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Abstract—Understanding the packet delivery performance of
a wireless sensor network (WSN) is critical for improving system
performance and exploring further development and applications
of WSN techniques. In spite of many empirical measurements in
the literature, we still lack in-depth understanding on how and
to what extent different factors contribute to the overall packet
losses with respect to a complete stack of protocols at large scales.
Specifically, very little is known about (1) When, where, and
under what kind of circumstances packet losses occur. (2) Why
packets are lost. As a step towards addressing those issues, we
deploy a large-scale WSN and design a measurement system for
retrieving important system metrics. We propose MAP, a step-
by-step methodology to identify the losses, extract system events,
and perform spatial-temporal correlation analysis by employing
a carefully examined casual graph. MAP enables us to get a
closer look at the root causes of packet losses in a low-power ad-
hoc network. This study validates some earlier conjectures on
WSNs and reveals some new findings. The quantitative results
also shed lights for future large-scale WSN deployments.

I. INTRODUCTION

As an emerging technology that bridges cyber systems and

the physical world, wireless sensor networks (WSNs) are

envisioned to support numerous unprecedented applications.

We have witnessed many research studies, deployments of real

systems, and substantive practical applications in recent years.

We are still facing severe challenges in designing scalable,

long-lived, and high-performance WSN systems. Some of the

difficulties come from the fact that the current understanding

of WSN is still limited. Therefore, it is necessary to conduct

empirical measurements in real-world WSN systems, so that

we can better understand the behaviors of large-scale WSNs

and facilitate the design of such systems.

In the past years, many WSN protocols have been reported

and shown to be effective in testbed or small-scale networks.

On the other hand, it is not uncommon to see that many real

deployments often adopt a set of tailored protocols to fulfil the

application’s requirements. We believe that it is important to

understand the performance of some well-principled protocols

in combination at a large scale. We are interested in the

question: whether they are reliable enough to facilitate the

development of future WSNs.

Many deployments have reported the overall packet delivery

performance [1], [2]. Also, many empirical measurement stud-

ies show how some specific factors impact the packet delivery

performance via controlled experiments [3], [4]. However, we

usually do not know how and to what extent different factors

contribute to the overall packet losses with a complete stack

of protocols at a large scale. Specifically, very little is known

about (1) When, where, and under what kind of circumstances

packet losses occur. (2) Why packets are lost. Answers to the

above questions are critical for improving system performance

and exploring further development and applications of WSN

techniques.

Understanding the packet delivery performance in an oper-

ating WSN is challenging due to the following facts. First,

data packets might be lost during multi-hop transmissions

and thus data collection is incomplete by nature. It is very

difficult to acquire the complete information of the internal

status. In-depth understanding requires detailed measurement

of networking and system metrics, but basically this is far

from affordable for resource and energy constrained sensor

nodes. Second, operational efforts to disclose the root causes

behind packet losses are insufficient, and few efforts have

been validated to be effective at large scales. Third, fine-

grained measurements usually demand mechanisms which

incur unnegligible operational or capital expenses.

As a step towards addressing those challenges, we deploy

GreenOrbs, a large-scale and long-term WSN system in the

wild. The network we measure is in continuous operation

since Dec. 2010 with nearly 400 nodes. For the sensor node

hardware, we use the commonly used TelosB nodes. For the

software, we use TinyOS and its radio stack, including the LPL

MAC, the CTP collection protocol, and the Drip dissemination

protocol.

Based on GreenOrbs, we propose MAP, a practical method-

ology for Measuring and Analyzing the Performance of a

large operating WSN. MAP incorporates a well-designed

measurement system for retrieving networking and system

metrics. MAP includes three steps for analyzing the packet

losses. First, it uses robust algorithms to identify the losses as

well as important system events. Second, it carefully tracks

the interactions inside the WSN system by means of a causal

graph. Third, it examines the temporal-spatial correlations

among system events having casual relationships.

Using this methodology, we are able to conduct a deep

examination of packet losses. For example, for a recent de-

ployment of our system, Figure 1 shows the spatial distribution

of packet losses along with the geometric network topology.

The red nodes are those with packet delivery ratio (PDR)

less than 90%, and the length of the radius indicates the

number of lost packets. We note that while previous reports

usually show us the delivery performance as in Figure 1,

they usually lack detailed analysis on classifying the losses

into smaller categories that can be useful for further analysis.

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

2679



8

9

22

29

55

86
87

92

93

100

104

105

118

123

132

136

142

143

145

155

157

164

169

171

175

178

179

181

188

198

206

209

223

229

230

233

238

251

253 286

299

312

400

407

433

440

441
442

443

457

459

461
462

471

475
479

481

490

491

517

518

526

527

528

535

537

538

543

553

556

558

574

575

576

580

588

594

596

598

600

602

606

629
632

645

648

659

663

665

670

674

686

694

0

2

655

698

639

604

653

567

691

610

672

695

644

692 666

647636687

685

671

624
650

637

609

699

612

622

680

614607660

676617

638

641

620

643

605

621

675

662

623

633

525

573

582

566

593

416 427

429

403
506

557

493

545

572
577592

570 410

536

521

512

450

579

534

465

544

542

634

406

419

552

502

515

470 467

511

548

516533

562 628

591

595

568

497

564

447

455

540

437

451

488

578411

417

422
358

546

452

301

254

255

293

245

205

192

161

220 288

327

328

319
333

323

317

324

331

322

316
340

339

334325

318

320

332

335

82

110
35

121

120

129

133

38

67

119

76

68 25 113

56 15

94

96

193

19

177

5

191

41

72

126

213

313

310

290
23

219

303

304

305

296

43

158

167
3

170

172

163

336

152

135

210

127

3985

149

131

122

7748

42

27

17
270

141

12
115

57

146

91

476

458

478

688

401

404

554

667

616

421

436

697

601

584

587

438

508

477

430
445

449 234

408

444

40

173

151

176

144

4
44

116

26

117

90

608 696

33

485

269

31

683

128

297

306

252

244

212

225

259

308

261

46

203

36

83

187

185

186

194

114

30

65

130

106

196

16

204

184

47

232

8018

63

277

283

272

260

208

207

190

216

242

309

280

271

311

274

214
282

221

217

289

302

240

285

227

(a) (b) (c) (d)

Fig. 1: Network topology where the node with a triangle is the sink node. The green nodes represent nodes with

PDR≥90%. The red nodes represent nodes with PDR<90%, and the length of the radius indicates the number of lost

packets. The subfigures illustrate the loss distributions of four identified categories: (a) corruption (b) loop overflow

drops (c) env-no-ack drops (d) interference-no-ack drops.

The combination of multiple factors makes the overall packet

losses exhibit complex patterns that are extremely difficult to

reason about. MAP takes a further step to decompose the

overall losses into smaller categories that can be related closer

to the underlying causes. It can also reveal the spatial-temporal

distributions of different losses. For example, Figures 1(a-

d) show four major categories of causes. Interestingly, we

see different spatial distributions of packet losses caused by

different events, with each exhibiting a specific pattern that

can better be explained.

The contributions of this study are summarized as follows.

(1) We examine the packet delivery performance with a

complete stack of TinyOS protocols in a large-scale operating

WSN. (2) We develop a methodology to identify the losses as

well as investigating the underlying causes for those losses. (3)

We quantify to what extent each individual cause contributes

to the overall identified losses as well as the loss pattern for

each individual category. (4) We give implications and lessons

learned to guide future WSN designs and deployments.

The rest of this paper is structured as follows. Section II

describes the related work. Section III introduces the network

and the particular datasets we use in our study. Section IV

shows basic statistics of the network. Section V presents the

loss identification algorithm and the spatial-temporal overall

distribution of packet losses. Section VI describes the method-

ology for revealing the root causes. Section VII discusses limi-

tations of our approach. Section VIII summarizes implications

and lessons we have learned before we conclude in Section IX

with an outlook on future works.

II. RELATED WORK

Many WSN prototypes are deployed in the recent years.

During the year 2002–2003, a WSN for habitat monitoring

at Great Duck Island [5] is deployed. Tolle et al. [6] report

a sensor network consisting of 33 nodes to monitor the

microclimate of a redwood tree, covering an area of about 50

square meters. Werner-Allen et al. [7] have deployed a WSN

of 16 nodes to monitor an active volcano. Those efforts have

provided to the community some basic findings, which act as

the early guidance to design the building blocks of modern

WSNs. The representativeness of their findings, however, is

restricted by the system scale and the deployment durations.
VigilNet [8] includes 200 nodes to support military surveil-

lance, covering an area of 100×100 square meters. ExScal [9]

attempts to deploy a WSN at a large scale. The system consists

of over 1000 sensor nodes and 200 backbone nodes, while it

fails to keep in continuous operation for long. Bapat et al. [1]

analyze the yield of ExScal. SensorScope [10] is a real-world

WSN system on rock glacier, of which the largest deployment

consists of nearly 100 sensor nodes. Barrenetxea et al. [11]

give practical guidelines for WSN deployments. Liu et al. [2]

present measurement results of a large-scale sensor network

in the forest. Other deployments include LOFAR-agro [12],

PermaDAQ [13], and etc. While most of the works report the

overall network delivery performance, they do not examine the

correlations among different events, thus fail to investigate the

underlying causes of the losses.
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There are also some dedicated measurement studies in

wireless and sensor networks. Zhao et al. [3] report a mea-

surement study on packet delivery performance using 60 Mica

nodes. Srinivasan et al. [4] present measurement of packet

delivery performance of the Telos and MicaZ platforms. These

measurement studies are important for understanding the im-

pacts of particular factors at different layers. The adopted

measurement approaches, however, are targeted at individual

aspects and cannot be easily integrated for a synthetical study

in an operating WSN since they do not consider the joint

impact of many aspects together, such as PHY, LPL MAC,

and multi-hop routing, in an operating WSN at a large scale.

For years, network measurement has been a hot topic in the

field of Internet, which attracts many research efforts. Wang et

al. [14] conduct a measurement study on the impact of routing

events on the end-to-end path performance. They show that

end-to-end Internet path performance degradation is correlated

with routing dynamics and analyze the root cause of the

correlation between routing dynamics and such performance

degradation. Turner et al. [15] present a methodology for

understanding the causes and impact of link failures. They

opportunistically mine data sources that are already available

in modern network environments and analyze over five years

of failure events in a large regional network. The viewpoint

of existing Internet measurement studies can be regarded

as important references for our work in the WSN context.

Nevertheless, understanding the behavior and performance of

a WSN is an even more complex and challenging task due

to (1) the complex behaviors of the network and its nodes,

(2) the lack of common infrastructure for the retrieval of

system events, and (3) the insufficient operational efforts for

categorizing the losses. Hence, we need a new measurement

and analysis approach to understanding the packet delivery

performance of a WSN.

III. DATA SOURCES

In order to set the context for our analysis, we briefly

describe our system first, and then detail the particular data

sources available.

The GreenOrbs network. Our ongoing research project

aims at building a long-term and large-scale WSN system in

the forest. It employs the TelosB mote [16] with msp430f1611

processor and CC2420 radio. The project was started from

April 2009. From August 2010, we rebuilt the software based

on TinyOS 2.1.1 [17], with an improved architecture and

implementation of the measurement system.

Each node employs the TinyOS LPL MAC, the 4bitle link

estimation protocol, the CTP data collection protocol, and the

Drip dissemination protocol.

On Dec. 10, 2010, we started a new deployment of the

system with nearly 400 nodes in the campus woodlands (with

the power level of 31), covering an area of about 60,000m2.

A single TelosB sink node was used for collecting data. The

collected data is used to support various forestry applications

such as canopy estimate, fire risk prediction, etc. In this paper,

we analyze the collected packets of 10 days starting from

Dec. 19, 2010. The trace contains 1,137,430 packets in total.

Collected packets. The sink node collects three kinds of

packets with CTP collection types C1, C2, and C3, respec-

tively. In the following paragraphs, we introduce the data fields

used in our analysis.

The C1 packet contains two kinds of information: (1) sensor

data, including temperature, humidity, light, and voltage (2)

routing information, including path-ETX [18] from the source

node to the sink node, and node IDs along the path (with a

maximum number of 10).

The C2 packet contains the routing table with a maximum

neighbor number of 10. Each routing table entry contains (1)

the neighbor node ID (2) the RSSI value from the neighbor

(3) the link-ETX estimate to the neighbor (4) the path-ETX

estimate to the sink.

The C3 packet contains various counters: (1) the CPU

counter records the accumulated task execution time in unit of
1
32

ms (2) the radio counter records the accumulated radio-on

time in milliseconds (3) the transmit counter records the

accumulated number of transmitted packets (4) the receive

counter records the accumulated number of received packets

(5) the drop_no_ack counter records the accumulated num-

ber of packet drops because the retransmission threshold (e.g.,

30 in CTP) is exceeded. (6) the drop_overflow counter

records the accumulated number of packet drops due to

queue overflow (7) the loop counter records the accumulated

number of detected loops.

The abovementioned three kinds of packets also share

a common packet header including (1) the source field,

indicating which node the packet originates from (2) the

seqno field which increments when CTP sends a packet (3)

the thl field which indicates the hop count of the arriving

packet (4) the source_time field which is the time instant

when the source node transmits the packet in its local time.

(5) the sink_time field which is the packet reception time

in the local clock of the sink node.

IV. BASIC STATISTICS

With collected packets of 10 days, we are able to extract

some basic statistics about the working system. During the

measurement period, there are 343 nodes with PDR≥10%.

We detect that the sink was down from 14:40 pm Dec. 24,

2010 to 8:20 am Dec. 25, 2010. In our analysis, we exclude

the sink-down time and nodes with PDR<10% in order not to

bias our analysis.

As each node sends three packets every 10 minutes, we

know the number of packets that should be received during

the measurement period when the delivery from the source

node is fully reliable. Without considering packet losses during

the sink-down time, we plot the CDF of the PDR of each

node in Figure 2. We can see that there are 48% nodes with

PDR>90%, 74% nodes with PDR>80%, and the remaining

26% nodes contribute to 64.3% of the total losses. The system

achieves an average PDR of 81.3%. Figure 3 shows the CDF

of the radio duty cycle of each node. The average radio duty

cycle of the system is 4.9%. Those results indicate that the

current ready-to-use TinyOS protocols are not good enough

compared to tailored protocols which are reported to achieve

99.9% reliability at permilli in previous works [19], [20].
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Figure 4 shows the CDF of the hop count (to the sink) of

received packet and the hop count of each node. We calculate

the hop count of each node as the median hop count among

all received packets originated from the node. The two curves

are close to each other, implying that there is no clear trend

that the number of packet losses on long path is higher than

that on short path since otherwise the sink should receive more

packets with smaller hop counts.

The above implication is further confirmed in Figure 5

which shows the scatter plot of PDR vs. node’s median hop

count. We also plot the average PDR in each hop count by a

red circle. It appears that, for nodes near the sink, the PDRs

have a high variance. On the contrary, for nodes far away from

the sink, the PDRs are mainly concentrated around 80%. This

result implies that bad links do not impact nodes far away

from the sink but do impact nodes near the sink.

V. LOSS IDENTIFICATION: A FIRST STEP

Basically, we identify packet losses by observing gaps in

sequence numbers (seqno). In our study, we identify loss

event of the form <ID, stime, etime, loss_size>

where ID is the source node ID, stime and etime denote

the start time and end time, and loss_size denotes the

loss size which is the maximum number of consecutive

packets lost by the same source node. Two types of packet

losses can be identified by observing the drop_no_ack and

drop_overflow counters contained in C3 packets.

We also want to identify other interesting system events,

called triggers (e.g., packet corruption, loop, reboot), which

can explain the loss events. Each trigger is annotated with

the node ID where the trigger is detected, a start time, an

end time, and a scope containing a list of impacted nodes.

Impacted nodes refer to nodes that are likely to be impacted

by the trigger.

Due to space limit, we do not present algorithms for

identifying loss events and triggers. Interested readers are

referred to [21] for the details.

We have identified a total of 181,862 losses. We have

also identified 5,930 no-ack loss events (by examining

drop_no_ack), totaling 84,030 losses, and 347 overflow

loss events (by examining drop_overflow), totaling 5,219

packet losses. They contribute to nearly 50% of the identified

losses.

Figure 6 shows the loss events during the measurement pe-

riod. The x-axis denotes the time and y-axis denotes the source

node IDs in ascending order. Each loss event is represented

by a black line located according to its start time and end

time. We also plot the no-ack loss event by a red line and

the overflow loss event by a green line. A diamond indicates

a reboot event. We can make several observations from this

figure.

Vertical banding. We can see two types of vertical banding

here. (1) Vertical banding covering all nodes (V1). This

happens during 12:54:05, Dec. 25∼16:34:05, Dec. 25, and

during 13:03:58, Dec. 28∼13:23:58, Dec. 28. The root cause

should be at the sink side. (2) Vertical banding covering a

subset of nodes (V2). In this case, a subset of nodes experience

packet losses simultaneously. This is mostly caused by routing

loops. An evidence is that we also observe overflow losses at

a subset of nodes (green lines).

Horizontal banding. We observe that some nodes expe-

rience heavy packet losses during the measurement period.

Most of them are accompanied with no-ack loss events,

suggesting that those nodes may have very poor link qualities

to neighboring nodes, causing the retransmission threshold to

be exceeded. Interestingly, we observe that most of these nodes

experience a recover in the midday. We will further look into

such a phenomenon in the following section.

VI. ROOT CAUSES: A CLOSER LOOK

To investigate the root causes of packet losses, we would

like to perform correlation analysis between the loss events

and the triggers identified in the previous section. Intuitively,

if a loss event is highly correlated with a trigger, it is caused

by the trigger with a high probability.

We investigate the following categories of causes:

(A) Sink-side failures which are further classified into

(A1) sink node failures, and,

(A2) PC-end failures

(B) Corruptions which are further classified into

(B1) in-network corruptions, and,

(B2) corruptions at the sink node

(C) Overflow drops which are further classified into

(C1) loop-induced overflow drops, and,

(C2) non-loop overflow drops

(D) No-ack drops which are further classified into

(D1) environment-induced no-ack drops (env-no-ack

drops), and,

(D2) interference-induced no-ack drops (interference-no-

ack drops) which can be induced by node reboot

or routing loops. Both node reboot and routing

loops will cause a very high beaconing rate in the
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indicates a reboot event. The sink is down during 14:40 pm Dec. 24, 2010 to 8:20 am Dec. 25, 2010.
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Fig. 7: Causal relationships of system events to loss.

current implementation of CTP/LPL, causing severe

interference to neighboring nodes.

(E) Node reboot which can directly cause queued packets of

the downstream nodes to be dropped.

There are other causes such as sink down or node down.

Figure 7 shows the causal relationships.
We note that a single trigger may have different impacts.

For example, a reboot may cause the queued packets to be

dropped directly, or, cause interference to all neighboring

nodes, resulting in no-ack drops at those nodes. A routing loop

may cause overflow drops directly, or, cause interference to

all neighboring nodes, resulting in no-ack drops. The multiple

impacts of a single trigger and the complex interactions among

triggers and the loss events make the delivery performance of

a sensor network extremely difficult to reason about.

As each trigger is annotated with a start time and an end

time, we use temporal correlation to match it with loss events.

To find matches, we widen the start time and end time of a

trigger by a time lag to compensate for factors like delayed

reporting. The setting of the time lag, however, depends on the

scenario under consideration. To minimize the false positives,

we also consider the impact scope of a trigger. Each trigger can

be denoted as <ID, stime, etime, scope> where ID

denotes the node ID where the trigger is detected, stime and

etime denote the start time and end time of the trigger, and

scope contains a list of nodes that are likely to be impacted

by the trigger.

We consider three kinds of impact scopes in this study:

(1) trigger.scope := trigger.ID.

(2) trigger.scope := downstream nodes of trigger.ID.

(3) trigger.scope := neighboring nodes of trigger.ID.

Detailed process on how to find the scope is described in [21].

We will use a subscript to differentiate triggers with dif-

ferent scopes: trigger1 has impacts on trigger.ID, trigger2 has

impacts on all downstream nodes of trigger.ID, and trigger3

has impacts on all neighboring nodes of trigger.ID. In corre-

lating triggers to loss events (or triggers), we ensure that the

ID in the loss event is contained in the scope of the trigger,

i.e., event.ID ∈ trigger.scope.
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A. Sink-side failures

The sink node receives packets via the wireless radio, and

then forwards the packets via the serial port to the PC where

a java tool records the collected packets.

By inspecting the receive counter in packets originated

from the sink node, we are able to detect that 22,873 packets

are dropped at the sink side, i.e., either at the sink node or

at the PC. The readers are referred to [21] for the detailed

calculation.

What causes sink-side failures? Figure 8 plots the number of

packet losses at sink side for each day. We observe that a high

number of packet losses happened in Dec. 25. Interestingly,

we can see that one vertical banding covering all nodes in

Dec. 25 from Figure 6.

Checking A1→A (the labels A and A1 correspond to

triggers/events shown in Figure 7). The number of packet

losses corresponding to the vertical banding (i.e., V2) is

22,638, which means the vertical banding contributes to 99.6%

of the sink-side losses. To further investigate the causes of the

vertical banding, we examine the status of the sink node. We

find that the sink node does not reboot across the event since

the seqno of packets from the sink node continues to increase.

After many rounds of detections during testbed experiments,

we find that several causes exist: (1) the serial line connecting

the sink node and PC is too long and thus is unreliable

in delivering packets; (2) the serial port number on the PC

unexpectedly changes, causing failure of the java tool; (3) the

java tool seems blocked (a restart of the java tool will solve

the problem). The above causes are outside the sink node. We

collectively call them PC-end failures.

The above result also implies that the amount of packet

losses inside the sink node (e.g., due to queue overflow)

appears to be small.

B. Corruptions

Corrupted packets are difficult to identify in the first place.

We only check a limited packet fields (e.g., the ID field, the

routing table entries) to validate the correctness.

We are able to detect a total of 9,511 corrupted packets

which correspond to the same number of corruption triggers.

This does not necessarily indicate that 9,511 packets are lost

because of corruptions. We find that there are 222 corruption

triggers that are guaranteed not to cause losses because the

following correct packet has exactly the same source and

seqno fields with the previous corrupted packet.

Checking B→L. We try to match the corruption triggers to

the loss events to find the actual losses caused by corruption.

We do not match for the 127 corrupted triggers with broken

source fields because those triggers cannot be used for

spatial correlation and thus may cause a large false positive.

We set the time lag as 10 minutes since a smaller time lag

will inevitably cause false negatives because our loss detection

latency can reach 10 minutes (i.e., one transmission period).

We have detected a total of 9,037 corruption-induced losses.

This contributes to 9,037/181,862=5% of the identified loss. In

order to get an estimate of the false positive rate, we consider

a sample of the 222 corrupted packets that are guaranteed

not to cause losses. The matching algorithm finds 19 of those

packets correlated with losses, implying an false positive rate

of 19/222=8.5%.

Checking D2→B. How do corruptions occur? Does in-

network interference cause packet corruptions? To answer

these questions, we correlate reboot3 and loop3 to the cor-

ruption triggers, we find that 3,001 corruptions triggers

are correlated with either reboot3 or loop3, indicating that

3,001/9,511=31.6% corruptions are highly likely to be caused

by in-network interference. This implies that the current

packet-level CRC mechanism cannot guarantee the correctness

of a receiving packet.

C. Overflow drops

From Figure 6, we can get an initial guess that loops can

cause overflow drops as there are many overflow drops (green

lines) in occurrence with loops (vertical banding covering a

subset of nodes).

Checking C1→C. To take a closer look, we try to correlate

loop1 triggers to overflow loss events. The scope of the trigger

only includes loop.ID since in this case the overflowed nodes

should also see the loop events if the overflow drops is caused

by the loop. As both the triggers and the loss events are

identified using C3 packets, we use a small time lag of one

second here. We have matched 399 loop1 triggers to 322

overflow loss events, totaling 5,178 losses.

This result implies several facts. First, overflow drops are

mainly caused by loops. Loop-induced overflow drops occupy

5,178/5,219=99.2% (5,219 is the number of identified overflow

losses) of the total identified overflow losses. Second, the

non-loop overflow drops only occupy 0.8% of the identified

overflow losses. We have manually inspected 15 non-loop

overflow events and find that nodes experience non-loop

overflows have two characteristics: they either experience a

sudden increase in the number of received packets, or, they

have a high incoming traffic (>300 packets in one period of

10 minutes). Third, loops do not necessarily cause overflow

drops: 93% of the loop events do not cause overflow drops.

It is, however, possible that loops may cause other kinds of

packet losses, e.g., interference-induced losses.

We are interested in the loop events that cause overflow

drops. Where and how do they occur? To get a first impression,

Figure 9 shows the scatter plot of each node’s median hop

count vs. detected number of loops that cause overflow drops.

The median hop count of each node is calculated by excluding
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cause overflow drops.
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Fig. 11: Node 19’s temperature and humidity on Dec. 19

the looping period. We observe that nodes far away from the

sink can be easily involved into loops.

D. No-ack drops

No-ack drops constitute the largest portion of packet losses.

Conceptually, this type of loss is incurred by poor link qualities

to the neighboring nodes, causing the retransmission threshold

to be exceeded. There are generally two kinds of factors

impacting the link quality used for routing, i.e., physical

connectivity and interference. Physical connectivity can be

influenced by the environment or the network deployment.

Interference is mainly caused by in-network traffic since our

system uses channel 15 which does not overlap with WiFi

channels.

1) Environment-induced no-ack loss: From Figure 6, we

observe that a number of nodes experience serious packet

losses (horizontal banding). Interestingly, those nodes expe-

rience a recover in the midday. This phenomenon is more

obvious in the first six days. To investigate the underlying

causes, we inspect a representative node, node 19. Figure 10

shows node 19’s routing table on Dec. 19. The x-axis denotes

the time and the y-axis denotes the neighboring nodes that

Fig. 12: RSSI and link PRR in node 19’s routing table on

Dec. 19.

appeared in the routing table at least once during the day. The

color represents the link quality to the neighbor. A green color

indicates a good link quality, a yellow color indicates a median

link quality and the red color indicates a poor link quality. We

also show the parent of node 19 by a blue rectangle. The figure

does not show information near the start and end times of the

day because no C2 packets from node 19 were received. We

can see that the link qualities to all nodes experience an abrupt

change during 9:00 am–10:00 am (increase) and 20:00 pm–

21:00 pm (decrease). It makes us believe that the environment

has a large impact on the link quality.

Therefore we plot node 19’s temperature and humidity

on Dec. 19 in Figure 11. We see that the changes in link

quality seem indeed correlated with the environment. This

result indicates that the current routing protocols can be

greatly improved by using sensor hints and local buffering

mechanisms: env-no-ack losses can be largely mitigated by

sending packets when the link condition becomes good in the

midday.

Figure 12 shows the RSSI and link PRR (=1/linkETX)

in node 19’s routing table on Dec. 19. The radius of the

circle indicates the link quality to the neighboring nodes.

Interestingly, we see that there is a negative correlation be-

tween RSSI and PRR, suggesting that the degradation in link

quality is not due to channel fading. Thus, our conjecture

is that particles and water pooling on the plastic enclosure

are likely to alter the radiation patterns, causing link quality

degradations. Such a result confirms similar findings in [22]

in which the authors present experimental evidence which

demonstrates that changes in link quality are not a result of

rain induced fading, but rather due to presence of water.

Checking D1→D. We identify env-no-ack losses by iden-

tifying nodes that exhibit periodic behaviors in packet losses.

There are 68,444 env-no-ack losses, i.e., 37.6% of the total

identified losses.

2) Interference-induced no-ack loss: Interference has a

large impact on the performance of wireless links. From the

CTP/LPL implementation, we know that both the reboot and

loop events can cause a high beaconing rate since the Trickle

timer will be reset to its minimum interval of 128ms. With

LPL, interference will be severe because of long preambles in

packet transmissions.

We consider interference caused by reboots and loops in our

current study. We do not consider interference caused by data

packet transmissions because the exact timing of data packet

transmissions is left unknown.
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Fig. 14: Loop overflow drops
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Table 1: Root causes of identified losses
Root cause %

A. sink-side failure 12.5%
A1. PC-end failure 12.45%
A2. sink node loss 0.05%

B. corruption 5%
C. overflow drops 2.87%

C1. loop overflow drops 2.85%
C2. non-loop overflow drops 0.02%

D. no-ack drops 46.2%
D1. env-no-ack drops 37.6%
D2. interference-no-ack drops 2.4%

E. reboot (direct impact on loss) ∼0

Checking D2→D. We try to correlate reboot3 and

loop3 triggers to no-ack loss events in order to investigate

interference-induced no-ack loss. The scope of the reboot and

loop triggers are set to be the neighboring nodes which are

interfered by the corresponding triggers. We have matched 247

loop events to 536 no-ack loss events, totaling 4,361 losses.

We have also found that 10 no-ack losses are matched with

reboot events with a time lag of 10 minutes. No loss event is

found to be correlated to both reboots and loops. Therefore,

the total number of losses correlated with interference is at

least 4,371, occupying 2.4% of the identified losses.

E. Summary

We give a summary about the root causes we have found

so far. Table 1 gives the root causes and the percentage of

identified losses they induce.

There are 33.43% remaining losses we cannot associate with

root causes. This is due to several reasons. (1) The identified

triggers are not complete. (2) There are false negatives in our

matching algorithm. (3) There are other root causes that our

measurement data is insufficient to capture.

F. Understanding the Loss

We look at the characteristics of four important losses,

i.e., corruption-induced loss, loop overflow drops, env-no-ack

drops, and interference-no-ack drops. Here we present the

spatial distributions. Interested readers are referred to [21] for

the loss size distributions and temporal distributions.

Figures 1(a-d) show the geometric distributions of four cat-

egories of losses. Figures 13–16 show the spatial distributions

of four categories of loss with respect to the median hop count

of each node. Figure 13 shows that while corruption-induced

losses increase for the first five hops, it is not apparent for the

larger hops. Figure 14 shows that loop overflow drops mainly

occur in the nodes with larger hop counts where routing loops

can occur more easily. The large value for hop 2 is caused by a

single node 576 involved in loops (which drops 1000+ packets

because of overflow). Figure 15 shows that env-no-ack drops

occur in nodes near the sink. We suspect that it is related to

our specific deployment where those nodes are close to a river.

Figure 16 shows that interference-no-ack drops mainly occur

in nodes near the sink because of high traffic load.

VII. LIMITATIONS

Our current data sources are collected in the form of data

packets and are relatively easy to retrieve. Nevertheless they

cannot capture the complete set of system events in the net-

work. For some wireless behaviors, such as channel utilization,

MAC efficiency, additional measurement infrastructures such

as passive sniffing or local logging are required. We have

attempted to employ sniffers and local logging in our network.

But the current storage size can only support a restricted

duration for measurement. Also the retrieval of a large number

of sniffers or distributed logs is labor-intensive and time-

consuming.

Another fact is that the TelosB node used in our current

deployment cannot accommodate our application program

and the local logging component simultaneously. When the

hardware allows, we believe that limited use of local logging

and passive sniffing will be useful complement for further

investigation into the detailed networking behaviors. We will

explore those approaches as future work.

VIII. IMPLICATIONS AND LESSONS LEARNED

In this section we give a summary on the observations,

implications, and lessoned learned in this study.

Observation 1: The overall delivery performance of our

system is 81.3% with a radio duty cycle of 4.9%. Implica-

tion 1: This indicates that the current ready-to-use TinyOS low

power protocol stack is not good enough compared to tailored

protocols which are reported to achieve 99.9% reliability at

permilli [19], [20].

Observation 2: The number of packet losses on long path

is no higher than that on short path. For nodes near the sink,

the PDRs have a high variance while for nodes far away

from the sink, the PDRs are mainly concentrated around 80%.

Implication 2: This implies the existence of some bad links

since otherwise all PDRs will be high. Those bad links do

not impact nodes far away from the sink (distant nodes) but

do impact nodes near the sink (nearby nodes). This further

implies that the current routing metric can avoid the selection

of bad links for distant nodes but cannot optimize the delivery
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performance for nearly nodes by enforcing a longer and more

stable path.

Observation 3: Sink-side failures are mainly incurred at

the PC end instead of the sink node. Implication 3: PC-

end hardware and software should be closely monitored to

minimize packet losses. The use of multiple sinks (including

sink node and PC) will be effective in improving the reception

reliability.

Observation 4: Packet corruption rates are relatively high

(at least 5%). Packets can be corrupted in the network during

transmission. Implication 4: The current packet-level CRC

mechanism is not enough to ensure the correctness of a

receiving packet.

Observation 5: Overflow drops are mainly caused by rout-

ing loops whereas most loops are transient and show no strong

correlation with packet losses. Implication 5: Routing loops

have different impacts on packet delivery performance. On one

hand, it decreases the performance because of queue overflow

(and interference). On the other hand, it can salvage transient

packet losses. With respect to packet delivery performance, we

should eliminate loops that cause overflow drops.

Observation 6: There is a negative correlation between

RSSI and PRR. Implication 6: Link estimation protocols

should use multiple factors to decide the link quality.

Observation 7: The environment has a large impact on

packet delivery performance. A number of nodes exhibit

highly periodic performance variations because many links

severely degrade in the night. However, most of the nodes

experience a recover in the midday. Implication 7: This

result indicates that the current routing protocols can be

greatly improved by using sensor hints and local buffering

mechanisms: packet losses can be largely mitigated by sending

packets when the link condition becomes good in the midday.

Observation 8: We find in our deployment an unnegligible

number of node reboots and node failures. It also appears that

the poor performance of some wireless links are highly related

to our specific deployment where those links are near a river.

Implication 8: Both sensor node hardware and sensor network

deployment have great impacts on the system performance. It

is suggested that multiple rounds of indoor testbed experiments

and outdoor prototype experiments are conducted before a

large-scale and long-term sensor network is deployed.

IX. CONCLUSION AND FUTURE WORK

In this paper, we present MAP, a methodology for measuring

and analyzing the loss performance of a large operating WSN

in the wild. Based on the collected data, we present an

approach for uncovering the spatial-temporal distributions of

the loss events as well as developing a causal graph with

which we perform spatial-temporal correlation analysis for

revealing the root causes. We summarize implications and

lessons learned and give important guidance to future WSN

deployments.

There are multiple dimensions to explore. First, we would

like to examine more number of system events, such as link

quality changes, routing dynamics. Second, we would like to

implement our methodology as a realtime service, augmented

with limited use of passive sniffing or local logging for deep

examination of wireless behaviors.
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