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MEASURE VALUED DIRECTIONAL SPARSITY FOR PARABOLIC
OPTIMAL CONTROL PROBLEMS∗

KARL KUNISCH† , KONSTANTIN PIEPER‡ , AND BORIS VEXLER‡

Abstract. A directional sparsity framework allowing for measure valued controls in the spatial
direction is proposed for parabolic optimal control problems. It allows for controls which are localized
in space, where the spatial support is independent of time. Well-posedness of the optimal control
problems is established and the optimality system is derived. It is used to establish structural
properties of the minimizer. An a priori error analysis for finite element discretization is obtained,
and numerical results illustrate the effects of the proposed cost functional and the convergence results.
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1. Introduction. In this paper we analyze an optimal control problem, where
we want to minimize

(1.1a) 1
2‖y − yd‖2L2(I×Ωo)

+ α‖u‖M(Ωc,L2(I))

for a control u ∈ M(Ωc, L
2(I)) in the space of vector measures and a corresponding

state y subject to the parabolic equation

(1.1b)
∂ty +Ay = u in I ×Ω,

y(0) = y0.

Here Ω ⊂ Rd for d ∈ { 2, 3 } is a bounded domain, A = −∇ · a∇ is an elliptic second
order differential operator (to be specified more precisely in section 2.2), I = (0, T ) is
the time interval, and Ωc and Ωo are a control and observation domain, respectively.
The cost term (1.1a) involves a standard quadratic tracking of the state variable and
the total variation of the vector measure u. The resulting minimization problem (1.1)
is convex but not necessarily strictly convex. Our motivation is the following: There
are many applications in optimal control and inverse problems where the control
enters into the right-hand side of a diffusion equation in a pointwise fashion, see, e.g.,
[24, 12]. A simple special case involves a right-hand side given by a linear combination
of Dirac delta functions, resulting in the equation

(1.2) ∂ty +Ay =

N∑
i=1

ui δxi in I ×Ω
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with time-dependent intensities ui ∈ L2(I) at fixed positions xi ∈ Ωc. In some
problem settings we are additionally interested in finding the optimal locations xi,
which are therefore also subject to optimization. The problem (1.1) is in a sense a
generalization of this approach, since any sum u =

∑
i=1...N ui δxi is an element of

the space M(Ωc, L
2(I)). Moreover, with the polar decomposition for vector valued

measures (see section 2.1), all controls u ∈ M(Ωc, L
2(I)) of the generalized problem

are separable into a spatial profile |u| and a space dependent temporal profile u′

such that

u = u′ |u|,

where |u| ∈ M(Ωc) is a positive Radon measure and u′(t, x) depends on t ∈ I and x
in the support of |u|. An equivalent formulation of (1.1) is therefore to minimize

1
2‖y − yd‖2L2(I×Ωo)

+ α|u|(Ωc),

where the cost term |u|(Ωc) = ‖|u|‖M(Ωc) is the total variation norm for positive
measures, subject to the parabolic equation

∂ty +Ay = u′|u| in I ×Ω,

y(0) = y0 in Ω,

and the algebraic constraint

‖u′(·, x)‖L2(I) = 1 for all x ∈ Ωc.

It will turn out that the optimal solutions are sparsely localized in space;
see Theorem 2.12. In an important special case, which typically occurs when
dist(Ωo, Ωc) > 0, the spatial profile |u| will consist of a finite sum of Dirac delta
functions as described in Corollary 2.13. We also give empirical evidence for this in
section 5. The temporal profile u′ is continuous in x and will in most cases exhibit
additional regularity; see Theorem 3.7.

Directional sparsity in the context of optimal control with PDEs was first pro-
posed in [21], where an additional L2 regularization term and control constraints allow
us to search for a control in the space L2(I×Ω). We will investigate the connection to
this problem in section 4. Furthermore, our setting is similar to [5], where an inverse
problem is considered involving the norm of M(Ω,Rn) as a regularization term in
combination with a general solution operator instead of the solution operator of the
parabolic equation (1.1b) considered here. With respect to finite element discretiza-
tion of optimal control problems governed by parabolic equations, we also refer to [8]
on a different sparse control problem and to [15, 23] for a priori error analysis of finite
element discretization of pointwise parabolic control problems, i.e., optimal control
problems with equations of the form (1.2) with fixed positions xi. Let us additionally
point out [9], where a control problem for the heat equation with measures on a subset
of the parabolic cylinder is discussed. In the one-dimensional situation the authors
are able to show that the minimizer is given by a finite sum of point sources.

The contribution of this paper is threefold. First of all, we introduce a (well-
posed) formulation of an optimal control problem, such that the optimal solution is a
measure with respect to the spatial variable and the sparsity pattern does not depend
on time. Second, we derive optimality conditions for the optimal control problem
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under consideration and exploit these conditions to provide additional information
(sparsity structure and regularity) about the optimal solution. Moreover, we provide
numerical analysis for an appropriate finite element discretization of the problem.
We derive an a priori error estimate for the error between the optimal states of the
continuous and discretized problems of order O(k

1
2 + h) up to a logarithmic factor,

where k and h are temporal and spatial discretization parameters. This estimate
seems to be optimal at least with respect to h; cf. the discussion in section 5.

The outline of the paper is as follows. In section 2 we summarize the theory
for vector measures and describe an appropriate function space setting for (1.1b).
We discuss regularity of the parabolic solution for the specific right-hand side and
give an optimality condition for the convex minimization problem in Theorem 2.11.
In Theorem 2.12 we derive the specific form of the sparsity structure. Section 3
describes a suitable discretization concept for the optimal control problem, where
we use finite elements in space and a discontinuous Galerkin method in time. We
prove a corresponding error estimate for the solution of the parabolic problem in
Theorem 3.15 and for the optimal solutions in Theorem 3.20. Section 4 discusses
a practical solution method and section 5 reports on some numerical results. The
first numerical example is tailored to illustrate that the convergence results can be
achieved in practice and the second example, motivated by an inverse source location
problem, gives evidence of the claim that the optimal solutions will be point sources
as in (1.2) under appropriate conditions on Ωo and Ωc.

2. Analysis. In this section we discuss a functional analytic framework for (1.1).

2.1. Vector measures. LetΩ be an open bounded domain in Rd and I = (0, T ).
Furthermore the boundary of ∂Ω is subdivided into a Neumann part Γ ⊂ ∂Ω and a
Dirichlet part ∂Ω\Γ , which we require to be closed. In section 2.2 we will impose
further restrictions on the regularity of the boundary for the parabolic regularity
theory. The control domain is allowed to act in the interior and on the boundary,
where

Ωc ⊆ Ω ∪ Γ

is any relatively closed subset of Ω∪Γ . The spaceM(Ωc, L
2(I)) contains all countably

additive vector measures of bounded total variation μ : B(Ωc) → L2(I) on the Borel
sets B(Ωc). For μ ∈ M(Ωc, L

2(I)) the total variation measure |μ| ∈ M(Ωc), the space
of positive Borel measures, is defined as

|μ|(B) = sup

{ ∞∑
n=1

‖μ(Bn)‖L2(I)

∣∣∣ Bn ∈ B(Ωc) disjoint partition of B

}

for each B ∈ B(Ωc) and by |μ|(Ωc) we denote the total variation of μ. It is easy to
see that we have

(2.1) ‖μ(B)‖L2(I) ≤ |μ|(B)

for all B ∈ B(Ωc). The space of vector measures M(Ωc, L
2(I)) with finite total

variation endowed with the norm ‖μ‖M(Ωc,L2(I)) = ‖|μ|‖M(Ωc) = |μ|(Ωc) is a Banach
space; see, e.g., [22, Chapter 12.3]. SinceΩc ⊆ Ω∪Γ , we have the canonical embedding

M(Ωc, L
2(I)) ↪→ M(Ω ∪ Γ,L2(I)).
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Finite Borel measures on subsets of Rd are regular (and therefore Radon measures;
cf. [25, Theorem 1.10, Corollary 1.11]) and the support of the vector measure μ ∈
M(Ω ∪ Γ,L2(I)) defined as

suppμ = supp|μ| = (Ω ∪ Γ ) \
(⋃

{B open in Ω ∪ Γ | |μ|(B) = 0 }
)

is a relatively closed set (and therefore suppμ ∈ B(Ω ∪ Γ )). We have the equality

M(Ωc, L
2(I)) =

{
μ ∈ M(Ω ∪ Γ,L2(I))

∣∣ suppμ ⊆ Ωc

}
.

For each μ ∈ M(Ωc, L
2(I)) we can define a “polar decomposition,” which consists

of the total variation measure |μ| and the function μ′ ∈ L1(Ωc, |μ|, L2(I)) such that

(2.2) dμ = μ′ d|μ|,

which is a short form of
∫
ϕdμ =

∫
ϕμ′ d|μ| in L2(I) for all ϕ ∈ C0(Ωc). The function

μ′ is the Radon–Nikodym derivative of μ with respect to |μ|; see [22, Corollary 12.4.2]
or [10, Corollary IV.1.4]. Certainly, μ is absolutely continuous with respect to |μ| due
to (2.1). In fact we even have μ′ ∈ L∞(Ωc, |μ|, L2(I)) with

(2.3)
‖μ′‖L∞(Ωc,|μ|,L2(I)) ≤ 1

and ‖μ′(x)‖L2(I) = 1 for |μ|-almost all x ∈ Ωc.

The first property is a consequence of∥∥∥∥
∫
B

μ′ d|μ|
∥∥∥∥
L2(I)

=

∥∥∥∥
∫
B

dμ

∥∥∥∥
L2(I)

= ‖μ(B)‖L2(I) ≤ |μ|(B),

which implies that the |μ|-average of μ′ lies in the unit ball of L2(I). By the averaging
lemma [22, Theorem 11.5.15], this implies ‖μ′(x)‖L2(I) ≤ 1 |μ|-almost everywhere.
The second property is implicitly contained in [22, Theorem 12.4.1].

Let Cc(Ω ∪ Γ,L2(I)) be the space of continuous functions on Ω ∪ Γ with values
in L2(I) which are compactly supported in Ω ∪Γ and let Cc(Ωc, L

2(I)) be the subset
consisting of canonical restrictions of such functions to Ωc. Then we define

C0(Ωc, L
2(I)) = Cc(Ωc, L2(I)),

where the closure is with respect to the supremum norm. We recall that this is
equivalent to

C0(Ωc, L
2(I)) =

{
ϕ ∈ C(Ωc, L

2(I))
∣∣ ϕ(x) = 0 for x ∈ ∂Ω\Γ

}
.

With the pairing, defined for μ ∈ M(Ωc, L
2(I)) and v ∈ C0(Ωc, L

2(I)),

〈μ, v〉 =
∫
Ω

(μ′(x), v(x))L2(I) d|μ|(x)

we have a natural injection into the dual space M(Ωc, L
2(I)) ↪→ C0(Ωc, L

2(I))∗. In
fact this is an isometric isomorphism. This identification (for a more general setting)
is known as Singer’s representation theorem; see, e.g., [27] and the references therein.
In the following we will identify M(Ωc, L

2(I)) with the dual space of C0(Ωc, L
2(I)).
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Up to now we have always considered μ as an object depending on the spatial
variable x ∈ Ωc. Now we want to switch the point of view to consider μ as a variable
of t ∈ I. We recall from [8] and the references therein the definition of the Bochner
space L2(I,M(Ωc)) (of weakly measurable M(Ωc)-valued functions which are square
integrable in time) and the identification of the dual L2(I, C0(Ωc))

∗ = L2(I,M(Ωc)).
We note that

(2.4) M(Ωc, L
2(I)) ↪→ L2(I,M(Ωc)),

which follows from the dense embedding L2(I, C0(Ωc)) ↪→ C0(Ωc, L
2(I)). Therefore,

for each μ ∈ M(Ωc, L
2(I)) the expression μ(t) ∈ M(Ωc) for t ∈ I is well-defined in

an almost everywhere in I sense. Conversely, due to (2.3) the polar decomposition μ′

is an element of the Hilbert space L2(Ωc, |μ|, L2(I)) which is isometrically isomorphic
to L2(I, L2(Ωc, |μ|)). This explains the expression μ′(t) ∈ L2(Ωc, |μ|) in an almost
everywhere in I sense. We can now check that

(2.5) dμ(t) = μ′(t) d|μ| for almost all t ∈ I

holds independently of the equivalence representations chosen for the functions μ′ : I →
L2(Ωc, |μ|) and μ : I → M(Ωc).

2.2. Well-posedness of the state equation. We define a suitable solution to
(1.1b) with the well-known method of transposition. The construction of solutions to
elliptic equations with measure valued data by this technique goes back to the classical
paper of Stampacchia [30]. In the parabolic case the combination of this technique
with a result on maximal parabolic regularity is fairly straightforward. Nevertheless,
we give a derivation for the sake of completeness. We employ the notation (· , ·) for the
inner product in L2(Ω) and the notation (· , ·)I for the inner product in L2(I, L2(Ω)).

We suppose that Ω is a Lipschitz domain in Rd, d ∈ { 2, 3 }, with boundary
∂Ω and that Γ ⊂ ∂Ω such that Ω ∪ Γ is regular in the sense of Gröger; see [18,
Definition 2], [19, Definition 3.1], or the alternative characterization [19, Theorems 5.2,
5.4]. In the following we consider elliptic operators of the form

A = −∇ · a∇,

given in weak formulation with bounded, symmetric, and uniformly elliptic coefficients
a ∈ L∞(Ω,Rd×d). For mixed Dirichlet and Neumann boundary conditions we define
the space W 1,q

Γ (Ω) with 1 < q < ∞ in the usual way as the closure of the set
{u|Ω | u ∈ C∞

c (Rn), u = 0 on ∂Ω\Γ} in W 1,q(Ω). We denote by

W−1,q
Γ (Ω) =W 1,q′

Γ (Ω)∗, where 1
q + 1

q′ = 1,

the corresponding dual spaces. Since a is symmetric the formal adjoint A∗ is identical
to A. It is clear that A∗ continuously maps the spaces W 1,q

Γ (Ω) into the spaces

W−1,q
Γ (Ω) for any q. We also define for q ≥ 2 the space D∗

q ⊃W 1,q
Γ (Ω) as the domain

of A∗, endowed with the graph norm in W−1,q
Γ (Ω),

D∗
q =

{
v ∈ W 1,2

Γ (Ω)
∣∣ A∗v ∈ W−1,q

Γ (Ω)
}
and ‖v‖D∗

q
= ‖A∗v + v‖W−1,q

Γ (Ω).

With an elliptic regularity result (see, e.g., [30, 11, 19] and the references therein), we
obtain that these spaces embed into spaces of Hölder continuous functions for q > d.
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Theorem 2.1 (Theorem 3.3 in [19]). Under the above conditions and for q > d
we have the continuous embedding

D∗
q ↪→ Cβ(Ω)

for some β > 0.
Remark 2.2. It can be shown that there is a q̄ = q̄(Ω,Γ, a) ∈ (2,∞] such that

D∗
q =W 1,q

Γ (Ω) holds for all 2 ≤ q < q̄; see [18]. For the following construction we will
only need the embedding

D∗
q ↪→ W 1,2

Γ (Ω) ∩ Cβ(Ω) ↪→ C0(Ω ∪ Γ ),

which holds without further smoothness assumptions on Ω, Γ , or a.
We consider now the dual equation to (1.1b), which is the backwards in time

parabolic equation

(2.6)
−∂tϕ+A∗ϕ = f in L2(I,W−1,s′

Γ (Ω)),

ϕ(T ) = 0

for a given right-hand side f ∈ L2(I,W−1,s′
Γ (Ω)) with s′ > d, where the time derivative

is interpreted as the distributional derivative [2, Chapter III.1]. We can apply a result
on maximal parabolic regularity from [20] to characterize the solutions of (2.6).

Theorem 2.3 (Theorem 5.4 in [20]). Suppose that s′ ≥ 2 with s′ < ∞ in
two dimensions and s′ < 3q̄

3−q̄ in three dimensions, where q̄ is the constant from

Remark 2.2. Then the solution to (2.6) lies in the space

Xs′ =
{
v ∈ L2(I,D∗

s′) ∩H1(I,W−1,s′
Γ (Ω))

∣∣ v(T ) = 0
}

with the corresponding a priori estimate

(2.7) ‖ϕ‖Xs′ ≤ cs‖f‖L2(I,W−1,s′
Γ (Ω))

.

Remark 2.4. In particular we can choose s′ ≤ 6 in three spatial dimensions.
We denote the corresponding solution operator by ϕ = S�(f). With Theorem 2.3

it is an isomorphism on the spaces

S� : L2(I,W−1,s′
Γ (Ω)) → Xs′ .

Moreover, since D∗
s′ ↪→ Cβ(Ω) for some β > 0, we additionally obtain the embedding

Xs′ ↪→ L2(I, C0(Ω ∪ Γ )).

A very weak solution of the state equation (1.1b) can now be given in the following
way: Consider dual exponents s′ ∈ (d, 2d

d−2 ] and exponents s with 1
s +

1
s′ = 1. For any

control u ∈ M(Ωc, L
2(I)) the state y ∈ L2(I,W 1,s

Γ (Ω)) is sought as the solution of
the very weak formulation

(2.8) 〈y,−∂tϕ+A∗ϕ〉I = (y0, ϕ(0)) + 〈u, χΩcϕ〉 for all ϕ ∈ Xs′ .

Here, by 〈· , ·〉I we denote the duality pairing between L2(I,W 1,s
Γ (Ω)) and its dual

L2(I,W−1,s′
Γ (Ω)) and χΩc is the canonical embedding

χΩc : X
s′ ↪→ C0(Ωc, L

2(I)),
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which explains the duality product between u and χΩcϕ. With the embedding Xs′ ↪→
X2 ↪→ C(I, L2(Ω)) the point evaluation ϕ(0) is well-defined and continuous in Xs′ .

Therefore for any f ∈ L2(I,W−1,s′
Γ (Ω)) and the corresponding ϕ = S�(f) we obtain

from the definition (2.6) that

〈y, f〉I = (y0, ϕ(0)) + 〈u, χΩcϕ〉 ≤ c
(
‖u‖M(Ωc,L2(I)) + ‖y0‖L2(Ω)

)
‖ϕ‖Xs′ .

By reflexivity of the space L2(I,W 1,s
Γ (Ω)) we now see that the very weak formulation

has a unique solution and with (2.7) we obtain

(2.9) ‖y‖L2(I,W 1,s
Γ (Ω)) ≤ cs

(
‖u‖M(Ωc,L2(I)) + ‖y0‖L2(Ω)

)
.

By choosing appropriate test functions in (2.8) we derive that ∂ty = −Ay + χ∗
Ωc
u

holds in the distributional sense and we obtain ∂ty ∈ L2(I,W−1,s
Γ (Ω)). With this and

the integration by parts formula it follows

(2.10) 〈y(0), ϕ(0)〉 = −〈∂ty, ϕ〉I − 〈y, ∂tϕ〉I = (y0, ϕ(0)) ≤ ‖y0‖L2(Ω)‖ϕ(0)‖L2(Ω)

for all ϕ ∈ H1(I,W 1,s′
Γ (Ω)) with ϕ(T ) = 0. We can choose ϕ with ϕ(0) ∈ W 1,s′

Γ (Ω)
arbitrarily and conclude y(0) = y0 by density. Finally, we obtain the following result.

Theorem 2.5. The state equation, given in the weak formulation

(2.11)
〈∂ty, ϕ〉I + 〈Ay, ϕ〉I = 〈χ∗

Ωc
u, ϕ〉 for all ϕ ∈ L2(I,D∗

s′),

y(0) = y0

with s′ > d possesses a unique solution y in the space

Y s = L2(I,W 1,s
Γ (Ω)) ∩H1(I,W−1,s

Γ (Ω)),

where 1 ≤ s < d
d−1 , with the corresponding estimate

(2.12) ‖y‖Y s ≤ cs
(
‖u‖M(Ωc,L2(I)) + ‖y0‖L2(Ω)

)
.

Proof. We take the unique solution y ∈ Y s for s ∈ [ 2d
d+2 ,

d
d−1) of the very weak

formulation (2.8), which fulfills (2.12) by (2.9) and the representation of the time
derivative. The regularity for all s < d

d−1 is a consequence of the Sobolev embedding
theorem. We argue that y is also a solution to the weak formulation (2.11) by applying
integration by parts in (2.8) to obtain

〈u, χΩcϕ〉 = 〈y,−∂tϕ+A∗ϕ〉I − (y0, ϕ(0)) = 〈∂ty +Ay, ϕ〉I

for all ϕ ∈ Xs′ . Since Xs′ is dense in L2(I,D∗
s′) the solution y fulfills (2.11), which

proves existence for (2.11). Conversely, uniqueness of the solution to the weak formu-
lation (2.11) follows by Xs′ ⊂ L2(I,D∗

s′).
Remark 2.6. The weak formulation (2.11) holds also for test functions ϕ from

the subspace L2(I,W 1,s′
Γ (Ω)). However, if we restrict the test space in this way, we

lose uniqueness of the solution in the general case; cf. the discussion in [29, 11] for the
elliptic problem.

We denote the corresponding solution operator for the state equation by y =
S(y0, u) = S(u).
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Lemma 2.7. The solution operator S is weak-∗ to weak continuous, i.e., we have

S(un)⇀ S(û) in Y s

for any sequence un ⇀
∗ û in M(Ωc, L

2(I)) with n→ ∞ (with s < d
d−1).

Proof. Since un is bounded in M(Ωc, L
2(I)), the sequence yn = S(un) is bounded

in Y s with Theorem 2.5. Thus, it contains a weakly converging subsequence (denoted
again by yn) with yn ⇀ ŷ for some ŷ ∈ Y s. By taking the limit in (2.11), we see that
ŷ = S(û). The result follows since this argument can be repeated if we start from any
subsequence of un.

In the following we will implicitly restrict the range of the parameter s to s ∈
[ 2d
d+2 ,

d
d−1 ) if we use the spaces Y s and Xs′ , unless explicitly mentioned otherwise.

2.3. Optimal control problem. With these preparations we can now state the
precise problem formulation,

(P) min
u∈M(Ωc,L2(I))

j(u) = J(S(y0, u)) + α‖u‖M(Ωc,L2(I)),

where j is the reduced cost functional, and

J(y) = 1
2‖χΩoy − yd‖2L2(I×Ωo)

is a quadratic tracking functional on the observation region I ×Ωo. We require Ωo to
be an open subset of Ω. By χΩo we denote the embedding

χΩo : Y
s ↪→ L2(I ×Ωo),

which is compact due to the compact embedding W 1,s
Γ (Ω) ↪→ L2(Ω) for s > 2d

d+2
(with the Aubin–Lions lemma). In the following we sometimes omit χΩo for ease of
notation.

Lemma 2.8. The functional j is weak-∗ lower semicontinuous, i.e., we have

lim inf
n→∞

j(un) ≥ j(û)

for any sequence un ⇀
∗ û for n→ ∞ in M(Ωc, L

2(I)).

Proof. This is a consequence of Lemma 2.7, the compactness of the embedding
χΩo , which yields strong convergence of S(un) → S(ū) in L2(I×Ωo), continuity of J ,
and the fact that the norm ‖ · ‖M(Ωc,L2(I)) is weak-∗ lower semicontinuous.

Proposition 2.9. There exists an optimal solution ū ∈ M(Ωc, L
2(I)) to (P)

with corresponding optimal state ȳ = S(y0, ū) ∈ Y s.

Proof. We follow classical arguments: Since J : L2(I × Ω) → R is bounded from
below we can construct a minimizing sequence un. Since the unit ball in M(Ωc, L

2(I))
is weak-∗ compact and

‖un‖M(Ωc,L2(I)) ≤ 1
α j(un) ≤ c,

we can extract a weak-∗ convergent subsequence un ⇀
∗ ū (existence of such a subse-

quence is guaranteed by the sequential version of the Banach–Alaoglu theorem since
C0(Ωc, L

2(I)) is separable). Then we apply Lemma 2.8 to complete the proof.
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It is clear that the reduced cost functional is convex. Additionally, since the
functional J is strictly convex on L2(I ×Ωo), we easily see that the observation χΩo ȳ
is unique. Therefore, we can show that each optimal control will have the same
cost and lead to the same observed effect on the state variable. Similarly to the
discussion in [28, Section 6], we distinguish two characteristic cases where the first
is “full observation,” which means Ωc ⊂ Ωo, and the second is “disjoint control and
observation,” i.e., dist(Ωo, Ωc) > 0. Uniqueness can only be generically guaranteed in
the former case.

Proposition 2.10. If Ωc ⊂ Ωo the optimal solution ū to (P) is unique.

Proof. Under these conditions, the control to observation mapping u �→ χΩoy is
injective, and uniqueness of ū follows from uniqueness of χΩo ȳ.

2.4. Optimality system. We can characterize optimality of ū in the following
way.

Theorem 2.11. There exists a unique adjoint state p̄ ∈ Xs′ , which for any
optimal solution ū of (P) and associated state ȳ = S(y0, ū) fulfills the adjoint equation

(2.13) −∂tp̄+A∗p̄ = χ∗
Ωo

(ȳ − yd), p̄(T ) = 0,

and the subgradient condition

(2.14) −〈u− ū, χΩc p̄〉+ α‖ū‖M(Ωc,L2(I)) ≤ α‖u‖M(Ωc,L2(I))

holds for all u ∈ M(Ωc, L
2(I)). The subgradient condition implies

(2.15) ‖p̄(x)‖L2(I) ≤ α for all x ∈ Ωc.

Proof. The objective function j is the sum of a differentiable and a convex lower
semicontinuous function. By the subdifferential calculus of convex optimization (see,
e.g., [13, Section 5.3]), we obtain for any optimal solution

0 ∈ ∂j(ū) = χΩc p̄+ α ∂‖ · ‖M(Ωc,L2(I))(ū) in M(Ωc, L
2(I))∗,

where p̄ = S�(J ′(S(y0, ū))) is the adjoint state and ∂‖ · ‖M(Ωc,L2(I))(ū) is the convex
subdifferential of the norm at the optimal control. By construction p̄ fulfills (2.13).
Writing out the subgradient condition −χΩc p̄ ∈ α∂‖ · ‖M(Ωc,L2(I))(ū), we obtain
(2.14). Choosing now u = ū− v in (2.14), we derive

〈v, χΩc p̄〉 ≤ α(‖ū− v‖M(Ωc,L2(I)) − ‖ū‖M(Ωc,L2(I))) ≤ α‖v‖M(Ωc,L2(I))

for all v ∈ M(Ωc, L
2(I)). Therefore, by the fact that ‖ϕ‖M(Ωc,L2(I))∗ = ‖ϕ‖C0(Ωc,L2(I))

for all ϕ ∈ C0(Ωc, L
2(I)) we derive

(2.16) ‖χΩc p̄‖C0(Ωc,L2(I)) = sup
v∈M(Ωc,L2(I))

〈v, χΩc p̄〉
‖v‖M(Ωc,L2(I))

≤ α,

which proves (2.15).
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From the variational inequality (2.14) we can derive additional properties of the
optimal control.

Theorem 2.12. Let ū be an optimal solution to (P) and p̄ = S�(J ′(S(y0, ū)))
the corresponding adjoint state. Then we have

supp|ū| ⊆
{
x ∈ Ωc

∣∣ ‖p̄(x)‖L2(I) = α
}
,(2.17)

ū′ = − 1
αχΩc p̄ in L1(Ωc, |ū|, L2(I)),(2.18)

where dū = ū′ d|ū| is the polar decomposition.
Proof. Choose u = ū+ ū = 2ū in (2.14). As before this results in

−〈ū, χΩc p̄〉 ≤ α‖ū‖M(Ωc,L2(I)).

We obtain the reverse inequality by choosing u = ū− ū = 0, which implies

−〈ū, χΩc p̄〉 = α‖ū‖M(Ωc,L2(I)) =

∫
Ωc

α d|ū|.

Applying the polar decomposition and reordering we obtain

(2.19)

∫
Ωc

(
α+ (ū′(x), p̄(x))L2(I)

)
d|ū|(x) = 0.

With the Cauchy–Schwarz inequality and the conditions (2.3) and (2.16) we obtain

(2.20) −(ū′(x), p̄(x))L2(I) ≤ ‖ū′(x)‖L2(I)‖p̄(x)‖L2(I) ≤ α

for |ū|-almost all x ∈ Ωc, which means that the integrand in (2.19) is nonnegative.
Therefore it must be zero almost everywhere, i.e.,

−(ū′(x), p̄(x))L2(I) = α for |ū|-almost all x ∈ Ωc.

Considering again (2.20), we see that equality can only hold if the conditions

‖p̄(x)‖L2(I) = α and p̄(t, x) = −αū′(t, x)

hold for |ū|-almost all x ∈ Ωc and almost every t ∈ I. This proves (2.18). From the
first identity, we can derive (2.17) using basic measure theoretic arguments: Define
the function f : Ωc → R+, f(x) = α − ‖p̄(x)‖L2(I), which is positive and continuous

due to p̄ ∈ Xs′ ↪→ C0(Ωc, L
2(I)). Furthermore, it fulfills

∫
Ωc
f(x) d|ū|(x) = 0. We can

easily argue that supp|ū| must be a subset of the zero set { x ∈ Ωc | f(x) = 0 }, for
instance, by a contradiction argument.

If we consider the optimal ū as a variable of time with (2.5) we can infer from
Theorem 2.12 that

supp|ū(t)| ⊆ supp|ū| ⊆ { x ∈ Ω | ‖p̄(x)‖L2(I) = α }

for almost all t ∈ I, where |u(t)| is the total variation measure of the signed measure
u(t) ∈ M(Ω), which means that the sparsity pattern is constant over time. Further-
more we can identify a characteristic special case.

Corollary 2.13. Suppose that equality in (2.15) is only achieved in a finite
collection of points, { x ∈ Ωc | ‖p̄(x)‖ = α } = { xi }i=1,...,N. Then ū is given by a sum
of point sources, ū =

∑
i=1,...,N ui δxi , where ui ∈ L2(I).
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Proof. We infer from (2.17) that |ū| =
∑

i=1,...,N ciδxi for some positive coefficients

ci ≥ 0. Then the time dependent coefficients ui ∈ L2(I) are given due to (2.18) by
the formula ui(t) = ciū

′(t, xi) = − ci
α p̄(t, xi).

2.5. Comparison. Let us compare conditions (2.18) and (2.17) with the opti-
mality system obtained for the problem

(2.21) min J(S(y0, u)) + α‖u‖L2(I,M(Ωc))

analyzed in [8], where the order of integration for the control cost term is reversed.
We recall the inclusion (2.4), which is strict, i.e.,

M(Ωc, L
2(I)) � L2(I,M(Ωc)).

For problem (2.21) the optimality condition [8, Theorem 3.3] implies that for almost
every t ∈ I

supp|u(t)| ⊆
{
x ∈ Ωc

∣∣ |p(t, x)| = ‖p(t)‖C0(Ωc)

}
,

which means that the support of u(t) is variable over time. Note, that this implies
significantly lower regularity for problem (2.21) in comparison with problem (P) under
consideration. For instance, a regularity result such as ū ∈ C(I,M(Ωc)) for the
solution of (P) (cf. Theorem 3.7 in section 3.1), cannot be expected for (2.21). Indeed,
it is false for problem (2.21). We just have to consider as an example the measure
u ∈ L2(I,M(Ω)), u �∈ M(Ω,L2(I)) with I = Ω = (0, 1), defined by

(2.22) u(t) = g(t)δt

with a nontrivial smooth function g with g(1) = 0. Here, the Dirac delta function
moves in space as time increases. Choosing A as the negative Laplacian with homoge-
neous Neumann boundary conditions it is possible to construct a desired state yd such
that the optimal solution of (2.21) is given by (2.22). The construction is analogous
to the one given in section 5.1.

3. Discretization and numerical analysis. In this section, we consider A to
be the negative Laplacian with zero Dirichlet boundary conditions

A = −Δ: W 1,s
0 (Ω) →W−1,s(Ω)

on a two-dimensional polygonal and convex domain Ω ⊂ R2. With respect to our
previous notation we have now the special case Γ = ∅. Therefore Ωc is required to
be a relatively closed subset of Ω, for instance, Ωc = Ω is valid. We remark that
most of the following regularity results can be generalized in a suitable way to the
general case and to three dimensions. Some of the finite element estimates employed
in section 3.3 are, however, only available for d = 2 and the following techniques are
in some cases restricted to two dimensions. We require that the desired state fulfills

(3.1) yd ∈ L2(I, L∞(Ωo)),

which is only slightly stronger than the natural regularity we can obtain for the state;
see Proposition 3.1. Additionally, for the convergence analysis we will suppose that
Ωc is the union of polygons; see (3.8) below for the precise meaning.
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3.1. Precise regularity. For a right-hand side u ∈ M(Ωc, L
2(I)), the state

y = S(y0, u) has the regularity

y ∈ L2(I,W 1,s
0 (Ω)) ∩H1(I,W−1,s(Ω))

for any s < 2; see Theorem 2.5. Additionally, we obtain the following regularity.
Proposition 3.1. The state solution y = S(y0, u) lies in the space L2(I, Lq(Ω))

for any q ∈ [1,∞) with the a priori estimate

(3.2) ‖y‖L2(I,Lq(Ω)) ≤ c q (‖u‖M(Ωc,L2(I)) + ‖y0‖L2(Ω))

with a constant c independent of q.
Proof. We use the Sobolev embedding theorem and argue as in [23, Proposition

2.1] to obtain the dependence of the constant on q in (3.2).
Proposition 3.2. The state y is continuous in time in the sense that

(3.3) y ∈ C(Ī , (W 1,s
0 (Ω),W−1,s(Ω)) 1

2 ,2
) ↪→ C(Ī ,W−ε,s(Ω))

for any s < 2 and ε > 0, where (W 1,s
0 (Ω),W−1,s(Ω)) 1

2 ,2
is an interpolation space.

Proof. The result follows by an application of the trace theorem [2, Theorem III
4.10.2] and we refer to [32, Theorem 4.6.1] for the embedding of the interpolation
space.

Remark 3.3. With methods as in [12, Theorem 2.4], where a single point source
is considered, we can show that

y ∈ L∞(I, Ls(Ω))

for any s < 2. Furthermore the mapping t �→ y(t) ∈ Ls(Ω) is continuous with respect
to the weak topology in Ls(Ω).

For the adjoint state we can obtain improved regularity as well.
Lemma 3.4. Let f ∈ L2(I, L2(Ω)). The solution to the dual equation

(3.4) −∂tp−Δp = f, p(T ) = 0

lies in the space L2(I,H2(Ω))∩H1(I, L2(Ω)) and C(Ī , H1
0 (Ω)) with the corresponding

estimate

‖∂tp‖L2(I,L2(Ω)) + ‖p‖L2(I,H2(Ω)) + ‖p‖C(Ī,H1
0 (Ω)) ≤ c ‖f‖L2(I×Ω).

Proof. This can be proved by combining well-known techniques for parabolic
equations (see, e.g., [14]), with an elliptic regularity result for convex polygonal do-
mains (see [17]).

With assumption (3.1) and Proposition 3.1 the right-hand side of the adjoint
equation (2.13) is even in L2(I, Lq(Ω)) for any q < ∞. If we consider the dual
equation (3.4) for an arbitrary f ∈ L2(I, Lq(Ω)) we obtain that

(3.5) ∂tp, Δp ∈ L2(I, Lq(Ω)),

using maximal parabolic regularity; see [16]. However, from this we cannot in general
infer L2(I,W 2,q(Ω)) regularity without further assumptions on ∂Ω. Nevertheless, we
can obtain this regularity locally in the interior of the domain.
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Lemma 3.5. Let γ > 0 and

Ωγ = { x ∈ Ω | dist(x, ∂Ω) > γ }.

Then we obtain for any solution of (3.4) with f ∈ L2(I, Lq(Ω)) that

(3.6) p|I×Ωγ ∈ L2(I,W 2,q(Ωγ)) ∩H1(I, Lq(Ωγ)),

where q ∈ [1,∞), with the a priori estimate

‖p‖L2(I,W 2,q(Ωγ)) + ‖∂tp‖L2(I,Lq(Ωγ)) ≤ c q (‖f‖
L2(I,Lq(Ω

γ
2 ))

+ γ−1‖f‖L2(I,L2(Ω))).

Proof. See, for instance, [23, Lemma 2.2], where this is shown for any ballB ⊂ Ωγ .
The result follows since Ωγ can be covered by finitely many balls B ⊂ Ω

γ
2 .

By applying this to the optimal adjoint state p̄ and interpolating between both
spaces from Lemma 3.5 with θ = 1− ε we obtain

(3.7) p̄ ∈ H1−ε(I, C(Ωγ))

for all ε > 0; see [3, Theorem 5.2]. Here we have used the compact embedding
(W 2,q(Ωγ), Lq(Ωγ))1−ε,2 ↪→ C(Ωγ). With the help of the optimality conditions, we
can now derive additional regularity for the optimal controls.

Proposition 3.6. There exists γ > 0 such that

supp ū ⊂ Ωc ∩Ωγ = { x ∈ Ωc | dist(x, ∂Ω) > γ },

where the constant γ depends only on Ω, Ωo, Ωc, the parameter α, and yd.
Proof. With Lemma 3.4 we have p̄ ∈ L2(I,H2(Ω)) ↪→ L2(I, Cδ(Ω̄)) for any

0 < δ < 1 and therefore

‖p̄(x)− p̄(x+ h)‖L2(I) ≤
[ ∫

I

(
sup
ξ∈Ω̄

|p̄(t, ξ) − p̄(t, ξ + h)|
)2

dt

] 1
2

≤ c|h|δ

for all x, x + h ∈ Ω̄, i.e., p̄ ∈ Cδ(Ω̄, L2(I)). The result now follows from the sparsity
property of the support (2.17) and the zero Dirichlet boundary conditions. We have

p̄(x) = 0 for all x ∈ ∂Ω and can therefore choose γ < ( α
2c )

1
δ to finish the proof.

Theorem 3.7. With assumption (3.1), we obtain the additional regularity

ū ∈ H1−ε(I,M(Ωc))

for all ε > 0.
Proof. Using dū = u′ d|u| = − 1

αχΩc p̄ d|ū| we have that

‖ū(t1)− ū(t2)‖M(Ωc) = sup
‖ϕ‖C0(Ωc)=1

〈ū(t1)− ū(t2), ϕ〉

= sup
‖ϕ‖C0(Ωc)=1

∫
Ωc

1
αϕ (p̄(t2)− p̄(t1)) d|ū| ≤ 1

α‖p̄(t2)− p̄(t1)‖C0(Ωc∩Ωγ) |ū|(Ωc)

due to Proposition 3.6. Therefore

‖ū(t1)− ū(t2)‖M(Ωc)

(t1 − t2)
1
2+1−ε

≤ 1
α‖ū‖M(Ωc,L2(I))

‖p̄(t2)− p̄(t1)‖C0(Ωc∩Ωγ)

(t1 − t2)
1
2+1−ε

.

With the regularity (3.7) for p̄, the expression on the right is in L2(I × I) which
implies the claim.
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3.2. Discretization. We discretize the state variable y with (linear) finite ele-
ments in space and discontinuous finite elements (of order r ≥ 0) in time:

ykh ∈ Xr
k(I, Vh) ⊂ L2(I,H1

0 (Ω)).

Here Vh ⊂ H1
0 (Ω) is the space of linear finite elements on a family of shape regular

quasi-uniform triangulations { Th }h; see, e.g., [6]. The finite element space associated
with Th is defined as usual by

Vh = { vh ∈ C0(Ω) | vh|K ∈ P1(K) for K ∈ Th }.

The discretization parameter h denotes the maximal diameter of cells K ∈ Th. Fur-
thermore, we suppose that Ωc can be written as the union of a collection of cells or
faces of Th for all Th. In other words, if T̃h is the collection of all cells, line segments,
or points, there is a subset T̃ c

h ⊆ T̃h such that

(3.8) Ωc =
⋃

K∈T̃ c
h

K̄

for any h; cf. [28, section 6]. For the time discretization we define for any Banach
space V the semidiscrete space

Xr
k(I, V ) =

{
vk ∈ L2(I, V )

∣∣ vk|Im ∈ Pr(Im, V ), m = 1, 2, . . . ,M
}

as discontinuous, Banach space valued, piecewise polynomial functions on the disjoint
partition of the temporal interval

Ī = { 0 } ∪ I1 ∪ I2 ∪ . . . ∪ IM ,

where Im = (tm−1, tm] and 0 = t0 < t1 < · · · < tM = T . By km = tm − tm−1 we
denote the step length and by k = maxm km the maximum thereof. We employ the
notation

w−
m = lim

ε→0+
w(tm − ε), w+

m = lim
ε→0+

w(tm + ε), [w]m = w+
m − w−

m

for the left- and right-sided limits and the jump term (for any w where these limits
are defined).

The discretized state equation is then given with the bilinear form

(3.9) B(y, ϕ) =
M∑

m=1

〈∂ty, ϕ〉Im + (∇y,∇ϕ)I +
M−1∑
m=1

([y]m, ϕ
+
m) + (y+0 , ϕ

+
0 ),

defined for y, ϕ ∈ Xr
k(I, Vh). The distributional derivative of a discrete function

∂tykh|Im is defined as the classical derivative of the polynomial (and vanishes for
r = 0). The duality pairing 〈· , ·〉Im denotes the pairing of L2(Im,W

−1,s
Γ (Ω)) with

its dual. Therefore this definition can be extended to y ∈ Xr
k(I, Vh) + Y s and ϕ ∈

Xr
k(I, Vh) + Xs′ . Furthermore, by applying integration by parts to (3.9) we obtain

the equivalent dual formulation

(3.10) B(y, ϕ) = −
M∑

m=1

〈y, ∂tϕ〉Im + (∇y,∇ϕ)I +
M−1∑
m=1

(−y−m, [ϕ]m) + (y−M , ϕ
−
M ).
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Then for any right-hand side u ∈ M(Ωc, L
2(I)) the discrete dG(r)cG(1) formulation

of the state equation for the discretized state ykh ∈ Xr
k(I, Vh) is given as

(3.11) B(ykh, ϕkh) = 〈u, χΩcϕkh〉+ (y0, ϕ
+
kh,0)

for all ϕkh ∈ Xr
k(I, Vh). Since the right-hand side is a linear functional on the discrete

solution space, existence of a unique solution can be derived with standard arguments
(see [31]). Therefore, we can define a discrete solution operator with ykh = Skh(u) =
Skh(y0, u). This operator and the bilinear form B are compatible with the continuous
state solution y = S(u) in the sense that

(3.12) B(y, ϕ) = 〈u, χΩcϕ〉+ (y0, ϕ
+
0 )

for any ϕ ∈ L2(I,W 1,s′
0 (Ω)) with s′ > 2 such that the limits ϕ+

m for m = 0, . . . ,M − 1

are well-defined in W ε,s′(Ω) for some ε > 0. This follows from the state equa-
tion (2.11) since the jump terms in (3.9) vanish due to Proposition 3.2. With this we
can verify the Galerkin orthogonality

(3.13) B(y − ykh, ϕkh) = 0

for all ϕkh ∈ Xr
k(I, Vh) and therefore ykh is also referred to as the Galerkin projection

of y. We can now formulate a semidiscrete version of (P) by replacing the contin-
uous state equation (2.11) with the discrete equation (3.11), i.e., we formulate the
semidiscrete problem as

min
u∈M(Ωc,L2(I))

jkh(u) = J(Skh(u)) + α‖u‖M(Ωc,L2(I)).(Ps
kh)

With the same methods as in the continuous case (cf. Proposition 2.9), we can prove
the following results.

Proposition 3.8. The semidiscrete problem (Ps
kh) possesses an optimal solution

ũ ∈ M(Ωc, L
2(I)).

Proposition 3.9. Let ũ be an optimal solution of (Ps
kh) and ȳkh = Skh(ũ)

the corresponding optimal state. There exists a unique discrete adjoint state p̄kh ∈
Xr

k(I, Vh) solving the adjoint equation

(3.14) B(ϕkh, p̄kh) = (ȳkh − yd, χΩoϕkh)

for all ϕkh ∈ Xr
k(I, Vh) and fulfilling the subgradient condition

(3.15) −〈u− ũ, χΩc p̄kh〉+ α‖ũ‖M(Ωc,L2(I)) ≤ α‖u‖M(Ωc,L2(I))

for all u ∈ M(Ωc, L
2(I)). We alternatively express the first condition (3.14) by

p̄kh = S∗
kh(J

′(ȳkh)).
Since Skh has a infinite-dimensional kernel, the solutions to (Ps

kh) cannot be
expected to be unique. Therefore, as in [7, 8], we now construct an appropriate
subspace of M(Ωc, L

2(I)) with the same approximation properties. By {xn}, n =
1, 2 . . . , Nc we denote the nodes of the triangulation Th contained in Ωc and by {en} ⊂
Vh the corresponding Lagrangian nodal basis functions. We introduce the space Mh

consisting of linear combination of Dirac functionals δn = δxn associated with the
nodes xn

Mh = span { δn | n = 1, . . . , Nc }.
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A suitable interpolation operator is now defined by the relations

(3.16)
Λkh : M(Ωc, L

2(I)) → Xr
k(I,Mh),

〈Λkhu, ϕ〉 = 〈u, χΩc πkihϕ〉 for all ϕ ∈ C0(Ωc, L
2(I)),

where ih : C(Ω̄, L2(I)) → L2(I, Vh) is the nodal interpolation operator and πk is the
L2 projection on Xr

k(I, L
2(Ω)) ⊂ L2(I × Ω). The interpolation operator ih is given

by

(ihw)(x) =

Nc∑
n=1

w(xn) en(x) for x ∈ Ωc.(3.17)

We can check that for any w ∈ C0(Ωc, L
2(I)) the projection πk has the pointwise

formula

(πkw)(x) =

M(1+r)∑
i=1

∫
I

ψi(t)w(t, x) dt ψi = π̃k(w(x)) for x ∈ Ωc,(3.18)

where ψi is an orthonormal basis ofXr
k(I,R) with respect to the inner product in L2(I)

and π̃k is the L2 projection in L2(I) onto Xr
k(I,R). Therefore πk and ih commute

and we have for w ∈ C0(Ωc, L
2(I))

ih(πk(w)) = πk(ih(w)) =

Nc∑
n=1

M(1+r)∑
i=1

∫
I

ψi(t)w(t, xn) dt ψi en,

which implies

Λkhu =

Nc∑
n=1

M(1+r)∑
i=1

〈u, ψi en〉ψi δn.

Remark 3.10. In the case r = 0 we take the piecewise constant functions ψm =

k
−1/2
m χIm as a suitable orthonormal basis for Xr

k(I,R). In this case the operator Λkh

can be written as

Λkhu =

Nc∑
n=1

M∑
m=1

1

km

∫
Im

〈u(t), en〉dt χIm δn,

which is the same as given in [8, Theorem 4.2].
Lemma 3.11. For any u ∈M(Ωc, L

2(I)) we have

〈Λkhu, ϕkh〉 = 〈u, ϕkh〉

for all ϕkh ∈ Xr
k(I, Vh) and

‖Λkhu‖M(Ωc,L2(I)) ≤ ‖u‖M(Ωc,L2(I)).

Proof. The first property is immediately clear from the definition since
χΩc(πkihϕkh) = χΩc(ihϕkh) = χΩcϕkh due to (3.8). Furthermore we have

(πk(ihϕ))(x) = π̃k((ihϕ)(x))
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for all x ∈ Ωc by (3.18) and since π̃k is an orthogonal projection we get

‖π̃k((ihϕ)(x))‖L2(I) ≤ ‖(ihϕ)(x)‖L2(I) ≤ ‖ϕ‖C0(Ωc,L2(I))

for all x ∈ Ωc by (3.17). With this,

‖πk(ihϕ)‖C0(Ωc,L2(I)) ≤ ‖ϕ‖C0(Ωc,L2(I))

is evident and by the duality M(Ωc, L
2(I)) = C0(Ωc, L

2(I))∗,

‖Λkhu‖M(Ωc,L2(I)) = sup
ϕ∈C0(Ωc,L2(I))

〈Λkhu, ϕ〉
‖ϕ‖C0(Ωc,L2(I))

,

and the definition of Λkh (3.16) we obtain the second property.
By arguments as in [7] it immediately follows that we can restrict the space for

the optimal controls to Xr
k(I,Mh).

Proposition 3.12. The semidiscrete solution operator Skh : M(Ωc, L
2(I)) →

Xr
k(I, Vh) fulfills Skh = Skh ◦ Λkh and for each optimal solution ũ ∈ M(Ωc, L

2(I))
of (Ps

kh) the discrete control ūkh = Λkhũ ∈ Xr
k(I,Mh) fulfills

jkh(ũ) = jkh(ūkh).

Thus, ūkh = Λkhũ is also an optimal solution of (Ps
kh).

Therefore, in the following, it suffices to consider the fully discrete problem

(Pkh) min
ukh∈Xr

k(I,Mh)
jkh(ukh) = J(Skh(ukh)) + α‖ukh‖M(Ωc,L2(I)),

which can be solved in practice. Note, that for this problem the same optimality
system holds as in Proposition 3.9, where we are allowed to insert any control from
M(Ωc, L

2(I)) in the subgradient condition (3.15), instead of only discrete controls.
This is a direct consequence of Proposition 3.12 and will be important for the following
error analysis.

3.3. Error analysis for the state. For the error analysis, we restrict attention
to dG(0), which is a variant of the implicit Euler method. This restriction arises since
we employ optimal estimates for the dG(r)cG(1) method in the L∞(Ω,L2(I)) norm,
which are not considered in the standard finite element literature. These estimates
were obtained recently for two dimensions in [23] in the case r = 0.

Define ik : C(Ī, V ) → X0
k(I, V ) as the pointwise interpolation at the right time

point in each interval

(3.19) ikw =

M∑
m=1

w(tm)χIm ,

where χIm is the indicator function of the interval Im. We can obtain the following
interpolation estimates for ik.

Lemma 3.13. For any w = S�(f) with f ∈ L2(I, L2(Ω)) we have

‖w − ikw‖L2(I,L2(Ω)) ≤ c k‖f‖L2(I,L2(Ω)),(3.20)

‖w − ikw‖L2(I,H1
0 (Ω)) ≤ c k

1
2 ‖f‖L2(I,L2(Ω)).(3.21)
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Proof. First, we note that ikw is in L2(I,H1
0 (Ω)) since w ∈ C(Ī , H1

0 (Ω)) by
Lemma 3.4. The interpolation estimates can be obtained with standard techniques
and are given in Appendix A.

In the following estimates we are going to apply the best approximation properties
obtained in [23, Theorems 3.1, 3.5].

Theorem 3.14 (best approximation). Let w = S�(f) be an adjoint solution and
wkh = S∗

kh(f) its Galerkin projection for some f ∈ L2(I, L2(Ω)) and 1 ≤ q ≤ ∞.
Then we have for every x ∈ Ω that

‖w(x) − wkh(x)‖2L2(I)

≤ c|ln h|2 inf
χ∈X0

k(I,Vh)

∫
I

‖w(t)− χ(t)‖2L∞(Ω) + h−
4
q ‖ikw(t)− χ(t)‖2Lq(Ω) dt.

Furthermore, for x ∈ Ωγ with γ > 4h > 0 we have the local estimate

‖w(x)− wkh(x)‖2L2(I)

≤ c|lnh|3 inf
χ∈X0

k(I,Vh)

∫
I

‖w(t)− χ(t)‖2L∞(Bγ (x))
+ h−

4
q ‖ikw(t) − χ(t)‖2Lq(Bγ(x))

dt

+ c γ−2|lnh|
∫
I

‖w(t)− wkh(t)‖2L2(Ω) dt.

With this we can prove the following a priori error estimates.

Theorem 3.15. Let y = S(y0, u) and its Galerkin projection ykh = Skh(y0, u)
for arbitrary u ∈ M(Ωc, L

2(I)) and y0 ∈ H1
0 (Ω). Then we have the a priori estimate

‖y − ykh‖L2(I×Ω) ≤ c|lnh|2(k 1
2 + h)

(
‖u‖M(Ωc,L2(I)) + ‖y0‖H1(Ω)

)
.(3.22)

If additionally the measure is supported in the interior of the domain, i.e., suppu ⊂
Ωγ for some γ > 0, we obtain the improved estimate in a weaker norm

‖y − ykh‖L2(I,L1(Ω)) ≤ c γ−1|lnh|
5
2 (k + h2)

(
‖u‖M(Ωc,L2(I)) + ‖y0‖H1(Ω)

)
.(3.23)

Proof. Consider that y = S(y0, 0) + S(0, u) and ykh = Skh(y0, 0) + Skh(0, u). We
have S(y0, 0) ∈ L2(I,H2(Ω)) ∩H1(I, L2(Ω)) and the corresponding error estimate

‖S(y0, 0)− Skh(y0, 0)‖L2(I,L2(Ω)) ≤ c (k + h2)‖y0‖H1(Ω)

can be found, e.g., in [26]. Without restriction, we suppose y0 = 0 in the following
and employ a duality argument. Define the error e = y − ykh and introduce

g2 = e ∈ L2(I, L2(Ω)),

g1 = ‖e(t)‖L1(Ω) sgn e(t, x) ∈ L2(I, L∞(Ω))

for the first and second estimate, respectively. For l ∈ { 1, 2 } we define the auxiliary
dual variable w = S�(gl) and its Galerkin projection wkh = S∗

kh(gl). We can verify
that B(ϕ,w) = (ϕ, gl)I holds for any ϕ ∈ L2(I,W 1,s(Ω)) with ϕ−

m ∈ H−1(Ω) for
m = 1, . . . ,M , since the jump terms in the dual description of the bilinear form (3.9)
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vanish due to Lemma 3.4. We rewrite the error using this identity for w, Galerkin
orthogonality for y (see (3.13)), Galerkin orthogonality for w, and (3.12) to obtain

(3.24) ‖y − ykh‖2L2(I,Ll(Ω)) = (y − ykh, gl)I = B(y − ykh, w)

= B(y − ykh, w − wkh) = B(y, w − wkh)

= 〈u, χΩc(w − wkh)〉 ≤ ‖u‖M(Ωc,L2(I))‖w − wkh‖C0(Ωc,L2(I)).

In the following, we estimate the last term.
For the first estimate, where l = 2, we apply the global best approximation

property from Theorem 3.14 with the choice χ = πhikw, where ik is the pointwise
interpolation defined in (3.19) and πh : L

1(Ω) → Vh is the Clément interpolation; see,
e.g., [4]. This results in

(3.25) ‖w − wkh‖C0(Ωc,L2(I))

≤ c|lnh|
(
‖w − πhikw‖L2(I,L∞(Ω)) + h−

2
q ‖ik(w − πhw)‖L2(I,Lq(Ω))

)
,

where we choose any q <∞. The first term is further estimated by

‖w − πhikw‖L2(I,L∞(Ω)) ≤ ‖w − πhw‖L2(I,L∞(Ω)) + ‖πh(w − ikw)‖L2(I,L∞(Ω))

≤ c h‖w‖L2(I,H2(Ω)) + c h−
2
q ‖πh(w − ikw)‖L2(I,Lq(Ω))

with an interpolation estimate for the Clément interpolation and an inverse estimate
with the same q as above. With the stability of the Clément interpolation in Lq(Ω)
and the Sobolev embedding we obtain

‖πh(w − ikw)‖L2(I,Lq(Ω)) ≤ c ‖w − ikw‖L2(I,Lq(Ω)) ≤ c q ‖w − ikw‖L2(I,H1
0 (Ω));

see, e.g., [1, Theorem 8.8] for the dependence of the embedding constant on q < ∞.
With Lemma 3.13 we then get the estimate

‖πh(w − ikw)‖L2(I,Lq(Ω)) ≤ c q k
1
2 ‖g2‖L2(I,L2(Ω)).

The second term in (3.25) is estimated by the triangle inequality

‖ik(w − πhw)‖L2(I,Lq(Ω))

≤ ‖ikw − w‖L2(I,Lq(Ω)) + ‖w − πhw‖L2(I,Lq(Ω)) + ‖πh(w − ikw)‖L2(I,Lq(Ω)).

The single terms are treated as before and we arrive at

‖w − wkh‖C0(Ωc,L2(I))

≤ c|lnh|
(
h‖w‖L2(I,H2(Ω)) + h−

2
q
(
q k

1
2 ‖g2‖L2(I,L2(Ω)) + h1+

2
q ‖w‖L2(I,H2(Ω))

))
.

Finally, with the choice q = |lnh| and Lemma 3.4 this implies

(3.26)
‖w − wkh‖C0(Ωc,L2(I)) ≤ c|lnh|

(
h+ q h−

2
q k

1
2

)
‖g2‖L2(I,L2(Ω))

≤ c|lnh|2
(
h+ k

1
2

)
‖y − ykh‖L2(I,L2(Ω)).

Combining (3.24) and (3.26) we obtain the result (3.22).
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The second estimate, where l = 1, can be obtained in a similar fashion using
the local estimate from Theorem 3.14 and choosing again χ = πhikw. Then we can
use the approximation properties of the Clément interpolation, Lemma 3.13, and
the regularity estimate from Lemma 3.5 for the first two terms and an L2 estimate
from [26] for the term ‖w − wkh‖L2(I×Ω). We get

(3.27)
‖w − wkh‖C0(Ωc,L2(I)) ≤ c γ−1|lnh| 12 (1 + qh−

2
q )(k + h2)‖g1‖L2(I,Lq(Ω))

≤ c γ−1|lnh| 32 (k + h2)‖y − ykh‖L2(I,L1(Ω))

with q = |lnh| as above and we obtain result (3.23). We omit a more detailed
argument since it is analogous to the one in [23, Theorem 4.1], where an estimate for
the special case u(t) = û(t)δx0 for some x0 ∈ Ω and û ∈ L2(I) is proved.

Remark 3.16. It is possible to derive a sharpened version of (3.22) without any
|lnh| term if we require a coupling of k and h of the form

k = ch2

for a constant independent of k and h; see [8, Theorem 4.6]. Whether we can im-
prove (3.22) without such a coupling is an open question to the best of our knowledge.
However, such an improvement alone would yield no improvement for the estimates
in section 3.4. Furthermore, such a strong coupling seems overly restrictive for an
implicit discretization scheme.

For the error analysis in the following section we need an additional stability
property of the space-time discretization.

Lemma 3.17. We have for every y0 ∈ L2(Ω) and u ∈ M(Ωc, L
2(I)) that

‖ykh‖L2(I,L∞(Ω)) ≤ c|lnh|(‖y0‖L2(Ω) + ‖u‖M(Ωc,L2(I))).

Proof. We start by applying the discrete Sobolev inequality

(3.28) ‖ykh‖2L2(I,L∞(Ω)) =

∫
I

‖ykh(t)‖2L∞(Ω) dt ≤ c|lnh|‖∇ykh‖2L2(I×Ω);

see [6, Lemma 4.9.1]. Now, we can add the primal and dual representation of the
bilinear form (3.9) and (3.10) with y = ϕ = ykh and divide by two to obtain

B(ykh, ykh) = (∇ykh,∇ykh)I + 1
2

M∑
m=1

‖[ykh]m‖2L2(Ω)+
1
2‖y

+
kh,0‖2L2(Ω)+

1
2‖y

−
kh,M‖2L2(Ω).

This allows us to estimate the L2(I,H1
0 (Ω)) seminorm in terms of the bilinear form

and then apply the definition of the discrete state equation (3.11) to obtain

(3.29)

‖∇ykh‖2L2(I×Ω) ≤ B(ykh, ykh)− 1
2‖y

+
kh,0‖2L2(Ω)

= 〈u, χΩcykh〉+ (y0, y
+
kh,0)− 1

2‖y
+
kh,0‖2L2(Ω)

= 〈u, χΩcykh〉 − 1
2‖y

+
kh,0 − y0‖2L2(Ω) +

1
2‖y0‖

2
L2(Ω)

≤ ‖u‖M(Ωc,L2(I))‖ykh‖L2(I,L∞(Ω)) +
1
2‖y0‖

2
L2(Ω).

Finally, we combine this with (3.28), use Young’s inequality to produce the term
1
2‖∇ykh‖2L2(I×Ω), bring it on the other side, and take the square root to finish the
proof.
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3.4. Error analysis for the optimal control problem. First we will consider
convergence of the functional values.

Lemma 3.18. For every optimal control ū or ūkh we have

(3.30) max
{
‖ū‖M(Ωc,L2(I)), ‖ūkh‖M(Ωc,L2(I))

}
≤ c (‖y0‖L2(Ω) + ‖yd‖L2(I×Ωo)).

Proof. For ūkh this is a consequence of the minimality, since

‖ūkh‖M(Ωc,L2(I)) ≤ 1
αJ(Skh(y0, 0)) ≤ 1

2α (‖Skh(y0, 0)‖L2(I×Ωo) + ‖yd‖L2(I×Ωo)).

The result follows by the stability estimate ‖Skh(y0, 0)‖L2(I×Ω) ≤ c‖y0‖L2(Ω) for the
dG(r)cG(1) method; see (3.29) for u = 0. The proof for ū is similar.

Theorem 3.19. Let ū ∈ M(Ωc, L
2(I)) be an optimal solution to (P) and ūkh ∈

X0
k(I,Mh) be a discrete optimal solution to (Pkh). We have for the associated optimal

functional values

|j(ū)− jkh(ūkh)| ≤ c γ−1|lnh|4(k + h2)(3.31)

with a constant c independent of k and h, where γ is the constant from Proposi-
tion 3.6.

Proof. Since we have

j(ū)− jkh(ū) ≤ j(ū)− jkh(ūkh) ≤ j(ūkh)− jkh(ūkh)

by minimality of ū and ūkh, and Proposition 3.12 we obtain

|j(ū)− jkh(ūkh)| ≤ max{|j(ū)− jkh(ū)|, |j(ūkh)− jkh(ūkh)|}.

Therefore we estimate the functional error j(u) − jkh(u) = J(S(u)) − J(Skh(u)) for
a fixed u ∈ M(Ωc, L

2(I)). We define y = S(u) and ykh = Skh(u) and by reordering
terms and applying Hölders inequality we get

|j(u)− jkh(u)| = 1
2 |(χΩo(y − ykh), y − ykh + 2ykh − 2yd)I |

≤ 1
2‖y − ykh‖2L2(I×Ω) + ‖y − ykh‖L2(I,L1(Ω))‖ykh − yd‖L2(I,L∞(Ω)).(3.32)

The terms which contain y − ykh are treated with estimates (3.22) and (3.23) from
Theorem 3.15, respectively. Furthermore we have

‖ykh − yd‖L2(I,L∞(Ω)) ≤ ‖yd‖L2(I,L∞(Ω)) + c|lnh|
(
‖y0‖L2(Ω) + ‖u‖M(Ωc,L2(I))

)
by Lemma 3.17 and (3.1). Together with Lemma 3.18 we have shown (3.31).

We also provide an error estimate for the optimal state solutions on the observa-
tion domain.

Theorem 3.20. Let ū ∈ M(Ωc, L
2(I)) be an optimal solution to (P) with asso-

ciate state ȳ = S(y0, ū) and ūkh ∈ X0
k(I,Mh) be a discrete optimal solution to (Pkh)

with ȳkh = Skh(y0, ūkh). With assumption (3.1) we have the estimate

‖ȳ − ȳkh‖L2(I×Ωo) ≤ c γ−
1
2 |lnh|2(k 1

2 + h),

where γ > 0 is the constant from Proposition 3.6.
Proof. We test the continuous subgradient condition (2.14) with the discrete

solution, and the discrete one (3.15) with the continuous solution (which is possible
due to Proposition 3.12), to obtain

−〈ūkh − ū, χΩc p̄〉+ α‖ū‖M(Ωc,L2(I)) ≤ α‖ūkh‖M(Ωc,L2(I)),

−〈ū− ūkh, χΩc p̄kh〉+ α‖ūkh‖M(Ωc,L2(I)) ≤ α‖ū‖M(Ωc,L2(I)).
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Adding both implies

−〈ūkh − ū, χΩc(p̄− p̄kh)〉 ≤ 0.

We introduce as auxiliary variables the Galerkin projections of ȳ and p̄ as ŷkh = Skh(ū)
and p̂kh = S∗

kh(χ
∗
Ωo

(ȳ − yd)). With this, we can reformulate the inequality above to

0 ≤ 〈ūkh − ū, χΩc(p̄− p̄kh)〉
= 〈ūkh − ū, χΩc(p̄− p̂kh)〉+ 〈ūkh − ū, χΩc(p̂kh − p̄kh)〉
= 〈ūkh − ū, χΩc(p̄− p̂kh)〉+ (ȳkh − ŷkh, χΩo(ȳ − ȳkh))

= 〈ūkh − ū, χΩc(p̄− p̂kh)〉+ (ȳ − ŷkh, χΩo(ȳ − ȳkh))− ‖ȳ − ȳkh‖2L2(I×Ωo).

We bring the last term above on the other side and treat the second with Young’s
inequality to obtain

1
2‖ȳ − ȳkh‖2L2(I×Ωo)

≤ 〈ūkh − ū, χΩc(p̄− p̂kh)〉+ 1
2‖ȳ − ŷkh‖2L2(I×Ωo)

≤ ‖ūkh − ū‖M(Ωc,L2(I))‖p̄− p̂kh‖C0(Ωc,L2(I)) +
1
2‖ȳ − ŷkh‖2L2(I×Ωo).

Since ‖ūkh−ū‖M(Ωc,L2(I)) can be bounded independently of k and h with Lemma 3.18
and the triangle inequality we obtain an estimate of the optimal state in terms of two
Galerkin projection errors:

‖ȳ − ȳkh‖2L2(I×Ωo)
≤ c (‖p̄− p̂kh‖C0(Ωc,L2(I)) + ‖ȳ − ŷkh‖2L2(I×Ωo)

).

For the second term on the right-hand side we apply Theorem 3.15 to obtain

‖ȳ − ŷkh‖2L2(I×Ωo)
≤ c |lnh|4(k + h2)

(
‖ū‖2M(Ωc,L2(I)) + ‖y0‖2H1(Ω)).

For the first term we argue as in Theorem 3.15 for estimate (3.27) to obtain

‖p̄− p̂kh‖C0(Ωc,L2(I)) ≤ c γ−1|lnh| 12 (1 + q h
2
q )(k + h2)‖ȳ − yd‖L2(I,Lq(Ωo)).

Then we use the regularity assumption on the desired state (3.1) and estimate (3.2)
from Proposition 3.1 for

‖ȳ − yd‖L2(I,Lq(Ωo)) ≤ ‖yd‖L2(I,L∞(Ωo)) + c q (‖ū‖M(Ωc,L2(I)) + ‖y0‖L2(Ω)).

Setting q = |lnh| and combining the above estimates we complete the proof.

4. Algorithmic treatment. To implement (P) numerically, we can choose to
develop a first or second order iterative scheme. Here we shall utilize a Newton
method. In a function space setting this necessitates an additional regularization,
which is introduced next. For ε > 0, which is chosen small relative to α, we search
for optimal controls in the Hilbert space L2(I ×Ωc); cf. [21]:

(Pε) min
u∈L2(I×Ωc)

jε(u) = J(S(y0, u)) + α‖u‖L1(Ωc,L2(I)) +
ε
2‖u‖

2
L2(I×Ωc).

For simplicity we exclude Ωc with complicated topology and only consider Ωc which is
the relative closure of an open set or a Lipschitz manifold (intersected with Ω∪Γ ). In
the first case Lq(Ωc) for q ∈ { 1, 2 } is to be understood with respect to the Lebesgue
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measure, in the second with respect to a Hausdorff measure. It is then clear that the
canonical embedding L1(Ωc, L

2(I)) ↪→ M(Ωc, L
2(I)) is isometric and therefore

‖u‖M(Ωc,L2(I)) = ‖u‖L1(Ωc,L2(I)) =

∫
Ωc

‖u(x)‖L2(I) dx

for u ∈ L1(Ωc, L
2(I)). We abbreviate the inner product in L2(I × Ωc) by (·, ·) and

recall that L1(Ωc, L
2(I))∗ = L∞(Ωc, L

2(I)). The problem (Pε) is investigated in [21],
where the following optimality system is obtained.

Theorem 4.1. Let ε > 0. Problem (Pε) possesses a unique optimal solution uε ∈
L2(I ×Ωc) with corresponding state yε = S(y0, uε) and adjoint state pε = S�(J ′(yε)).
The optimality is characterized by the subgradient condition

(4.1) −(u− uε, εuε + χΩcpε) + α‖uε‖L1(Ωc,L2(I)) ≤ α‖u‖L1(Ωc,L2(I))

for all u ∈ L1(Ωc, L
2(I)), which is equivalent to the “stripewise” projection formula

(4.2) uε(t, x) = −1

ε
max

(
0, 1− α

‖pε(x)‖L2(I)

)
pε(t, x)

for almost all (t, x) ∈ I × Ωc. This implies that supp|uε| is contained in the closure
of { x ∈ Ωc | ‖pε(x)‖L2(I) > α }.

The regularized problem (Pε) can be solved efficiently with a semismooth Newton
method, which admits a Banach space analysis; see [21, Theorem 3.7, Example 1.2].
Moreover, we obtain the original problem (P) in the limiting case for ε→ 0+.

Proposition 4.2. For ε → 0+ we have j(ū) ≤ jε(uε) → j(ū), where ū is
an (arbitrary) optimal solution of (P). Moreover, the sequence of solutions of (Pε)
contains an accumulation point in the sense of weak-∗ convergence and any such
accumulation point is an optimal solution of (P).

Proof. We observe that

(4.3) α‖uε‖M(Ωc,L2(I)) +
ε
2‖uε‖

2
L2(I×Ωc)

≤ jε(uε) ≤ J(S(y0, 0))

for all ε > 0, which implies that uε is bounded inM(Ωc, L
2(I)). Take any subsequence

converging in a weak-∗ sense (again denoted by uε) and denote the limit point by û.
With Lemma 2.7 and the compact embedding we have that yε = S(uε) ⇀ ŷ = S(û)
in Y s with strong convergence in L2(I × Ω) and pε = S∗(J ′(yε)) → p̂ = S∗(J ′(ŷ))
strongly in C0(Ω ∪ Γ,L2(I)). As in the proofs of Theorems 2.11 and 2.12 we can
obtain from the variational inequality (4.1) that

‖εuε + pε‖L∞(Ωc,L2(I)) ≤ α,(4.4)

α‖uε‖L1(Ωc,L2(I)) = −(uε, εuε + pε).(4.5)

With (4.3) we have ‖εuε‖L2(I×Ωc) → 0 for ε → 0 and therefore εuε + pε → p̂
in L2(I × Ωc). Since ‖ · ‖L∞(Ωc,L2(I)) is weakly lower semicontinuous this implies
‖p̂‖L∞(Ωc,L2(I)) ≤ α. Taking the limit in (4.5) shows

α‖û‖M(Ωc,L2(I)) ≤ lim inf
ε→0

−(uε, εuε + pε) ≤ lim sup
ε→0

−(uε, εuε + pε)

≤ lim sup
ε→0

−ε‖uε‖2L2(I×Ωc)
− lim

ε→0
〈uε, pε〉 ≤ −〈û, p̂〉,
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using weak-∗ convergence of uε and strong convergence of pε. The bound on p̂ and
this inequality imply the variational inequality

−〈u− û, p̂〉+ α‖û‖M(Ωc,L2(I)) ≤ α‖u‖M(Ωc,L2(I))

for all u ∈ M(Ωc, L
2(I)). Therefore −p̂ ∈ α∂‖ · ‖M(Ωc,L2(I))(û) and û is optimal (the

first order necessary conditions are sufficient since j is convex). It remains to consider
convergence of the functional values. We have

j(ū) ≤ jε(uε) = J(yε) + α‖uε‖L1(Ωc,L2(I)) +
ε
2‖uε‖

2
L2(I×Ωc)

= J(yε)− (uε, pε)− ε
2‖uε‖

2
L2(I×Ωc)

by (4.5) and with similar arguments as before we obtain

j(ū) ≤ lim sup
ε→0

jε(uε) ≤ j(û) = j(ū).

We have shown convergence of the functional values for a specific subsequence with
uε → û. The result for an arbitrary sequence follows by repeating the argument for
any given subsequence and noting that j(ū) is unique.

Motivated by this we will use the following procedure to compute ū in practice.
In an inner loop, we use the semismooth Newton method from [21] to compute the
minimizer uε for a small value of ε. Then we decrease ε by a constant factor, e.g.,
tenfold, and use the previous solution as an initial guess for the new iteration. In our
experiments the Newton method exhibited robust convergence in each iteration and
a globalization strategy was not needed.

5. Numerical examples. In this section we consider two examples, where one
is geared towards verification of the convergence results in section 3.4 and the other
is motivated by an application to inverse problems.

5.1. Order of convergence. We design an example for the specific setting in
section 3 with an explicit solution on the interval I = (0, T ) and the two-dimensional
domain Ω = Ωc = Ωo = (−1, 1) × (−1, 1). For the construction of the example the
optimal control is chosen as

ū(t) = T−2 (T − t) δ0

with a Dirac delta function in the origin. We can give the analytical solution ȳ of
∂ty − Δy = ū with zero Dirichlet boundary conditions; see Figure 1. It can be
represented by the series

(5.1) ȳ(t, x) =
∑

k∈Z,l∈Z

(−1)k+lG(t, x1 + 2k, x2 + 2l),

where x = (x1, x2)
t and G is the free space solution given by

G(t, x1, x2) =
1

4π T 2

((
r2

4 − T + t
)
Ei
(
− r2

4 t

)
+ te−

r2

4 t

)

and r =
√
x21 + x22 is the distance to the origin. The function Ei(s) =

∫∞
−s

e−h

h dh is
the exponential integral. The polar decomposition for ū = ū′|ū| is given by

ū′(t) =
√
3T− 3

2 (T − t) , |ū| = 1√
3
T− 1

2 δ0,
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Fig. 1. Snapshots of the exact state solution ȳ at x2 = 0 (for T = 0.1).

and a matching adjoint state p̄ which fulfills (2.14) and p̄(T ) = 0 can be chosen as

p̄(t, x) = −α
√
3T−3

2 (T − t) cos
(
π
2x1

)
cos

(
π
2x2

)
.

The reader may verify that this p̄ fulfills (2.15), (2.17), and (2.18). By inspection of
the adjoint equation (2.13) this determines the desired state yd to be

yd = ȳ + ∂tp̄+Δp̄

for which we can now derive an explicit formula by differentiating p̄.
We choose the final time as T = 0.1 and a relatively small parameter α = 0.01. For

the practical verification of the convergence results we compute the optimal solutions
ūkh, ȳkh on an equidistant time grid with M steps and with a uniform triangulation
of the square of different refinement levels. The series in (5.1) is approximated by
the first nine terms, which yield a pointwise accuracy of about 10−12. We use an
adapted iterated quadrature formula in space to evaluate the integrals containing the
singularity near x = 0 with sufficient accuracy. For the temporal integration, we
use the box rule. The convergence plots are given in Figure 2. We also plot the
corresponding rates of convergence as predicted in Theorems 3.19 and 3.20 without
the logarithmic factor. As we can see, the rates for the functional match the predicted
order of almostO(k) andO(h2), which are plotted for visual comparison. For the state
error we make this observation only in the case of refinement in space: Figure 2(b)
clearly shows a rate of O(h) in this case. For the case of time refinement, we seem
to observe in Figure 2(a) a slightly better rate than the predicted O(

√
k) (until the

spatial error starts to dominate from 128 time steps on). For this reason we give the
experimental orders of convergence in Table 1, which seem to indicate a possible rate
close to O(k0.8).

5.2. Reconstruction of a point source. In this section we discuss a practical
application of the abstract problem formulation to an inverse source problem. The
example falls slightly outside of the theoretical framework given in section 2 due to
an additional transport term in the parabolic equation, Robin boundary conditions,
and an objective functional involving boundary observation. However, the necessary
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(a) Time refinement on grid level 7.
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(b) Space refinement with 2048 time steps.

Fig. 2. Error plots of the optimal solutions.

Table 1

Time refinement on grid level 7 (as in Figure 2(a)).

Time steps |j(ū)− jkh(ūkh)| Rate ‖ȳ − ȳkh‖L2(I×Ω) Rate

2 3.458 · 10−3 – 5.543 · 10−2 –
4 1.527 · 10−3 1.17924 3.553 · 10−2 0.641629
8 7.160 · 10−3 1.09267 2.072 · 10−2 0.778014

16 3.470 · 10−4 1.04502 1.172 · 10−2 0.822051
32 1.714 · 10−4 1.01757 6.509 · 10−3 0.848465
64 8.569 · 10−5 1.00013 3.658 · 10−3 0.831381

128 4.316 · 10−5 0.98937 2.291 · 10−3 0.675078
256 2.193 · 10−5 0.97669 1.716 · 10−3 0.416928
512 1.131 · 10−5 0.95550 1.512 · 10−3 0.182591

modifications would be mainly of a technical nature. The state equation for the
example is a simplified model for the transport and diffusion of a pollutant y in a
lake, given as

(5.2)

∂ty − νΔy + b · ∇y = u in I ×Ω,

ν∂ny = 0 on I × ∂Ω \ Γin,

ν∂ny − n · b y = 0 on I × Γin,

⎫⎪⎬
⎪⎭

with initial condition y(0) = 0. The domain Ω describes the surface of the lake, the
inflow boundary Γin is a subset of ∂Ω, ν > 0 is a diffusion parameter, and b is assumed
to be a static, smooth, and divergence-free vector field (i.e., we assume the influence
of y on the flow b to be negligible). We additionally define an outflow boundary Γout

such that b has the property

n · b

⎧⎪⎨
⎪⎩
≤ 0 on Γin,

≥ 0 on Γout,

= 0 on ∂Ω \ (Γin ∪ Γout),
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Γin

Γout

Ω

Ωc

x0b(x)

b(x)

(a) Setup for (5.2). (b) Ω, Ωc, x̂1, and x̂2. (c) Coefficients û1 and û2.

Fig. 3. Inverse problem setup.

Fig. 4. Snapshots of the exact state ŷ at t = 2, 4, 6.

where n : ∂Ω → Rd is the outer normal. The source term u is assumed to consist of
a finite number of pointwise inflows

(5.3) û =
N∑
i=1

ûi(t)δx̂i

where x̂i ∈ Ωc are unknown locations and ûi(t) describes the unknown amount of
substance leaking into the lake at x̂i and time t. Furthermore we assume it is known
that x̂i ∈ Ωc, where Ωc is a line (e.g., a pipeline) intersecting Ω.

A schematic depiction of the setup and exemplary exact data is given in Figure 3.
Furthermore, the diffusion coefficient is chosen as ν = 0.002 and the vector field
b is given by the negative gradient of a potential v on Ω, which fulfills an elliptic
equation to guarantee the condition ∇ · b = 0 in the domain and inhomogeneous
Neumann boundary conditions according to the conditions on n · b on the boundary.
Corresponding snapshots for some t ∈ I = (0, 10) of the state solution corresponding
to the exact data are given in Figure 4.

For the inverse problem we have available only the concentration of y on the
outflow boundary in the form yobs = ŷ|I×Γout + δ, where ŷ is the solution of (5.2)
corresponding to the true source (5.3) and the noise term δ ∈ L2(I × Γout) stands for
an additional measurement error (which we will set to a deterministic function in our
numerical experiments). For the concrete example from Figure 4 the corresponding
observations are depicted in Figure 5.
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Fig. 5. Snapshots of the observation yobs on the observation boundary Γout (with and without
noise) at t = 2, 4, 6.

Fig. 6. Snapshots of the reconstructed ȳ at t = 2, 4, 6 for α = 0.5.

To give a reconstruction of the source û, we propose to solve the deterministic
inverse problem

min
u∈M(Ωc,L2(I))

1
2‖S(u)− yobs‖2L2(I×Γout)

+ α‖u‖M(Ωc,L2(I)),

where S(u) is the solution of (5.2) corresponding to u. This inverse problem formu-
lation is similar to the approach described in [5], if we would somehow replace the
Hilbert space L2(I) with RM for some M ∈ N. For the concrete example with the
depicted data we empirically determine α = 0.5 to be an appropriate regularization
parameter. The optimal state solution ȳ is visualized in Figure 6. For the numerical
realization we added a small L2 regularization term as described in section 4, with a
value of ε = 10−6 in the depicted simulation. Due to discretization and the additional
L2 regularization, the discrete ūkh does have not the structure as in (5.3) (for N = 2)
since it is the linear combination of more than two Dirac delta functions. As a post-
processing strategy, to obtain the visualization in Figure 7, we group all the connected
components of the grid points in the support of ūkh and identify each of them with
a central point x̃i of the component. In the concrete case we have exactly two com-
ponents. Then we identify the spatial part of the of ūkh with |ūkh| ≈

∑
i=1,2 ciδx̃i ,

where the ci is the sum over all coefficients of |ūkh| in each component. From the
optimality condition (2.18) we derive a reconstruction of the coefficients of the form
ũi(t) = − ci

α p̄kh(t, x̃i); cf. Corollary 2.13.
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(a) supp ūkh and reconstructed
x̃1 and x̃2.

(b) Reconstructed ũ1 and ũ2.

Fig. 7. Postprocessing: visualization of the reconstructed ū.

We see that the outlined reconstruction procedure gives the main structural fea-
tures of the exact source û, such as the number and location of the points xi, and
a quantitatively adequate estimate of the coefficients ui (which is in contrast to the
results we would obtain with a regularization approach based on the L2-norm). Cer-
tainly, there is a qualitative error between û and ū which stems from the noise δ and
the nonzero regularization parameter α. However, a detailed study of the reconstruc-
tion error for a systematic choice of α depending on the magnitude of δ (as in [5]) is
beyond the scope of this paper.

Appendix A. Interpolation estimate. To prove the second part of the inter-
polation estimate from Lemma 3.13 we need an auxiliary lemma.

Lemma A.1. For any w ∈ L2(I,H2(Ω) ∩ H1
0 (Ω)) ∩ H1(I, L2(Ω)) we have the

estimate

sup
t∈I

‖∇(w(t) − w(T ))‖2L2(Ω) ≤ c ‖∂tw‖L2(I,L2(Ω))‖Δw‖L2(I,L2(Ω)),

where the constant c is independent of T .

Proof. Since w ∈ C(Ī , H1
0 (Ω)) with the trace theorem [2, Theorem III 4.10.2]

we have a unique, continuous representation [0, T ] � t �→ w(t) ∈ H1
0 (Ω) and hence

for Δw(t) ∈ H−1(Ω). Since ‖Δw(·)‖L2(Ω) is square integrable, it is finite almost
everywhere and we can choose a point t0 ∈ [0, T ], such that

‖Δw(t0)‖2L2(Ω) ≤
1

T

∫ T

0

‖Δw(t)‖2L2(Ω) dt.

We can estimate with the triangle inequality that

(A.1) sup
t∈I

‖∇(w(t)− w(T ))‖L2(Ω) ≤ 2 sup
t∈I

‖∇(w(t) − w(t0))‖L2(Ω).

To estimate the term on the right we define the function v = w − w(t0), which is an
element of L2(I,H2(Ω)∩H1

0 (Ω))∩H1(I, L2(Ω)). By construction, v fulfills v(t0) = 0
and ∂tv = ∂tw and we can estimate

‖Δv‖L2(I,L2(Ω)) ≤ 2‖Δw‖L2(I,L2(Ω))
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by the choice of t0. Now, we can apply a well-known identity, integration by parts,
and Hölder’s inequality to obtain for any t ∈ I that

‖∇v(t)‖2L2(Ω)) =

∫ t

t0

d

ds
‖∇v(s)‖2L2(Ω)) ds =

∫ t

t0

2 (∂tv(s),−Δv(s)) ds

≤ 2 ‖∂tv‖L2(I,L2(Ω))‖Δv‖L2(I,L2(Ω)) ≤ 4 ‖∂tw‖L2(I,L2(Ω))‖Δw‖L2(I,L2(Ω)),

and we finish the proof by combining this with (A.1).
Proof. (proof of Lemma 3.13). We first consider the second estimate

‖w − ikw‖L2(I,H1
0 (Ω)) ≤ c k

1
2 ‖f‖L2(I,L2(Ω))

on a reference interval I ′ = (0, 1) for an arbitrary ŵ ∈ L2(I ′, H2(Ω) ∩ H1
0 (Ω)) ∩

H1(I ′, L2(Ω)). With Lemma A.1 it holds on the reference interval that

‖∇(ŵ − ŵ(1))‖2L2(I′,L2(Ω)) ≤ sup
t∈I′

‖∇(ŵ(t)− ŵ(1))‖2L2(Ω)

≤ c ‖∂tŵ‖L2(I′,L2(Ω))‖Δŵ‖L2(I′,L2(Ω)).

By linear transformation this implies for w, restricted to an arbitrary time interval
Im, that

‖w − w(tm)‖2L2(Im,H1
0 (Ω)) ≤ c km‖∂tw‖L2(Im,L2(Ω))‖Δw‖L2(Im,L2(Ω))

≤ c km

(
‖∂tw‖2L2(Im,L2(Ω)) + ‖Δw‖2L2(Im,L2(Ω))

)
.

The final result is obtained by summing these estimates over all intervals Im for
m = 1 . . .M and using the parabolic regularity from Lemma 3.4. The proof for the
first estimate, which is standard,

‖w − ikw‖L2(I,L2(Ω)) ≤ c k‖f‖L2(I,L2(Ω)),

can be based in a similar way on the estimate

‖w − w(tm)‖2L2(Im,L2(Ω)) ≤ k2m‖∂tw‖2L2(Im,L2(Ω))

on each interval.
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