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Abstract: Information and communication technology have enabled the collection of high-frequency
financial asset time series data. However, the high spatial and temporal resolution nature of these
data makes it challenging to compare financial asset characteristics patterns and identify the risk.
To address this challenge, a method for realized volatility calculation based on the functional data
analysis (FDA) method is proposed. A time–price functional curve is constructed by the functional
data analysis method to calculate the realized volatility as the curvature integral of the time–price
functional curve. This method could effectively eliminate the interference of market microstructure
noise, which could not only allow capital asset price to be decomposed into a continuous term and
a noise term by asymptotic convergence, but also could decouple the noise from the discrete-time
series. Additionally, it could obtain the value of volatility at any given time, which is no concern
about correlations between repeated, mixed frequencies and unequal intervals sampling problems
and relaxes the structural constraints and distribution setting of data acquisition. To demonstrate
our methods, we analyze a per-second level financial asset dataset. Additionally, sensitivity analysis
on the selection of the no equally spaced sample is conducted, and we further add noise to ensure
the robustness of our methods and discuss their implications in practice, especially being conducive
to more micro analysis of the volatility of the financial market and understanding the rapidly
changing changes.

Keywords: functional data analysis; high frequency data; Bernstein basis function; curvature

MSC: 91G70

1. Introduction

In recent years, with the rapid and convenient acquisition of high-frequency data
of asset returns, scholars and investors have given an increasing amount of attention
to volatility modeling [1,2]. ARCH class model, SV class model, and realized volatility
class model are used to calculate volatility [3–5]. However, these three class models
characterize volatility indirectly through rate of return and cannot depict dynamic changes
at the intraday level. In particular, modeling intraday volatility usually uses continuous
time stochastic process methods [6–8], which assume that volatility is generated by a
potentially unknown diffusion process. However, these methods are unable to describe
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and characterize the long memory and periodicity intraday fluctuations. A commonality
in these methods depends on the discrete-time points at which the measurements are
taken, which are often called point-based realized volatility calculation models [9]. When
the data sampling frequency is high enough and the sampled data do not cause micro-
market interference, these methods of calculating realized volatility are in theory consistent
estimators of true volatility.

With the development of data acquisition technology, the frequency of financial data
acquisition is getting higher and higher. As the data sampling frequency increases, the
interference of market microstructure noise on data becomes more and more obvious,
such as bid–ask spread, infrequent trading, and so on [10–12]. If each sample is noisy,
point-based realized volatility calculation models are challenged. For example, the sum of
returns squares extremely depend on two consecutive price sampling points from t− 1 to t,
where t denotes a time variable. The sampling points themselves are biased and different
sampling points may lead to different calculations [13]. Second, high-frequency data have
a long memory, which indicates that past shocks persist into the future and have a big
impact on the expected future [14–16]. In this framework, systemic changes in trading
should be considered.From a temporal evolution perspective, if the price is considered
and analyzed as discrete time series, the underlying stochastic process that generates these
observations cannot be ascertained in terms of statistical analysis. That is to say, the asset
price shifting from a time t-1 to t is not independent from current characteristics but should
be considered systemic changes. Therefore, faced with these challenges, it is necessary to
analyze the high-frequency data’s volatility modeling.

A method about the curve-based realized volatility calculation model is proposed.
Discrete time series can be a sampling set of curves, which can be observed over time [17,18].
On the one side, a functional data analysis method could often be used to extract additional
information from discrete time series, such as their derivatives to measure the velocity
and acceleration of the price curve [19]. On the other side, applying the functional data
analysis method could help identify the repeated patterns of price changes in financial
markets [20,21]. High-frequency data contain a rich source of information, which provides
opportunities to analyze the dynamic changes of short time intervals. However, these
studies do not consider decoupling noise from discrete time series. The price is assumed to
follow the Brownian semimartingale process, and the integral volatility can be estimated by
the realized volatility [22]. Therefore, firstly, this study constructs a time–price functional
curve on the basis of discrete observations by the functional data analysis method through
the Bernstein basis function. Secondly, referring to the theory of differential geometry, this
study takes the curvature integral of the time–price functional curve as the realized volatility
of high-frequency data in a certain period of time, which is called functional volatility (FV).
In addition, the period of time could be set arbitrarily, so we can calculate the realized
volatility at any time scale. Even when the time scale is small enough, instantaneous
realized volatility could be estimated.

Different from point-based realized volatility calculation methods, the curve-based
realized volatility calculation method has three advantages. First, the curve-based realized
volatility calculation method could obtain the information about the sampling time point
from t-1 and t, where t denotes a time variable. The point-based realized volatility calcula-
tion method ignores the capital asset price’s underlying dynamic shifts from one time point
to the next. For example, if two adjacent time points have equal price, the return will be zero.
However, the shift from one time point to the next time point comprises much information
about price changes. Second, the curve-based realized volatility calculation method could
effectively eliminate the interference of market microstructure noise on data. The functional
data analysis method allows capital asset price to be decomposed into a continuous term
and a noise term by asymptotic convergence, which could decouple the noise from the
discrete-time series. Third, the curve-based realized volatility calculation method treats
the whole curve as a single entity and there is also no concern about correlations between
repeated, mixed frequencies and unequal intervals sampling problems [23]. Point-based
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realized volatility calculation methods are limited by the correlation of repeated samples,
the sampling process for irregular data. The functional data analysis method relaxes the
structural constraints and distribution setting of data acquisition, which represents a change
in framework towards the handling of discrete time series.

The remainder of this study is as follows: Section 2 is the Methods. The Simulation
experiments are described in Section 3. Conclusions and future work are described in
Section 4.

2. Methods
2.1. Determination of Basis Function

Functional data analysis (FDA) takes the functional data as the research object, re-
garding the observed data as a whole [24]. Consider a one-dimensional functional data
X1(t), X2(t), . . . , Xn(t), which is an implementation of a stochastic process Xt on a closed
interval F . From the dimension of time t, functional data are a kind of infinite-dimensional
data [25]. In reality, it is difficult to obtain the curve with complete observation and without
measurement error. Therefore, we first assume that

Wij = Xi
(
Tij
)
+ Uij, Tij ∈ F , 1 6 i 6 n, 1 6 j 6 Mi (1)

where Uij is the independent and identically distributed observation error and is indepen-

dent of Xi, satisfies E
(
Uij
)
= 0, E

(
U2

ij

)
= σ2

u . The actual observation data are
(
Tij, Wij

)
,

i = 1, 2, . . . , n; j = 1, 2, . . . , Mi.
Due to the infinite dimension of functional data, it is significant to reduce the di-

mension. The common method is to expand the functional data using a set of bases. In
more detail, suppose that φ1(t), φ2(t), . . . is a set of orthogonal bases defined on a closed
interval I :

X(t) =
∞

∑
k=1

ξkφk(t) (2)

where ξk =
∫
I X(t)φk(t)dt is the projection of Xt on φk(t). In practice, we need to truncate

the number of expansions, that is, X(t) ≈ ∑K
k=1 ξkφk(t). In this way, the infinite-dimensional

functional data Xt are approximated to the sum of the expansions of finite terms. The
information contained in infinite-dimensional function data can be expressed by a finite-
dimensional vector (ξ1, ξ2, . . . , ξK)

> to achieve the purpose of dimension reduction.
Let the time series data be Yi, i = 0, 1, · · · , n, and the fitting model can be constructed

as follows:

Y(t) =
m

∑
j=0

β j ϕj(t) + ε(t), 0 ≤ t ≤ 1, m < n (3)

where ϕj(t), j = 0, 1, · · · , m are a set of basis functions; β j, j = 0, 1, · · · , m denote the
coefficient vector to be determined; ε j(t), j = 0, 1, · · · , m represent the noise.

The time series Yt given here is the result of parameterization of the original time
series data Yi (i = 0, 1, · · · , n). The determined parameters are divided into ∆t : t0 < t1 <
· · · < tn. In this way, we are faced with the problem of which basis function should be
chosen. First of all, it should be noted that polynomial functions can meet the requirements
of mining useful information from complex data, and it is easy to calculate the function
value and the derivative value of each order to realize visualization.

All the m-degree polynomials constitute the m-degree polynomial space, and any
group of M + 1 linearly independent polynomials in a polynomial space of degree M
can be regarded as a group of bases [26]. To better reflect the regularity of complex
data, the number of data transformation peaks and valleys is described by m. Through
computer input and interactive modification of the fitting curve, we can achieve the goal
of description.

The same curve can be represented by different polynomial basis functions, with
different properties. Power polynomials tj, j = 1, · · · , m reflect the simplest polynomial
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basis [27]. The curve fitted by the power base has the advantages of simple form and
easy calculation. However, the geometric mean of the coefficient vector in the power-
based polynomial curve equation is not obvious. In addition, when the order is large,
the coefficient matrix is ill-conditioned due to the system of linear equations that must be
solved [28]. Lagrange basis function Lj(t) = ∏m

j 6=i=0
(t−ti)

(tj−ti)
, j = 0, 1, · · · , m is normative

and has obvious regularity [29]. However, its derivation is complicated, and all data
points need to be recalculated every time data are added. That is not suitable for the
requirements of data mining. Fourier basis eiωt can reveal the internal relationship between
time and spectrum. However, when using Fourier transform, we need to use all the time-
domain information of the signal, which lacks the time-domain positioning function [30].
Considering the characteristics of human–computer interaction and data mining, we select
the Bernstein basis function in this paper. As a basis function, Bernstein polynomials
are classical Bézier curves and become the foundation to develop complex curves and
surfaces. It has many excellent properties, such as normalization, symmetry, recurrence,
segmentation and control hull [31]. Therefore, we select the Bernstein basis function in this
paper. The model fitted by Bernstein basis function is

Y(t) =
m

∑
j=0

β jBj,m(t) + ε(t), 0 ≤ t ≤ 1 (4)

Here, β j, j = 0, 1, · · · , m denotes the coefficient vector, which is called the control point
of fitting curve. Basis function

Bj,m(t) = Cj
mtj(1− t)m−j, 0 ≤ t ≤ 1, j = 0, 1, · · · , m (5)

is known as the Bernstein basis function.
Besides the good properties of normalization, symmetry, recurrence and segmentation,

the Bernstein function also has a convex–hull property [32]. The convex hull of a point set
is defined as the set of all convex combinations formed by the elements of the point set.
The convex hull property of the fitting curve with the Bernstein basis function means that
the curve always lies in the convex hull of its control vertex (see Figure 1).

Figure 1. Convex hull diagram with four control points P0, P1, P2, P3.

2.2. Bernstein Basis Function Modeling

Consider a time series as Y(t), 0 ≤ t ≤ 1. Let mth-degree Bernstein polynomials be as
basis functions [31]

Bj,m(t) = Cj
mtj(1− t)m−j, 0 ≤ t ≤ 1, j = 0, 1, · · · , m (6)

Construct the actual model

Y(t) =
m

∑
j=0

β jBj,m(t) + ε(t) (7)
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Fitting the time series data points, the sample regression equation is

Ŷ(t) =
m

∑
j=0

β̂ jBj,m(t), 0 ≤ t ≤ 1 (8)

Here, the parameter estimation of β j is denoted by β̂ j. Therefore, the model based on
Bernstein basis function is

Y(t) =
m

∑
j=0

β̂ jBj,m(t) + e(t) (9)

where β̂ j, j = 0, 1, · · · , m is the estimator of the control vertex. Bj,m(t) denotes the Bern-
stein basis function. e(t) expresses the error term, which is e(t) = Y(t)− Ŷ(t). We can
further use the properties of the constructed curve to analyze the development law of the
studied phenomenon.

It is noteworthy that Ŷ(t) is the value of fitting data point Y(t) on the curve (Equation (8)).
The actual value obtained after the interference adjustment parameter is Y(t) in Equation (9).
Moreover, stochastic variable ε(t) represents an error, including data measurement error
and random error. Suppose ε(t) ∼ N

(
0, σ2), and cov[ε(t1), ε(t2)] = 0 for t1 6= t2.

In this paper, the least-square method is utilized to estimate the control points
β j, j = 0, 1, · · · , m. The time-series data Yi, i = 0, 1, · · · , n are first parameterized. Let τi be
the indexes corresponding to Yi, i = 0, 1, · · · , n, τi ≥ 0.

By normalizing the parameterization results of the above, the normalized parameteri-
zation results are generated:

ti =
τi

max(τi)
, i = 0, 1, · · · , n (10)

In the measurement of high-frequency asset volatility, n is the number of samples per
day. Then, the fitted asset price curve can be determined by the least square approach. Let
the fitted curve be

Ŷ(ti) =
m

∑
j=0

β̂ jBj,m(ti), i = 0, 1, · · · , n (11)

The sample model is

Y(ti) =
m

∑
j=0

β̂ jBj,m(ti) + e(ti) (12)

Calculate the control point to minimize the following formula:

E =
n

∑
i=0

(
Y(ti)− Ŷ(ti)

)2
(13)

That is,

E
(

β̂0, β̂1, · · · , β̂m

)
=

n

∑
i=0

(
Y(ti)−

m

∑
j=0

β̂ jBj,m(ti)

)2

(14)

According to the least square method, the control vertex can be obtained
β̂0

β̂1
...

β̂m

 =
(

ΦTΦ
)−1

ΦT


Y(t0)
Y(t1)

...
Y(tn)

 (15)
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where

Φ =


B0,m(t0) B1,m(t0) · · · Bm,m(t0)
B0,m(t1) B1,m(t1) · · · Bm,m(t1)

... . . .
. . . . . .

B0,m(tn) B1,m(tn) · · · Bm,m(tn)

 (16)

ΦT is the transpose of Φ.
In this way, m + 1 control points β̂0, β̂1, · · · , β̂m in Equation (8) are estimated. The

model requires that the fitting curve must coincide with the beginning and end of the
original curve. Therefore, we modify the head and tail control points: β̂0 → Y(t0),
β̂m → Y(tn) to ensure that the piecewise fitting curve can be successfully spliced to
form an overall fitting curve, which can represent the whole data samples.

Then, we can obtain the fitting curve

Ŷ(t) =
m

∑
j=0

β̂ jBj,m(t) 0 ≤ t ≤ 1 (17)

As for our model, the only parameter to be determined is m, which is finally optimal
by the minimum generalized cross-validation criterion (GCV):

GCV(m) =
∑N

i=1

(
Y(t)−∑m

j=0 β̂ jβ j,m(ti)
)2

(1−M(m)/N)2 (18)

where M(m) denotes the number of effective parameters in the model, and N is the number
of actual observation samples.

2.3. Volatility Measurement

Intuitively, after constructing the function curve of coarse high-frequency data. It is
more natural to quantify the volatility through the characteristics of the function than to
measure the realized volatility. As a result, we can naturally measure asset volatility by
measuring the curve fluctuation degree of the asset curve.

The curvature of the function can be used to determine the degree of volatility of the
measurement curve. A curve’s curvature is the rotation rate of the tangent direction angle
of a point on this curve to the arc length. It is defined by the differential and represents
the curve’s bending at a certain point. The greater the curvature, the greater the degree of
curve bending, that is, the greater the degree of fluctuation [33].

Let the constructed asset fluctuation curve equation be y = f (t), which contains the
second derivative. The curvature of a function curve at point M is defined as

K =
|y′′|

(1 + y′2)
3
2

(19)

According to Equation (11), we can calculate the first and second derivatives of the
asset change curve as follows:

y′ =
∂Ŷ(t)

∂t
=

m

∑
j=0

β̂ j

[
tm− j

t(t− 1)

]
Bj,m(t), (20)

y′′ =
∂2Ŷ(t)

∂t2

=
m

∑
j=0

β̂ j

[
m2 + m
(t− 1)2 +

j2 − j
t2(t− 1)2 +

2j(1−m)

t(t− 1)2

]
Bj,m(t),

(21)
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where 0 ≤ t ≤ 1. Based on differential geometry theory, the total curvature of a curve is
equal to the integral of curvature:

FVt =
∫ tj+1

tj

|y′′|

(1 + y′2)
3
2

dt (22)

The formula above can characterize the volatility of high-frequency asset fluctuations
and then be utilized as a volatility measure, which can be called functional volatility (FV).
It is noted that the time interval here can be any period.

3. Experimental Analysis

To verify the effectiveness of our model, we use real data for empirical analysis and
test the unequal spaced sample and noise on a high-frequency asset dataset. Due to a
large amount of data, it is impossible to fit well with a low degree polynomial. Therefore,
according to the references [34,35], we use 200 data sample points for fitting each time.

The data was obtained from a Thompson Ruter Tick History database (TRTH), which
have asset changes per second. In particular, the original data are equidistant. We randomly
select 1000 days and use the above model to calculate the daily functional volatility as the
gold standard. Figures 2 and 3 illustrate the asset price from 2012 to 2016 years used in this
paper and daily volatility measured using complete dataset.

Figure 2. Asset prices from 2012 to 2016.

The relative error is chosen as the evaluation criterion in this paper, which can be
expressed as

Error =
1
N

N

∑
i=1

∣∣ ˆFVi − FVi
∣∣

FVi
(23)

where ˆFVi, i = 0, 1, · · · , N denotes the the daily volatility obtained by the original dataset,
and the FVi indicates the corresponding volatility under simulated conditions.

In detail, we design the following two simulation settings.

• We randomly remove a certain proportion of data from the original daily data, that
is, produce non-equidistant high-frequency data. The corresponding proportion is
controlled by DropRate.

• We randomly add noise r ∗ sigma to the original data, where r is randomly chosen
from 0 to 1. Parameter sigma determines the degree of the added noise.
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Figure 3. Daily volatility measured using the complete dataset.

We presented the maximum (sub), average (avg), and standard (std) error of relative
error across 500 replications in Tables 1 and 2. Results perform the efficiency of our method
to address non-equidistant and noisy situations, in which the averaged and related error is
less than 10%. In terms of the maximum related errors, the errors are more than 10% when
DropRate is equal to 0.3 or the sigma exceeds 0.4.

Table 1. Related error results under different drop rates on real data.

DropRate sub avg std

0.1 0.003993 0.000017 0.000192
0.2 0.035771 0.000225 0.001836
0.3 0.115362 0.000767 0.006560

Table 2. Relate error results under different sigma on real data.

Sigma sub avg std

0.1 0.032560 0.016152 0.009657
0.2 0.065114 0.031076 0.019011
0.3 0.097928 0.049194 0.029173
0.4 0.130392 0.064272 0.038869

It is worth noting that we randomly remove the original data in Simulation 1 to
produce non-equidistant asset data. At the same time, it also means that we estimate the
model with missing data. This also verifies that our model can overcome the case with
missing values.

Usually, stock prices are modeled by lognormal distributions [36]. Therefore, we gen-
erate 500 days of high-frequency asset price data through lognormal distribution to further
verify the effectiveness of our model. Following the above settings, we consider the devia-
tion of the model in the case of random loss of samples and adding noise. Tables 3 and 4
demonstrate the relate error results under different drop rate and sigma. Results show that
our method has good robustness.
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Table 3. Related error results under different drop rates on simulation data.

DropRate sub avg std

0.1 0.001301 0.000209 0.000108
0.2 0.012924 0.000368 0.000861
0.3 0.239079 0.001688 0.012562

Table 4. Related error results under different sigma on simulation data.

Sigma sub avg std

0.1 0.000072 0.00004 0.000571
0.2 0.000145 0.000114 0.002248
0.3 0.097928 0.000116 0.001764

4. Conclusions and Future Work

In recent decades, financial data collection technologies have evolved to allow more
intensive sampling of temporal, spatial, and other continuous measurements. At the same
time, the available financial data are increasingly complex, such as data being recorded
continuously at an interval and data being recorded intermittently at several discrete points
in time. Faced with the real situation, this paper proposed the FDA approach to measure
the volatility indicators.

The FDA approach represents a change in philosophy on financial time series data
processing. Classical multivariate statistical techniques could only obtain information from
sampling time points, and they do not take advantage of additional information that could
be implied by sampling information between points in time.

The FDA approach indicates that the financial time series data reflect the influence of
certain smooth functions that are assumed to underlie the observations. Some additional
information could be extracted from the smoothness of underlying functions [37]. For
example, topology information, such as derivatives and curvature, could be obtained by
curve calculation [38,39]. Therefore, we develop a set of volatility calculation models based
on the concept of curvature integration.

Measurement volatility based on the FDA approach could provide a new analytical
idea about the financial market for scholars, investors, and policy managers. On the
one side, the FDA approach could measure the volatility at any period, especially the
instantaneous volatility. This helps us to delve into micro time and explore financial
markets. In particular, for policy managers, markets can be monitored in real time. On
other hand, the FDA approach represents the financial time series data as a whole curve.
Volatility measurement is an example. Time series data are a common form of the finance
market. Therefore, in the research on the finance market, it is a good consideration to
use the FDA approach or nest the FDA approach in existing methods, such as dimension
reduction, clustering, and classification. Possibly, some new, valuable, interesting analyses
and findings will emerge.

For future research, this work can be extended to discuss the following three aspects.
First, Bernstein polynomials are classical Bézier curves that have become the foundation
to develop complex curves and surfaces. Therefore, more complex Bézier polynomials as
the basis function of volatility measure deserve to be studied. Second, how to produce
the curvature graph for realized volatility curve is also an interesting topic, which can
refer to these articles [40]. Finally, as for the measurement method of functional volatility,
future research can consider obtaining a better fitting curve through the kernel method and
verifying its mathematical properties.



Mathematics 2022, 10, 1140 10 of 11

Author Contributions: Conceptualization, M.Z. and C.Y.; methodology, Z.L. and F.W.; software, F.W.
and Y.M.; validation, Y.X., F.W., and C.Y.; formal analysis, Z.L.; investigation, F.W.; data curation, Z.L.
and Y.M.; writing—original draft preparation, F.W. and C.Y.; writing—review and editing, F.W. and
C.Y.; visualization, M.Z.; supervision, Y.X.; project administration, Y.X.; funding acquisition, M.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the financial support provided by the major project of the
National Social Science Foundation (20&ZD137).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weng, F.; Zhang, H.; Yang, C. Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme

learning machine with a forgetting factor: The role of news during the COVID-19 pandemic. Resour. Policy 2021, 73, 102148.
[CrossRef] [PubMed]

2. Duttilo, P.; Gattone, S.; Di Battista, T. Volatility modeling: An overview of equity markets in the euro area during COVID-19
Pandemic. Mathematics 2021, 9, 1212. [CrossRef]

3. Andersen, T.; Bollerslev, T.; Diebold, F.; Labys, P. The distribution of realized exchange rate volatility. J. Am. Stat. Assoc. 2001, 96,
42–55. [CrossRef]

4. Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [CrossRef]
5. Hansen, P.; Huang, Z.; Shek, H. Realized GARCH: A joint model for returns and realized measures of volatility. J. Appl. Econom.

2012, 27, 877–906. [CrossRef]
6. Poon, S.; Granger, C. Practical issues in forecasting volatility. Financ. Anal. J. 2005, 61, 45–56. [CrossRef]
7. Andersen, T.; Bollerslev, T.; Diebold, F. Parametric and nonparametric volatility measurement. In Handbook of Financial Economet-

rics: Tools and Techniques; North-Holland: Chicago, IL, USA, 2010; pp. 67–137.
8. Hurvich, C.; Moulines, E.; Soulier, P. Estimating long memory in volatility. Econometrica 2005, 73, 1283–1328. [CrossRef]
9. Liu, C.; Maheu, J. Are there structural breaks in realized volatility? J. Financ. Econom. 2008, 6, 326–360. [CrossRef]
10. Bandi, F.M.; Russell, J.R. Separating microstructure noise from volatility. J. Financ. Econ. 2006, 79, 655–692. [CrossRef]
11. Hansen, P.; Lunde, A. Realized variance and market microstructure noise. J. Bus. Econ. Stat. 2006, 24, 127–161. [CrossRef]
12. Zhang, L.; Mykland, PA.; Aït-Sahalia, Y. A tale of two time scales: Determining integrated volatility with noisy high-frequency

data. J. Am. Stat. Assoc. 2005, 100, 1394–1411. [CrossRef]
13. Duong, D.; Swanson, N. Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction. J.

Econom. 2015, 187, 606–621. [CrossRef]
14. Breidt, F.; Crato, N.; Delima, P. The detection and estimation of long memory in stochastic volatility. J. Econom. 1998, 83, 325–348.

[CrossRef]
15. Baillie, R.; Cecen, A.; Han, Y. High frequency Deutsche Mark-US Dollar returns: FIGARCH representations and non linearities.

Multinatl. Financ. J. 2000, 4, 247–267. [CrossRef]
16. Granger, C. Long memory relationships and the aggregation of dynamic models. J. Econom. 1980, 14, 227–238. [CrossRef]
17. Alvarez, A.; Panloup, F.; Pontier, M.; Savy, N. Estimation of the instantaneous volatility. Stat. Inference Stoch. Process. 2012, 15,

27–59. [CrossRef]
18. Müller, H.; Sen, R.; Stadtmüller, U. Functional data analysis for volatility. J. Econom. 2011, 165, 233–245. [CrossRef]
19. Shang, H. Forecasting intraday S&P 500 index returns: A functional time series approach. J. Forecast. 2017, 36, 741–755.
20. Kokoszka, P.; Miao, H.; Zhang, X. Functional dynamic factor model for intraday price curves. J. Financ. Econom. 2015, 13, 456–477.

[CrossRef]
21. Shang, H.; Yang, Y.; Kearney, F. Intraday forecasts of a volatility index: Functional time series methods with dynamic updating.

Ann. Oper. Res. 2019, 282, 331–354. [CrossRef]
22. Yu, C.; Fang, Y.; Li, Z.; Zhang, B.; Zhao, X. Non-Parametric Estimation of High-Frequency Spot Volatility for Brownian

Semimartingale with Jumps. J. Time Ser. Anal. 2014, 35, 572–591. [CrossRef]
23. Wang, J.; Chiou, J.; Müller, H. Functional data analysis. Annu. Rev. Stat. Its Appl. 2016, 3, 257–295. [CrossRef]
24. Ramsay, J. When the data are functions. Psychometrika 1982, 47, 379–396. [CrossRef]
25. Kokoszka, P.; Reimherr, M. Introduction to Functional Data Analysis; Chapman and Hall/CR: London, UK, 2017.
26. Ler, K. A brief proof of a maximal rank theorem for generic double points in projective space. Trans. Am. Math. Soc. 2001, 353,

1907–1920.
27. Beaton, A.; Tukey, J. The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 1974,

16, 147–185. [CrossRef]
28. Hatefi, E.; Hatefi, A. Nonlinear Statistical Spline Smoothers for Critical Spherical Black Hole Solutions in 4-dimension. arXiv 2022,

arXiv:2201.00949.
29. Dahiya, V. Analysis of Lagrange Interpolation Formula. IJISET-Int. J. Innov. Sci. Eng. Technol. 2014, 1, 619–624.
30. Wang, X.; Wang, J.; Wang, X.; Yu, C. A Pseudo-Spectral Fourier Collocation Method for Inhomogeneous Elliptical Inclusions with

Partial Differential Equations. Mathematics 2022, 10, 296. [CrossRef]

http://doi.org/10.1016/j.resourpol.2021.102148
http://www.ncbi.nlm.nih.gov/pubmed/34539033
http://dx.doi.org/10.3390/math9111212
http://dx.doi.org/10.1198/016214501750332965
http://dx.doi.org/10.1016/0304-4076(86)90063-1
http://dx.doi.org/10.1002/jae.1234
http://dx.doi.org/10.2469/faj.v61.n1.2683
http://dx.doi.org/10.1111/j.1468-0262.2005.00616.x
http://dx.doi.org/10.1093/jjfinec/nbn006
http://dx.doi.org/10.1016/j.jfineco.2005.01.005
http://dx.doi.org/10.1198/073500106000000071
http://dx.doi.org/10.1198/016214505000000169
http://dx.doi.org/10.1016/j.jeconom.2015.02.042
http://dx.doi.org/10.1016/S0304-4076(97)00072-9
http://dx.doi.org/10.17578/4-3/4-6
http://dx.doi.org/10.1016/0304-4076(80)90092-5
http://dx.doi.org/10.1007/s11203-011-9062-2
http://dx.doi.org/10.1016/j.jeconom.2011.08.002
http://dx.doi.org/10.1093/jjfinec/nbu004
http://dx.doi.org/10.1007/s10479-018-3108-4
http://dx.doi.org/10.1111/jtsa.12082
http://dx.doi.org/10.1146/annurev-statistics-041715-033624
http://dx.doi.org/10.1007/BF02293704
http://dx.doi.org/10.1080/00401706.1974.10489171
http://dx.doi.org/10.3390/math10030296


Mathematics 2022, 10, 1140 11 of 11

31. Farouki, R. The Bernstein polynomial basis: A centennial retrospective. Comput. Aided Geom. Des. 2012, 29, 379–419. [CrossRef]
32. Farouki, R.; Goodman, T. On the optimal stability of the Bernstein basis. Math. Comput. 1996, 65, 1553–1566. [CrossRef]
33. Kühnel, W. Differential Geometry; American Mathematical Society: Providence, RI, USA, 2015.
34. Jianping, Z.; Zhiguo, L.; Caiyun, C. A New Predictive Model on Data Mining—Predicting Arithmetic of Bernstein Basic Function

Fitting and Its Application for Stock Market. Syst. Eng. Theory Pract. 2003, 9, 35–41.
35. Shaojun, Z.; Hong, L. An improved model based on fitting predictions to Bernstein Basic Function. Stat. Decis. 2015, 8, 20–23.
36. Wang, S. A class of distortion operators for pricing financial and insurance risks. J. Risk Insur. 2000, 1, 15–36. [CrossRef]
37. Levitin, D.; Nuzzo, R.; Vines, B.; Ramsay, J. Introduction to functional data analysis.. Can. Psychol. Can. 2007, 48, 135. [CrossRef]
38. Ferraty, F.; Mas, A.; Vieu, P. Nonparametric regression on functional data: Inference and practical aspects. Aust. N. Z. J. Stat. 2007,

49, 267–286. [CrossRef]
39. Mas, A.; Pumo, B. Functional linear regression with derivatives. J. Nonparametr. Stat. 2009, 21, 19–40. [CrossRef]
40. Farin, G. Class a Bézier curves. Comput. Aided Geom. Des. 2006, 7, 573–581. [CrossRef]

http://dx.doi.org/10.1016/j.cagd.2012.03.001
http://dx.doi.org/10.1090/S0025-5718-96-00759-4
http://dx.doi.org/10.2307/253675
http://dx.doi.org/10.1037/cp2007014
http://dx.doi.org/10.1111/j.1467-842X.2007.00480.x
http://dx.doi.org/10.1080/10485250802401046
http://dx.doi.org/10.1016/j.cagd.2006.03.004

	Introduction
	Methods
	Determination of Basis Function
	Bernstein Basis Function Modeling
	Volatility Measurement

	Experimental Analysis
	Conclusions and Future Work
	References

