-

dimensional X, dY-dimensional Y, hence d-dimensional Z (d = dX + dY): the test statistic is20

Tn :=
1

n

n∑
i=1

∥∥∥∥∥F(n)
MK

(
Xi

Yi

)
−

(
F
(n)
MK;X(Xi)

F
(n)
MK;Y(Yi)

)∥∥∥∥∥
2

.

This test statistic is distribution-free under the null hypothesis of independence between X

and Y. Finite-sample critical values in principle can be obtained via permutational techniques

which, however, are computationally heavy. The test rejecting independence for large values

of Tn is shown to be consistent against all forms of dependence. No asymptotic distribution is

provided.

Another heuristic way of constructing distribution-free rank tests consists in replacing, in

some test statistic chosen in the literature, the observations with their ranks. Starting from

the distance covariance-based tests popularized by Gábor Szekely and his coauthors, this is the

strategy adopted in Deb and Sen (2019) (using general vector ranks F
(n)
MK) and Shi et al. (2021a)

(using the center-outward ranks and signs F
(n)
± ). Explicit expressions are somewhat cumbersome,

and we do not reproduce them here. The resulting tests are fully distribution-free and consistent,

and both papers are deriving the asymptotic null distributions of the test statistics, so that

computationally costly permutational methods21 can be avoided in practical implementation.

The methods of proof in the two papers are, however, quite different.22 Shi et al. (2021a) actually

establish for their center-outward distance covariance statistic a Hájek representation result with

a so-called “oracle distance covariance statistic,” the limiting distribution of which they obtain

by combining U-statistic techniques and a combinatorial non-central limit theorem. The same

limiting distribution—that of a linear combination of independent chi-square variables with one

degree of freedom, the coefficients of which are the eigenvalues of some integral equation—

19See, however, their Section 4.2 for a discussion.
20If empirical vector ranks are obtained via grids, note that the grid for Z (n points) cannot be the product of

the grids for X and Y (n2 points).
21If permutational critical values were to be used, the benefits of considering ranks are unclear, as exact

permutational critical values can be obtained for the original distance covariance test statistic as well.
22Moreover, different reference distributions may require different tools: for instance, the hypercube [0, 1]d

X+dY

conveniently factorizes into [0, 1]d
X

× [0, 1]d
Y

, while SdX+dY and SdX × SdY are distinct.
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is derived by Deb and Sen (2019) using characteristic function methods. Simulation studies

in both papers yield quite encouraging finite-sample performance, particularly under mixtures

distributions and heavy tails.

Shi et al. (2020) are revisiting yet the same problem. However, instead of heuristically re-

placing the observations with their multivariate ranks in some given classical test statistic, they

establish a general Hájek representation result and exploit it in order to obtain center-outward

rank-based dependence measures asymptotically reconstructing the broad class of generalized

symmetric covariances proposed by Weihs et al. (2018). Besides distance covariance concepts,

that class also contains, among many others, multivariate versions of Hoeffding’s D based on

marginal ordering (see Weihs et al. (2018)) and projection-averaging (see Zhu et al. (2017), of

Blum–Kiefer–Rosenblatt’s R, and Bergsma–Dassios– Yanagimoto’s τ∗ (see Kim et al. (2020)).

As in Hallin et al. (2020a) and Hallin et al. (2020c), their Hájek representation involves scores

yielding, for instance, Spearman (Wilcoxon), van der Waerden (Gaussian score), or sign test

score versions of center-outward rank-based generalized symmetric covariances. By allowing the

replacement, in asymptotic properties, of the empirical center-outward F
(n)
± with its population

counterpart F±, this Hájek representation also simplifies the derivation of asymptotic null distri-

butions and, via a nontrivial use of Le Cam’s third lemma for non-normal limiting experiments,

facilitates a local power analysis. To this end, parametrized families of alternatives extending the

so-called bivariate Konijn alternatives (Konijn, 1956)23 are considered within which tests based

on center-outward rank generalized symmetric covariances are shown to achieve rate-optimality

(with root-n rate). Simulations provide strong evidence of the superiority of center-outward

rank-based tests over, e.g., the traditional distance covariance test.

More recently, Deb et al. (2020) broadened the scope of this strand of literature to general

kernel-based measures of dependence between variables X and Y with values in general topo-

logical spaces X and Y, respectively. The kernel measures of association ηK they introduce

are not just a class of test statistics for the null hypothesis of vector independence: they also

measure the strength of that dependence, in the sense that they range over [0, 1], with value

zero iff X and Y are independent and value one iff there exists some measurable function g such

that Y = g(X), say (η is not necessarily symmetric in X and Y). The population version of

ηK involves a kernel K (an adequately24 symmetric, nonnegative definite function on Y × Y).

Its sample version η̂n moreover relies on some adequate graph functional (such as a k-nearest

neighbor or a minimum spanning tree graph).25

As far as measure transportation-based methods are concerned (Section 8 of their paper),

however, they are assuming that X and Y are real-valued random vectors with dimensions

dX and dX, respectively. A rank-based version of kernel-based measures of dependence then

is readily obtained by replacing, in η̂n, X and Y with their empirical vector ranks F
(n)
MK;X

23Konijn alternatives are classical in the context of testing for bivariate independence: see, e.g., Gieser and

Randles (1997), Taskinen et al. (2005), Hallin and Paindaveine (2008a).
24We are skipping details.
25We are skipping details.
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and F
(n)
MK;Y. An attractive feature of the resulting rank-based statistics, which under the null

hypothesis of independence between X and Y are distribution-free, is the Gaussian nature

of their asymptotic null distributions, allowing for readily available critical values; this is in

sharp contrast with the mixture of chi-squares obtained by Deb and Sen (2019) and Shi et al.

(2021a, 2020).26 Asymptotic normality is established via a Hájek asymptotic representation

result—limited to identity (Spearman or Wilcoxon) score functions since X and Y are “sim-

ply” replaced with F
(n)
MK;X and F

(n)
MK;Y. The paper concludes with a numerical comparison of

the finite-sample performance of the proposed tests with the original distance covariance tests

and the Hilbert–Schmidt independence tests (involving kernel-based measures of dependence)

developd in the learning literature (see, e.g., Gretton et al. (2005a), Fukumizu et al. (2008)).

Simulation results indicate that the methods proposed in the paper are competitive against de-

pendencies under which small variations of X induce large variations of Y, and somewhat less

competitive against smoother relationships. The power, however, largely depends on the graph

structure considered for finite-sample implementation—e.g., the choice of k in the k-nearest

neighbor graph approach. No comparison with the center-outward methods developed in Shi

et al. (2020) is conducted; although scores (more general than Wikcoxon or Spearman) may

improve performance significantly, final conclusions and consistency rates25 are likely to remain

unchanged.

Bibliographic note

The contributions by Ghosal and Sen and Deb and Sen on one hand, by Shi, Drton, and Han27

on the other hand, were obtained independently and posted on arXiv almost contemporaneously

(May 14, September 18, and September 22, respectively) in 2019. Although addressing the same

problem, they (as well as the sections on rank-based statistics in Deb et al. (2020)) use different

methods, showing little overlap and profitably complementing each other.

4.1.4 Goodness-of-fit and symmetry

Based on the techniques developed for testing vector independence, Ghosal and Sen (2019) and

Deb and Sen (2019) also propose rank-based tests for the two-sample goodness-of-fit problem

(see also Boeckel et al. (2018) and Hallin et al. (2021b)) and the null hypothesis of symmetry.

The spirit of their approach is quite similar to that developed for testing vector independence,

with (for Deb and Sen (2019)) tests based on energy statistics (Székely and Rizzo, 2013) rather

than distance covariance; we refer to the papers for further details.

4.2 Multiple-output quantile regression

Shifting from rank-based to quantile-based inference, the main application of measure trans-

portation in the literature is multiple-output quantile regression. Single-output quantile re-

26Shi et al. (2021b), however, are reporting some suboptimality results on consistency rates.
27Under the title “Distribution-free consistent independence tests via Hallin’s multivariate ranks.”
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gression, as introduced in the seminal paper by Koenker and Bassett (1978), constitutes an

ensemble of statistical techniques intended to estimate and draw inferences about conditional

quantile functions. Considerably more informative than traditional mean regression, it has be-

come a central tool in regression analysis—see Koenker et al. (2017) for an extensive recent

survey of related topics. Desirable as it is, an adequate multiple-output version of the method

has remained an open problem for almost half of a century—due, mainly, to the absence of

an adequate concept of multivariate (conditional) quantile. Attempts have been made based

on (conditional) halfspace depth (Hallin et al., 2010a, 2015) but halfspace depth contours and

regions do not enjoy all the properties a quantile function is expected to satisfy—in particular,

depth contours (the collection of points with given depth τ) are intrinsically convex and the

probability of the enclosed region depends on the actual underlying distribution. The measure

transportation concept of vector quantile is giving this problem an elegant and computationally

feasible solution, developed in Carlier et al. (2016); see also Carlier et al. (2017, 2020).

Carlier et al. (2016) define the concept of conditional vector quantiles and use it to propose a

model of (linear) vector quantile regression extending to the multiple-output case the traditional

quantile regression model of Koenker and Bassett (1978). Let Y, with values in Rd
Y

be a

vector of dependent variables and denote by Z, with values in Rd
Z
, a vector of covariates.

Assume that (Y,Z) have joint distribution PYZ and that Y has a conditional (on Z = z)

distribution PY|Z=z for all z in the support of Z. Let U denote some Lebesgue-absolutely continu-

ous dY-dimensional reference distribution with convex support. A vector quantile function of Y

conditional on Z is a mapping from (u, z) ∈ RdY×RdZ to QY|Z(u, z) ∈ RdY such that (i) for

all z ∈ RdZ
, u 7→ QY|Z(u, z) is the gradient28 of a convex function and (ii) Y = QY|Z(U,Z) for

some random vector U with conditional distribution U given Z = z. Condition (i) implies that,

for any z, u 7→ QY|Z(u, z) pushes U forward to PY|Z=z; condition (ii) ensures the existence of a

strong representation of Y in terms of Z and a latent random vector U with distribution U. The

theory of measure transportation and, mire particularly, Mc Cann’s theorem then guarantee

the existence and for-all-z-U-a.s. unique vector quantile function for Y conditional on Z. If,

moreover, for all z in the support of Z, PY|Z=z admits a density, then u 7→ QY|Z(u, z) admits

an inverse29 with the interpretation of a vector rank mapping. This extends to the conditional

case the unconditional concepts of Monge-Kantorovich vector ranks and quantiles developed

(subsequently) in Chernozhukov et al. (2017); a straightforward definition of Monge-Kantorovich

regression depth and regression depth contour follows.

If z 7→ QY|Z(u, z) is regular enough, it characterizes the impact, on Y’s “quantile of orderu,”

of the values z of the covariates—yielding a multiple-output quantile regression equation of Y

with respect to Z. Assuming for all u and, possibly, for some given dX-dimensional func-

tion X := f(Z) of Z, a linear form of this equation yields a linear vector quantile regression

28As usual, this means “the Lebesgue-a.e.-gradient” of a convex function.
29More precisely, for all z, a mapping y 7→ FY|Z(y, z) such that FY|Z(QY|Z(u, z), z) = u and FY|Z(Y,Z) = U

U-a.s.
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model

Y = QY|X(U,X) = β′(U)X

where u 7→ β(u) is a dX× dY matrix-valued function such that u 7→ β′(u)x is the gradient of a

convex function and U has, conditionally on X, reference distribution U. A linear programming

solution is proposed for the estimation of u 7→ β(u), which embeds the vector quantile estimation

algorithm proposed in Chernozhukov et al. (2017).

4.3 Nonlinear Principal Components (PC) and Independent Components

(IC)

Principal Component (PC) and Independent Component (IC) methods are two major tools, part

of daily practice in basically all domains of data analysis, statistical learning, and signal theory.

Being based on linear transformations, they suffer, however, of severe limitations: principal

components only account for linear dependencies, while independent components, which more

ambitiously aim at turning a vector Z of mutually interrelated observations into a vector U of

independent variables, fail to do so unless ad hoc assumptions are made on the data-generating

process.

By abandoning the restriction to linear transformations, measure transportation with refer-

ence distribution U factorizing into a product of univariate marginals, brings, under very mild

assumptions on Z, a natural solution to the problem. Two reference distributions of interest, in

that context , are the uniform U[0,1]d over the unit cube [0, 1]d or any of its rotations O[0, 1]d

(O an arbitrary orthogonal matrix) and the spherical N (0, Id) standard normal. Adopting the

terminology of Section 3.3.2, for any orthogonal d× d matrix O, the vector rank mapping FO
MK

of OZ with reference U = U[0,1]d and OFNMK, where FNMK denotes the vector rank mapping of Z

with reference U = N (0, Id) define nonlinear independent component transformations of Z.

That idea of a nonlinear independent component analysis based on measure transportation

has been developed by Gunsilius and Schennach (2019), along with an entropy-based selection

of O, yielding a d-tuple of independent components ordered by decreasing information content

and an entropy decomposition that parallels the classical decomposition of Z’s total variance

into the sum the variances of its principal components.30 That entropy decomposition naturally

suggests a nonlinear dimension reduction procedure.31 When FO
MK and FNMK are homeomor-

phisms, they admit continuous inverses QO
MK and QNMK mapping the nonlinear independent

components to a system of curves providing a graphical representation that greatly helps their

intuitive interpretation. Gunsilius and Schennach (2019) also propose an estimation method

which involves the analytical properties of the vector rank map and a kernel estimation of Z’s

30When Z itself is Gaussian, the method coincides with the standard linear principal component decompostion.
31A number of nonlinear dimension reduction techniques have been proposed, mainly in the machine learning

literature, but seldom produce mutually independent components. Moreover, their consistency properties, in

general, are not clear, and many of them are lacking a population version. Section 3 of Gunsilius and Schennach

(2019) provides an overview of that literature which we do not reproduce here.
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density. This estimation step perhaps could be revised in light, e.g., of the results by Deb and

Sen (2019) (which probably were not available to the authors when their paper was written).

5 CONCLUSIONS AND SOME DIRECTIONS FOR FUTURE

RESEARCH

Measure transportation ideas and techniques, in a very short span of time, (i) have been shown

to provide, unlike previous attempts, theoretically adequate multivariate extensions of the dual

concepts of distribution and quantile functions (in population), of ranks and quantiles (in the

sample) and (ii) have demonstrated their applicability in a variety of contexts—distribution-

free hypothesis testing, multiple-output quantile regression, nonlinear principal and independent

component analysis, nonlinear dimension reduction, etc. Many questions remain open, however:

(a) several issues remain to be studied about the concepts themselves: how in finite samples

should we choose the factorization of n into nRnS +n0 in the definition of center-outward ranks

and signs? should we consider cross-validation? random grids?

(b) can powerful goodness-of-fit tests be based, e.g. on Kolmogorov-Smirnov or Cramér-von

Mises distances between center-outward distribution functions, on the model of Ghosal and Sen

(2019)?

(c) turning to quantiles, what are the properties of Q
(n)
± (0) (for n0 6= 0) as a multivariate

median? can we construct multivariate median or sign tests? can we, combining ideas from

Carlier et al. (2016) and Hallin et al. (2015), perform local bilinear multiple-output center-

outward quantile regression? construct multivariate growthcharts?

(d) center-outward quantile contours are obvious candidates as multivariate value-at-risk

concepts, playing a central role in risk management; in that context, still in dimension d = 1,

the primitives of ordinary distribution or quantile functions enter the definitions of a number

of relevant notions such as Lorenz curves, average values at risk, or expected shortfall, on the

model of Gushchin and Borzykh (2017) and Beirlant et al. (2020)?

(e) what happens in high dimension (d→∞)? in functional spaces? on spheres (directional

data)? on other Riemannian manifolds?

(f) finally, new empirical distribution and quantile functions are calling for an in-depth study

of the corresponding empirical processes with further results such as Donsker and iterated log-

arithm theorems or Bahadur representations.
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Hallin, M., Hlubinka, D., and Hudecová, Š. (2020a). Fully distribution-free center-outward rank

tests for multiple-output regression and MANOVA. Available at arXiv:2007.15496.

Hallin, M., Ingenbleek, J.-F., and Puri, M. (1989). Asymptotically most powerful rank tests for

multivariate randomness against serial dependence. J. Multivariate Anal., 30:34–71.

Hallin, M., La Vecchia, D., and Liu, H. (2020+b). Center-outward R-estimation for semipara-

metric VARMA models. J. Amer. Statist. Assoc., pages 1–14. (in press).

Hallin, M., La Vecchia, D., and Liu, H. (2020+c). Rank-based testing for semiparametric var

models: a measure transportation approach. Available at arXiv:2011.06062.
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Lòpez-Pintado, S. and Romo, J. (2012). On the concept of depth for functional data. J. Amer.

Statist. Assoc., 104:718–34.

Marden, J. (1999). Multivariate rank tests. In S. Ghosh, Ed., Design of Experiments and

Survey Sampling, pages 401–32. Marcel Dekker, New York.

McCann, R. J. (1995). Existence and uniqueness of monotone measure-preserving maps. Duke

Math. J., 80:309–23.

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods. SIAM,

Philadelphia, PA.

Oja, H. (1999). Affine invariant multivariate sign and rank tests and corresponding estimates:

a review. Scand. J. Statist., 26:319–43.

Oja, H. (2010). Multivariate Nonparametric Methods with R: an approach based on spatial signs

and ranks. Springer, New York.

Oja, H. and Paindaveine, D. (2005). Optimal signed-rank tests based on hyperplanes. J. Statist.

Plann. Inference, 135:300–23.

Oja, H. and Randles, R. H. (2004). Multivariate nonparametric tests. Statist. Sci., 19:598–605.

Panaretos, V. and Zemel, Y. (2019). Statistical aspects of Wasserstein distances. Annual Review

of Statistics and its Application, 6:405–31.
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