
April 1, 1998 / Vol. 23, No. 7 / OPTICS LETTERS 485

Measurement and calculation of the two-dimensional
backscattering Mueller matrix of a turbid medium
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We present both experimental and Monte Carlo–based simulation results for the diffusely backscattered
intensity patterns that arise from illumination of a turbid medium with a polarized laser beam. A numerical
method that allows the calculation of all 16 elements of the two-dimensional Muller matrix is used; moreover,
it is shown that only seven matrix elements are independent. To validate our method, we compared
our simulations with experimental measurements, using a turbid medium consisting of 2.02-mm-diameter
polystyrene spheres suspended in deionized water. By varying the incident polarization and the analyzer
optics for the experimental measurements, we obtained the diffuse backscattering Mueller matrix elements.
The experimental and the numerical results are in good agreement.  1998 Optical Society of America

OCIS codes: 290.1350, 290.7050, 260.5430.

A few recent studies demonstrated that one can mea-
sure information on the properties of a turbid medium
by shining a polarized laser beam upon a sample and
then analyzing the state of polarization of the dif-
fusely backscattered light. The investigated applica-
tions of this technique include measurements for the
average particle size, the scattering coeff icient, and
the anisotropy factor of particle suspensions1 as well
as cloud diagnostics,2,3 the study of biological mate-
rial,4 – 6 and the measurement of average photon path
lengths.7

To achieve full experimental characterization of the
optical properties of the sample under investigation,
Hielscher et al.6 used a Stokes vector–Mueller matrix
approach to polarized light scattering. They general-
ized the concept of the effective Mueller matrix8 and
measured the two-dimensional Mueller matrix of the
backscattered light from a turbid medium. In a recent
theoretical paper Ambirajan and Look9 used a Monte
Carlo technique to study the multiple scattering of a
polarized light beam from a plane-parallel medium.
They investigated the degree of polarization of the dif-
fuse light when the incident beam was right circularly
polarized.

In this Letter our theoretical analysis is based on the
assumption that the scattering of light is incoherent.
The incoming narrow laser beam propagates downward
along the z axis and scatters from the medium located

in the lower half-space. Let P0 be the Stokes vector
that corresponds to the power of the incident laser
beam with respect to the x z reference plane and let
Ibssr, fd be the Stokes vector that describes the ra-
diance at the detector [i.e., at the point sr, fd on the
surface of the scattering medium]. Then, Ibssr, fd 

ms
2Ssr, f; ms, mT dP0, where ms and mT are the scat-

tering and the extinction coefficients, respectively, and
S can be seen as the effective backscattering Mueller
matrix. If the scattering medium is homogeneous, the
effective Mueller matrix takes the form

Ssr, f; ms, mT d  Rs2fdLsrs, v̄dRs2fd ,

Lsr, v̄d 

X̀

n2

v̄n22
Lnsrsd, rs  mTr , v̄ 

ms

mT

, (1)

where v̄ is the single-scattering albedo and rs is the
scaled radial distance. R is the standard 4 3 4 matrix
that rotates the reference plane.10 The term Ln in the
above sum corresponds to backscattered light that has
been scattered n times. For example, the contribution
of the double-scattered light consists of two terms
L2  L2

0 1 L2
00, where L2

0 corresponds to the light
that is scattered twice before reaching the detector
and L2

00 corresponds to the light that is additionally
ref lected from the surface of the medium before the
second scattering:
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In Eqs. (2), Msud is the single-scattering Mueller ma-
trix and T sud is the Fresnel matrix that describes the
ref lection from the surface of the medium. One can
prove that each matrix Ln, and therefore their sum L,
verifies the following important equality:
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Equation (3) holds provided that the single-scattering
Mueller matrix M also satisfies the relation Mt



PMP. In our case, M is the familiar Mie scattering
matrix. From the explicit form of the matrices T and
M, it follows that they also satisfy the above the rela-
tion (i.e., Mt

 PMP and T t
 PTP ).11,12 From this

relation and Eqs. (2), it follows that Eq. (3) holds for
L2. For matrices Ln, n . 2, the forms of the cor-
responding integrals are similar to those in Eqs. (2),
except that there are more integration variables and
matrices in the product contained within the integral.
The main difference is that the product within the inte-
gral contains, besides T and M, the finite number of ro-
tational matrices R. However, the relation Rt

 PRP

holds, and therefore one can prove that the matrices
Ln, for n . 2, also satisfy Eq. (3).

Equation (3), together with Eq. (1), shows that not
all elements of the matrix S are independent. In fact,
there are only seven independent elements, S11, S12,
S14, S22, S23, S24, and S44; and the other nine,
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can be obtained by simple rotations.

It should be mentioned that these important rela-
tions hold under much weaker conditions than those
implied by our model (i.e., an optically inactive medium
with spherical scatterers). It is sufficient that the
scattering medium be invariant under rotations
around the axis of the incident laser beam. Equa-
tions (4) also hold for an optically active medium, and
the scattering particles can also be dichroic or birefrin-
gent, provided that they are randomly distributed.

To calculate numerically the effective Mueller ma-
trix S, we used the Monte Carlo method. Essentially,
we discretized the integrals in the sum of Eqs. (1)
and expressed L as a sum over a large number of
randomly chosen photon trajectories, each defined by
the collection of points at which the corresponding
scattering event took place. The number of these
points [which corresponds to the index in the sum
of Eqs. (1)] was arbitrary. The trajectories were dis-
carded if their contributions were below a suitable
cutoff value. Each trajectory then gave its contri-
bution to the total effective matrix S. In this way
we could calculate all matrix elements Sij simultane-
ously, unlike the experimental measurements, in which
we had to combine results from several initial states
of the incoming laser beam to determine the matrix
elements.

A schematic view of the experimental apparatus
used for collection of the diffuse backscattered images
in shown in Fig. 1. The phantom that was utilized in
this study was composed of a suspension of 2.02-mm
polystyrene spheres (Ernest F. Fullam, Latham, N.Y.).
The sample was created by dilution of 0.075 ml of a
10-wt. % suspension of polystyrene spheres with 15 ml
of deionized water. The index of refraction of the
spheres was 1.59, and the sample had a relative in-
dex of refraction nynw of 1.192, where nw is the index
of refraction for water. The sample had a scattering
coefficient smsd of 11.88 cm21 and an anisotropy factor
sgd of 0.912 at 632.8 nm and had a negligible absorp-
tion coefficient sma ø 0, v̄ ø 1d.

To determine each of the 16 experimental Mueller
matrix elements, we took 49 images at various
combinations of input and output analyzer polar-
ization states. The details of the input and output

Fig. 1. Schematic diagram of experimental setup used for
the Mueller matrix imaging of the diffusely backscattered
light from the sample.
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Fig. 2. Experimental and Monte Carlo–simulated diffusely backscattered Mueller matrix for a 2.02-mm polystyrene
sphere suspension. The approximate size of each image is 1.6 cm 3 1.6 cm. Each of the 16 experimental elements is
calculated by addition or subtraction of a series of images. The individual images are represented by a two-letter combi-
nation that denotes the input polarization and the output analyzer orientation (i.e., HV denotes horizontal input polarized
light and a vertical polarization analyzer). The corresponding symbols denoting polarization are V, vertical; H, horizon-
tal; P, 145±; M, 245±; R, right; L, left; and O, open or no polarization optics. For the Monte Carlo simulations, the average
number of collisions per trajectory is 10.

polarization states are indicated above each Mueller
matrix element in Fig. 2 for computation of each of the
experimental elements.

Note that for the images presented in Fig. 2 we
chose the given color map to enhance the azimuth-
dependent patterns for comparison with the simula-
tion results, and Fig. 2 does not illustrate the radial
decay in the intensity especially well. The transport
mean free path for the suspension used in our study,
mfp0

 1yfma 1 mss1 2 gdg,4 was 0.967 cm. It ap-
pears that, for distances approaching approximately
two transport mean free paths from the input in-
cident laser point, the azimuthal dependence of the
patterns becomes less pronounced because multiple
scatterings tended to randomize the polarization state
of the light. Also, the radial falloff in the diffuse light
intensity after approximately two transport mean free
paths from the input incident laser point follows an
exponential decay rate similar to that seen in the S00

case, in which no polarizers were used. Other agree-
ments seen in Fig. 2 for the experimental and the simu-
lated results are the rotational relations [see Eqs. (4)]
among the Mueller matrix elements.

Although the laser beam in the experiments was co-
herent, the light treated in the Monte Carlo simula-
tions was incoherent. Because the correlation time of
the laser-induced speckles is of the order of 10 ms, the
experimental images acquired with an exposure time of

1.7 s have the speckle effect averaged out. Therefore,
the coherence effect is not important in our images.
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