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Introduction1

…science is not common sense, and its most basic
ideas and frames of reference require development
through complex intellectual processes which in-
volve not only interpretations of observation but also
theoretical and partly philosophical conceptuali-
zation.

Talcott Parsons (1968, p. 429)

I have two goals in this paper.  The first is to discuss the
meaning of formative and reflective indicators.  The second
is to interpret different senses of measurement error, espe-
cially as manifest in common method bias.  These topics have
received considerable attention recently in a number of
thoughtful and important articles (e.g., Le et al. 2007;

MacKenzie et al. 2005; Petter et al. 2007; Podsakoff et al.
2003a; Richardson et al. 2009; Sharma et al. 2009).  Never-
theless the literature contains conflicting conclusions and
recommendations, certain issues remain unexamined, and a
need exists for considering the relationships among formative
and reflective indicators, measurement error, and specification
of scientific theories.

Before turning to these topics, I wish to make two disclosures.
Any author proceeds from a number of recognized and hidden
assumptions and world views which color one’s perspective
and approach to research.  Like many researchers of my
generation, I was indoctrinated and influenced by logical
positivism.  But as I looked deeper into the philosophy of
science, I came to be shaped more by post-positivist outlooks.
If I had to pick a label, something I normally try to avoid, I
would say that metaphysical and epistemological realism best
characterizes my thinking. However, there is more to my
outlook than realism, as I have benefitted greatly from study1Detmar Straub was the accepting senior editor for this paper.  Thomas

Stafford served as the associate editor.
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of approaches from social, contextual, neo-Kantian, and post-
modern traditions.  The personal tension that I have felt
between realism and the latter approaches prevents me from
embracing realism with the religious-like fervor of realists
that I have known or read.2  Another aspect of my thinking
that I wish to disclose is that I attempt to avoid being pulled
too far in any direction marked by strictly statistical or
methodological standards, philosophical criteria, or substan-
tive concerns when relating observational evidence to pro-
posed theoretical frameworks.  Rather I try to follow the spirit
of Talcott Parson’s assertion quoted above where creative
tensions push and pull one in one direction or another and a
(temporary) balance must be achieved. This inevitably means
that efforts must be made to reconcile often seemingly in-
compatible and incommensurable policies and dictates at the
boundaries of statistical, methodological, social, behavioral,
and managerial disciplines and the practices in these disci-
plines. My orientation is both eclectic and holistic, which
might create antagonism in the minds of scientists more
circumscribed in perspective than I.  But I hope not, for I
firmly believe that a dialectic between persons of different
points of view is essential for pursuing truth, and that any out-
come reached as a consequence is relatively temporary in the
scheme of things and likely not to be situated at one extreme
or another shaping the debate (at least for long).  For me,
there are many paths to knowledge, some scientific, some not.

A Framework for Thinking about
Theoretical, Empirical, and
Spurious Meaning

Some first principles by way of premises undergirding the two
main goals of this article (readers most interested in the
practical aspects of formative and reflective measurement and
in construct validity and common method bias could skip this
section and jump to the second and third main sections of the
article).  A major aim of information systems and organiza-
tional research is to formulate theories and hypotheses and
test these against observations or experimentation.  A super-
ordinate objective, often left unstated, is to uncover truths
about the world of experience of information systems and
organizations.  By experience is meant events, happenings,
actions, or behaviors of people, groups, institutions, collec-
tivities, or systems, as well as outcomes influenced by these

events, happenings, actions, or behaviors.  Explanation, pre-
diction, and understanding are guiding principles here, too, as
well as control on occasion.

To accomplish such multifaceted aims, researchers draw upon
and create conceptual and theoretical ideas, derive hypoth-
eses, design appropriate methods to test hypotheses, measure
variables designed to link in some way to the concepts, theo-
ries, and hypotheses, implement studies, and interpret findings
in the light of the theories and hypotheses.3  Putting this
enterprise into practice is fraught invariably with errors at
every point in the process.  The stages in the research process
typically have been segregated and accomplished in
piecemeal ways, with researchers often working in teams, yet
functioning as specialists and focusing on only subparts of the
whole process.  By applying certain standards and policies at
each stage or in each piece of the research process in isolation
from the other stages or pieces, yet in accordance with the
received views therein, errors can be exacerbated and even
artificially created because of inconsistencies, trade-offs, and
other issues occurring across stages or subparts.

Criteria are needed to better integrate the various parts of the
research enterprise and bridge the human, logical, and proce-
dural gaps constituting it.  A small beginning is to consider
how meaning or sense-making exists and arises in doing
research.  Sense-making is neither a strictly empirical nor
intellectual endeavor but requires the integration of con-
ceptual, theoretical, methodological, and statistical matters of
importance.  Figure 1 presents a framework for thinking about
facets of meaning expressed in a way underlying structural
equation modeling or other approaches that might be shown
to be special cases of the general structural equation modeling
approach.4  Sense-making entails scrutinizing the specifica-
tion of theories, estimation of parameters, hypothesis testing,
and interpretation of findings in a holistic way.  To structure
the sense-making process, it is useful to think of three
interconnected senses of meaning: theoretical, empirical, and
spurious.  The framework sketched in Figure 1 and accom-
panying discussion to follow can be thought of as a premise
upon which the treatment of formative and reflective indi-
cators and construct validity and common method bias rest.

2A useful history and analysis of logical positivism and the on-going
transition to post-positivist philosophies of science can be found in Suppe
(1977).  Brief commentaries on realism can be found in the following entries
on the web from the Stanford Encyclopedia of Philosophy:  Realism;
Scientific Realism; Semantic Challenges to Realism.

3The view of science taken here best fits a positivist or realist, quantitative
researcher, and is not meant to apply to or criticize research done in design
science and qualitative research.

4Knapp (1978) showed that virtually all parametric statistics might be con-
strued to be special cases of the canonical correlation model. Bagozzi et al.
(1981) demonstrated that the canonical correlation model is a special case of
structural equation models.
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Key:

 = theoretical or latent variable;  = observed or manifest variables;  = conceptual specification and/or theoretical definition;c
= inferred (e.g., estimated) causal path; ———— = inferred (e.g., estimated) relation (i.e., factor loading) between latent and manifest

variable; - - - - - - = correspondence rule; = causal specification; — - - — = relationship between latent variable and its conceptual

specification/theoretical definition; – @@ – @@ – = indicates which observed variables are involved in the correlations; CS = conceptual specification

and/or theoretical definition; CR = correspondence rule for antecedent, focal construct, and consequence, r’s = observed correlations among

manifest variables; γ, β, λ’s = parameter estimates; H = theoretical hypothesis; R = rationale behind theoretical hypothesis; ζ = theoretical error;

o.v.’s = observed variables; e = random error.

Figure 1.  A Framework for Thinking about Theoretical, Empirical, and Spurious Meaning

Theoretical Meaning

To introduce key ideas connected to Figure 1, imagine that
one desires to consider the meaning of a focal latent construct,
F.  Consider first the theoretical meaning of F.  Theoretical
meaning resides in specification of the conceptualization of
the focal construct and the theoretical relationships, if any,
that the construct has to other constructs in a theoretical
network.  The conceptualization of a specific construct can be
accomplished through a theoretical definition (see triangle
CSF in Figure 1) wherein a focal term referring to the concept
that the focal construct is intended to represent is related to
one or more other terms in a sentence(s) designating its
content or essence.  The sentence might specify theoretical
attributes or characteristics of the concept, a structure or form
in which the attributes relate to each other and to the concept,
and/or dispositions (e.g., powers and liabilities) of the concept
as a whole or of its attributes.  The conceptualization can be
evaluated in terms of such ideas as well-formedness, speci-
ficity, scope, ambiguity, vagueness, transcendence verus im-
manence, or other semantic and syntactic criteria.  One claim
then is that part of the nominal meaning of a construct is
captured by the content of its theoretical definition.

In addition to the content of a theoretical definition of a focal
construct, F, theoretical meaning resides in (1) the ante-
cedents, determinants, or causes of F, (2) the consequences,
implications, or results of F, and (3) the associative (i.e.,
nonfunctional, noncausal) links to F (the latter are not shown
in Figure 1).5  Whereas a theoretical definition specifies what
a focal concept is and what it is capable of becoming or doing
(through either abstract law-like relations or delineation of its
powers and liabilities), its antecedents supply theoretical
information as to where it has been (that is, its history and
development) and/or how it is influenced or produced.  The
theoretical meaning here is provided by the content of the
hypothesis (HAF) linking antecedent A to F, and its rationale
or reasoning (RAF).  A hypothesis might entail a relatively
nonspecific statement such as “the greater the magnitude of A,
the less the level of F,” or it might contain a more specific
statement as to the functional form of the relationship or even

5It might be pointed out that the focal concept may be of little interest in itself
for some researchers and that the conceptualization becomes most useful
when the focal construct is part of a nomological network or theory in which
it is embedded and in which it is formally connected to other constructs.
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the amount of change expected in F as a function of A.  The
rationale for the hypothesis is needed to complete the meaning
of F provided by A.  In general, a rationale for a hypothesis
can be achieved through specification of the mechanism or
process whereby A influences F, and is typically expressed
through theoretical laws and an explication of how A
produces change in F (e.g., a causal explanation).  Hypotheses
and rationales are often expressed contingently, explicating
conditions under which, say, A affects F (or F influences C).
Note too that any theoretical law will generally correspond, in
part, to an empirical law (e.g., a hypothesis of regular
succession).

In a parallel fashion, the theoretical meaning of F is also
ascertained through its relationship to consequences.  That is,
the implications of F supply information about where a
phenomenon is going, what it can lead to, and/or what
influence it has.  Again, the meaning here arises through
delineation of the form and content of the hypothesis linking
F to C (HFC) and its rationale (RFC).  Again, certain asso-
ciations between F and other theoretical variables can provide
meaning concerning F (analogous to criterion-related validity,
for example).

In sum, the theoretical meaning of a construct inheres in what
it is and to what it relates conceptually.  A construct standing
alone is less rich in meaning than one that is explained by
something else or one that also explains or predicts something
else.  To take an example, consider a construct intended to
capture an emotion.  The theoretical meaning of an emotion
might be specified in terms of happenings experienced by a
person and the primary appraisals he/she makes in this regard
(e.g., Lazarus 1991).  But a fuller theoretical meaning of the
emotion would be provided by also considering secondary
appraisals and coping responses to the experienced emotion. 
Indeed, some theorists even go further and propose that
integral parts of the meaning of an emotion are the action
tendencies seemingly following the experience of the emotion
(Frijda 1986).  For example, anger, sadness, and fear are often
connected intimately to such action tendencies as striking out,
seeking comfort, or running away, respectively.  An emotion
then is a complex representation of the occurrence of events
happening to a person, primary appraisals thereof, plus action
tendencies peculiar to the emotion and its experience.  Secon-
dary appraisals and coping responses are still further conse-
quences of emotions (Lazarus 1991).

It should be pointed out in Figure 1 that the brackets to the
left of the figure for theoretical meaning and empirical
meaning overlap at the level of the latent variables to suggest
that both capture aspects of meaning of the latent variables.
More specifically, the nature of any research construct is both

conceptual and empirical.  In one sense, observed variables
are “mapped into” theoretical constructs (or vice versa in
some philosophical traditions), and this implies that the
essence of construct validity inheres, in part, in the validity of
this operationalization.  Here issues need to be considered
concerning the relationship of a theoretical concept and its
attributes, either with the attribute conceived as a component
or an instantiation of the concept, and the relationship
implying that the attribute can be conceived as ontologically
dependent on its concept or vice versa.

What is the relationship of theoretical meaning to formative
and reflective approaches to measurement?  Here, unlike
under empirical and spurious meaning discussed below, it can
be seen that the two approaches are similar in terms of theo-
retical meaning.  Most researchers would agree that whether
formative or reflective measurement is employed, it is impor-
tant to provide strong conceptual specifications of the con-
structs for which the indicators are proposed to measure.
Thus, well-formed theoretical definitions are required for
constructs, whether one uses formative or reflective indi-
cators.  Second, in models where formative or reflective
indicators are employed, the theoretical meaning of constructs
resides, in part, through connections any focal construct has
to other constructs.  The specifications of these connections—
whether causal, functional, predictive, or associative—can be
the same for models with formative and reflective indicators
of constructs.  That is, theoretical meaning of a focal construct
accrues, in part, through specification of hypothesized rela-
tions of the focal construct to other constructs and the
rationales for these relationships, and this is required for
constructs measured with formative and reflective indicators.
Criticisms of formative measurement that some researchers
have made—to the effect that theoretical meaning changes as
a function of the number of formative indicators, the number
of constructs measured reflectively, the number of indicators
of the reflective constructs, and the relationships between the
respective formative construct and reflective constructs—
seem misplaced or at least in need of further nuanced
interpretation.  The criticisms raised do not so much implicate
theoretical meaning but rather arise because of certain
indeterminancies that inhere in empirical meaning and
spurious meaning for models with formative indicators, as
discussed below.  Yet even here, it is important to recognize
that the differences between models with formative and
reflective indicators rest on different premises or assumptions,
and not on the different empirical implications, per se.  That
is, models using formative indicators and models using
reflective indicators can both be meaningful, given their
premises, despite yielding different empirical outcomes. 
More on this below.
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Empirical Meaning

Empirical meaning refers to the observational content asso-
ciated with theoretical constructs after spurious meaning, if
any, has been removed.  This is accomplished formally
through correspondence rules which link theoretical con-
structs to observed variables.  There are at least three kinds of
correspondence rules:  the operational definition, partial
interpretation, and causal indicator models.  The operational
definition model can be written as P(t) / (E(t) → (R(t)), which
in words reads, “t has theoretical property P by definition, if
and only if, when t is subjected to operation (e.g., experi-
mental test) E, it yields result R.”  This correspondence rule
can be traced back at least as far as Bridgman (1927, p. 5)
who said, “we mean by any concept nothing more than a set
of operations; the concept is synonymous with the corre-
sponding set of operations.”  The implied lack of differen-
tiation between a theoretical construct and its operationa-
lization under the operational definition model means that
every construct has one and only one measure at any point in
time, wherein the construct and measure are equated in
meaning, which not only makes it impossible to speak about
internal consistency reliability and construct validity, but also
leads to a proliferation of theories and findings with little
coherence (because empirical tests with different measures
imply that different theories are being tested).  Research con-
ducted exclusively with observed variables risks criticism on
these grounds.6  Some cases of formative measurement also
rest on the sense of operationalism discussed above.

To overcome problems with such “definitional” operationa-
lism, the logic of multiple operationalism has been promoted
(Campbell 1969).  The version of multiple operationalism
advocated by Carnap (1956), for example, can be written as
E(t) → (P(t) / R(x)), which in words reads, “If t is subject to
operation (experimental test procedure) E, it will exhibit
theoretical property P, if and only if it yields result R.”  This
correspondence rule gives a partial and empirical inter-
pretation of a theoretical construct because observational
meaning is only specified under particular test (i.e., measure-
ment) conditions.  Although this correspondence rule permits
multiple operationalizations, and hence allows consideration
of internal consistent reliability and construct validity, it
suffers from the limitation that theoretical constructs have no
conceptual meaning independent from the procedures used to

obtain observations, and changes in measurement procedures
change the meaning of a theoretical construct (Petrie 1971;
Suppe 1977, pp. 102-104).  We might think of this corre-
spondence rule as analogous to a kind of “supervenience”
(Kim 1993) in the sense that a theoretical construct is said to
depend on or be determined by an observational procedure. 
Some models using formative indicators follow, implicitly at
least, a kind of partial interpretation logic.  I elaborate on this
issue below under “On the Meaning of Formative and
Reflective Measurement.”

A correspondence rule with more desirable properties for
psychological, social, and management science constructs has
been termed the causal indicator model (Keat and Urry 1975,
p. 38), and can be expressed as (P(t) → (E(t) → R(t)), which
reads, “If t has theoretical property P, then if operation
(experimental test procedure) E is applied, it will yield result
R.”  Actually, calling this a causal indicator model is a mis-
nomer.  Causality is generally regarded to occur between two
observable events or to be described as an inferred law-like
relationship between two observable events described
abstractly.  The “causal” indicator correspondence rule, and
indeed the two others described above, relate a theoretical
construct to an observation(s).  This correspondence rule
functions as a scientific law of sorts linking theoretical con-
struct to operational procedure to observation(s) (Schaffner
1969; Sellars 1961).

Notice that this correspondence rule is not part of either the
theoretical meaning of a focal construct or the observations,
per se.  Rather it is an auxiliary hypothesis concerning theo-
retical mechanisms, empirical criteria, and a rule connecting
the mechanisms and criteria.  This point of view has some
affinity with Suppes’ (1962) “hierarchical theory” model,
where the connection between theoretical construct and
observed variable entails a physical theory (e.g., of instrumen-
tation), a theory of operations or experimentation, a theory of
data, and ceteris paribus conditions.  Yet some surplus
meaning is allowed for a theoretical construct that cannot be
captured fully by observed variables.  Notice that the causal
indicator correspondence rule is a complex conceptualization
consisting of a logical expression, some theoretical meaning,
and some empirical meaning.  Frequent reference to causality
in the literature, when reflective and formative measurement
have been discussed, including my own writings at times,
have misleadingly characterized measurement in causal terms
in the sense of declaring that a latent variable either causes or
is caused by an observed variable.

Causality does come into play when specific operations are
performed (e.g., an experimental manipulation) and responses
are observed or recorded (e.g., in self-report manipulation

6This conclusion is implied by the epistemology of realism mentioned earlier.
Research limited to observable variables makes it difficult to defend the
general existence of concepts to which the observables are presumed to
measure, and it makes consideration of theoretical meaning, empirical
meaning, and spurious meaning difficult to consider and discriminate. For
philosophical discussions touching upon these issues, see Bhaskar (1997).
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checks or dependent variable measures), but it is important to
recognize that the relationship between a latent variable and
an observed variable is not strictly speaking a causal one. 
Causality occurs in part of the meaning of a correspondence
rule, but a correspondence rule has additional logical, theo-
retical, and empirical meaning; moreover, a factor loading is
an inferred parameter derived from empirical associations
among observed variables, and therefore constitutes limited
empirical meaning (i.e., it reflects only part of empirical
meaning, which itself is only part of the meaning of a corre-
spondence rule).  With this as background, one can appreciate
that a factor loading (λ in Figure 1), as an inferred parameter
from associations among observed variables, is distinct from
a correspondence rule.  Even with no error in estimation, a
factor loading, while capturing much of the empirical
meaning entailed by a theoretical construct, still fails to
represent the full meaning of the construct, which is also con-
tained in the correspondence rule, conceptual specification of
the construct, and the theoretical relation(s) of the construct
to other constructs, if any.

Nevertheless, when empirical meaning changes (for example,
when a purported unidimensional construct is multidimen-
sional or fails tests of unidimensionality, when discriminant
validity is lacking, or when systematic biases exist for
measures of different constructs), the model that we think we
are dealing with (i.e., a specific elaboration of the model in
Figure 1) no longer applies, and a lacunae exists between
theoretical and empirical meaning.  Notice further that ade-
quate empirical meaning depends, in part, on the proper
choice of operational procedures and observed variables.  For
example, such conceptual criteria as logical deducibility of
observations from the conceptual definition of a theoretical
construct, and consistency and comparable levels of abstrac-
tion among multiple measures of a construct, should be met,
which are standards going beyond the meaning of factor
loadings derived in an empirical analysis (see Bagozzi and
Edwards 1998, pp. 79-82). 

To the extent that such conceptual criteria are poorly met, we
would expect factor loadings to be adversely affected. 
However, other things affect factor loadings as well, such as
spurious meaning.  What is the relationship of empirical
meaning to formative and reflective approaches to measure-
ment?  Here it can be seen that the approaches differ funda-
mentally. 

Under reflective measurement, where indicators are functions
of a hypothesized factor and error terms, empirical meaning
can be said to be local in the sense that the inferred param-
eters linking each indicator to the construct are in principle
particular to the nature of the relationships amongst all indi-

cators of the construct alone, and the residual for each
indicator reflects error.  Such measurement models can stand
on their own so to speak, and the factor loadings and error
variances are in general not dependent on indicators of other
constructs and the relationship between the focal construct
and the other constructs, if the model in which the constructs
are embedded is specified correctly and common method bias
or systematic error does not occur.

Under formative measurement, by contrast, indicators have no
error directly associated with them, and in the most interesting
cases (see the next major section in the article), estimates of
loadings require that the focal construct be linked to reflective
indicators or other constructs that have reflective indicators. 

The loadings of the formative indicators on the focal construct
depend on information contained in the constructs and indi-
cators of constructs to which the focal construct is connected. 
In this sense, empirical meaning is global.  That is, empirical
meaning and the estimates of formative loadings are in a
sense spread out across the model.  Holding constant the
number of formative indicators, the estimates of loadings on
the focal construct can change if the number of reflective
constructs and the number of indicators of the reflective con-
structs change.  Of course, as the number of formative indi-
cators change (e.g., if one or more indicators are deleted or
added to a particular specification), the formative loadings can
change too.  Adding or deleting proper indicators to a reflec-
tively defined construct will not result in significant changes
in loadings.  As a consequence, empirical meaning differs
fundamentally between formative and reflective approaches
to measurement.  Notice that such differences in empirical
meaning could yield differences in inferred linkages between
constructs (γ and β in Figure 1) for models with formative
indicators versus reflective indicators.

Finally, it should be mentioned that for formative measure-
ment, the number of measures in one sense defines the
construct, which is not true for reflective measurement.  Thus,
for instance, Bollen and Lennox (1991, p. 308) note that
“omitting an indicator is omitting a part of the construct”
under formative measurement.

Are the above mentioned differences in empirical meaning
and inferred linkages between constructs necessarily bad?  I
would argue that the answer to this question depends on the
ontology one entertains with regard to latent variables and
with respect to latent variables and the relationships between
latent variables.  For reflective measurement, it is presumed
that the phenomenon that the latent variable is intended to
represent exists, and therefore indicators vary, in a sense,
when the underlying phenomenon varies.  But for formative
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measurement, it is presumed that the phenomenon represented
by the latent variable does not exist until the indicators are
chosen to represent it, where the formative construct then can
be said to summarize the indicators.  Although the ontologies
of the two approaches to measurement differ, either can be
appropriate, depending on the researcher’s purposes and the
ontology one assumes.

Likewise, two different ontologies underlie models with
constructs measured with reflective indicators versus models
measured with formative indicators.  The former presumes
that measurement in the local sense mentioned above applies
and that relationships between constructs are not dependent
on within-construct empirical meaning but rather on across
construct empirical meaning.  The latter presumes that mea-
surement in the global sense considered above applies and
therefore that formative loadings and relationships between
constructs measured formatively and constructs measured
reflectively will depend on the nature of reflective indicators
and their relationship to formative indicators.  For technical
details, see “On the Meaning of Formative and Reflective
Measurement” below.

It can thus be seen that neither formative nor reflective
measurement is inherently wrong or right.  Each has a dif-
ferent ontology for its latent constructs and a different
ontology for the larger models containing latent constructs
linked according to a theory or hypotheses of interest, where
in the latter case the inferred structural regression parameters
potentially differ as a consequence of the estimation proce-
dures applied to the data and models.  The choice of ontol-
ogies, and hence models, depends on the tastes and needs of
researchers and the phenomena under study, and entails a
philosophical commitment.  Given the assumptions that are
associated with such a choice, which differ between the
ontologies, formative and reflective measurement models and
larger predictive and causal models based on them are both
legitimate ways of doing research, as long as they are derived
and specified consistently in relation to their respective
assumptions.  Of course, not only do the assumptions differ,
which can be compared, contrasted, and debated, but the
empirical findings implied by the different approaches can,
and often do, differ and can be compared, contrasted, and
debated.  The empirical differences should nevertheless be
consistent with their respective assumptions.  From this
perspective, the debates recently aired in the literature
between formative and reflective measurement advocates
have been too strident in my opinion and have not recognized
the ontological premises of favored positions but instead have
applied criteria and standards from one perspective to judge
the other.  The approaches are different and their tests of
hypotheses can differ too, but any statement as to which one

of the approaches, if any, is better, may have to wait for
crucial experiments and differences in predictions of new
phenomena not contained in explanations of existing
phenomena common to the different approaches in any
particular application.

Some researchers are willing to accept the global dependence
of formative loadings on a particular specification, and on
estimates related to other constructs and other parameters in
a model, and live with the absence of internal consistency
reliability and classic construct validity criteria and the
indeterminacy of generalizability associated with the ontology
of formative measurement.  Other researchers who hold to an
ontology of reflective measurement and its implications for
theory and theory testing will be uncomfortable with the
trade-offs.  And vice versa perhaps.  It is thus important to
realize that the choice of formative or reflective measurement
entails different ontological assumptions and cannot be
resolved by embracing one approach and using it uncritically
to criticize the other.

Spurious Meaning

Spurious meaning refers to contamination of empirical
meaning and resides in one or more of three sources: random
error, systematic error, and measure specificity.  It is best to
perform measurement procedures so as to eliminate or at least
reduce spurious meaning, but when this is not possible to the
extent desired, spurious meaning can be controlled for
statistically, under certain conditions.  For discussion and
examples where all three types of spurious meaning have been
modeled simultaneously, individually, or in pairs, see
Bagozzi, Yi, and Phillips (1991, pp. 438-443; see also
Bagozzi et al. 1999).  Spurious meaning is especially a
concern when method or systematic biases occur, which I
discuss more fully below under “Construct Validity and
Common Method Variance.”

The framework in Figure 1 implies that the meaning of latent
variables in structural equation models is complex and goes
beyond that found in the mathematical representation of a
model and empirical tests of it.  Moreover, the three criteria
of meaning are interconnected and necessary to consider for
a full interpretation of any piece of research.  Importantly, the
framework and criteria sketched in this regard herein apply
well to structural equation models that use formative and
reflective indicators.

Another point to consider.  Why is it important to consider
theoretical meaning and differentiate it from other kinds of
meaning?  One reason is that it places emphasis on that which
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is to be explained and ultimately measured and tested; in
particular it puts focus on the content of a conceptualization
and its theoretical integrity, and it does so in a way avoiding
confounding with empirical issues and contamination in the
measurement or testing process.  The notion of interpreta-
tional confounding is a case in point (Burt 1976).  It is impor-
tant to realize that the parameters linking a focal construct to
other constructs (γ and β in Figure 1) are not theoretical
hypotheses and their rationales but are empirical manifes-
tations or implications of (HAF), (RAF) and (HFC), (RFC).  That
is, they are derived from inferential statistics.  In this sense,
they are imperfect reflections of the theoretical meaning of the
relationships that F has with other constructs in a theory (and
of course they do not address the theoretical definition of a
focal concept or of its antecedents and consequences,
although they are linked to these through implication or
deduction according to a proposed rationale) (Cook and
Campbell 1979).7  Indeed the meaning of F has theoretical
content that goes beyond the inferred empirical relationships
it has with other latent variables or the relationships it has
with observed variables represented by factor loadings, which
are also inferred from data.  Discussions of interpretational
confounding have focused on these linkages (i.e., γ and β and
λ’s) but have done so in a potentially misleading way.  The
claim that the meaning of a focal construct “can be as much
(or more) a function of its relationship(s) to other constructs”
(Howell et al. 2007b, p. 208) can be deceptive because under
conditions when γ, β, or λ’s change, as a consequence of 
relationships to other constructs, this happens under classi-
cally defined interpretational confounding because either poor
convergent validity, poor discriminant validity, and/or
systematic error (e.g., method effects) occur with measures
employed to operationalize or test a theory.  But when these
outcomes occur, there is a disjunction between the proposed
theoretical meaningfulness of either the focal construct, the
antecedent and consequent constructs, or the hypotheses and
rationales linking them as proposed in the original speci-
fication and the empirical content designed to measure or test
the theory under consideration.  In other words, the model we
thought we had in mind (i.e., a specific operationalization of

a model based on Figure 1, say) has changed in meaning due
to spurious contamination.  Interpretational confounding is in
essence an instance of misspecification biases at the opera-
tional level, not a statement about the theoretical meaningful-
ness of a focal construct or its linkages to other constructs. 
But to understand more fully why and how this happens, we
need to also consider empirical and spurious meaning for
structural equation models.  Hence our two main goals, which
follow in the next major section of the article:  discussions of
(1) formative and reflective measurement and (2) construct
validity and common method variance.

What is the relationship of spurious meaning to formative and
reflective approaches to measurement?  Spurious meaning
undermines the interpretation of a proposed theoretical speci-
fication either because systematic bias prevents or (artifi-
cially) creates findings consistent with hypotheses.  Ideally,
researchers would like to detect and control for such biases. 
Traditional procedures for detecting and controlling for
random and systematic error rely on internal consistency
measures of reliability and classic ideas of construct validity. 
Although reflective approaches to measurement lend them-
selves to such procedures as Cronbach Alpha and multitrait–
multimethod matrices, similar procedures do not exist for
formative approaches to measurement at this time.  For the
case of reflective measurement, present technologies permit
one to detect and take into account spurious meaning by use
of at least five procedures (see the final major section of this
article).  For the case of formative measurement, no general
procedures exist for detecting and taking into account
spurious meaning, at present.

A final related issue of difference concerns establishment of
generalizability.  While models containing formatively mea-
sured constructs and models containing only reflectively
measured constructs can both, in principle, be subjected to
cross-validation, tests of generalizability are more indicator-
dependent for the formative versus reflective case.  That is,
because formative loadings change as (1) the number of
formative indicators changes and (2) the number of reflective
indicators of other constructs and the relationships of these
indicators to the formative indicators, in a model containing
a formatively specified construct, change (e.g., Bagozzi
2007), models containing formative indicators are likely to
lack generalizability when the two aforementioned changes in
specification occur.  With models limited entirely to reflec-
tively measured constructs, adding or deleting items to the
constructs in the models will not affect generalizability (as
long as systematic error does not occur).  Of course, because
formatively measured constructs rest on an ontology where
the meaning of such constructs and their relationship to other
constructs depends on the property of “globalness” described

7Note that A, F, and C, which correspond to factors or latent variables in
structural equation models, have what MacCorguodale and Meehl (1948)
called surplus meaning.  This meaning derives from the conceptual speci-
fication/theoretical definition of each latent variable and its explicit
relationship(s) with other conceptual specification(s)/theoretical definition(s)
of other latent variables connected to a latent variable under scrutiny. 
Surplus meaning does not refer to the estimate of error variance for ζ1 or ζ2

shown in Figure 1.  The latter error captures unexplained variance in a latent
variable, which is inferred from data, and in this sense is similar to inferred
random or spurious meaning.  Note finally that another kind of surplus
meaning can be found in correspondence rules, as discussed under “Empirical
Meaning.”
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above, researchers accepting this ontology would be com-
fortable with the changing measurement and structural param-
eters that occur in such instances.  For this ontology, lack of
generalizability in the classic sense is not a problem because
empirical meaning and inferred structural parameters are
presumed to be dependent on a specific model and its par-
ticular indicators.  Empirical meaning and inferred structural
parameters are not dependent on particular indicators for
models operationalized only with reflective indicators, when
these indicators achieve comparable empirical meaning and
systematic error is absent.

On the Meaning of Formative and
Reflective Measurement

Technical discussions of formative and reflective measure-
ment go back to earlier treatments of structural equation
models (e.g., Blalock 1964; Jöreskog 1969; Jöreskog and
Goldberger 1975).  Recent discourses elaborate on many con-
ceptual, operational, and interpretive issues arising over the
years (e.g., Bagozzi 2007; Bollen 2007; Diamantopoulos and
Winklhofer 2001; Howell et al. 2007a, 2007b; MacKenzie et
al. 2005; Petter et al. 2007).  Readers of the literature are apt
to come away with considerable confusion and uncertainty
about the meaning and viability of different formulas of
measurement, for opinions of authors span the spectrum from
seemingly concluding that formative measurement should
never be used and only reflective measurement is meaningful
(e.g., Howell et al. 2007a, 2007b) to asserting that the nature
of theoretical variables alone could dictate whether reflective
or formative measurement should be used (e.g., Diamanto-
poulos and Siguaw 2006; Podsakoff et al. 2003b).8 For
example, Howell et al. (2007b, p. 216) “strongly suggest that
when designing a study, researchers should attempt to mea-
sure their constructs reflectively” because the classic concep-
tualization of validity does not apply to formative measure-
ment, whereas Diamantopoulos and Siguaw (2006, p. 265)
allow that “constructs such as socio-economic status are typi-
cally conceived as combinations of education, income and
occupation” and therefore should be represented formatively,
and Podsakoff et al. (2003b, p. 650) stipulate that “some
constructs (e.g., leadership performance/effectiveness, arti-
culating a vision, charismatic leadership) are fundamentally
formative in nature and should not be modeled reflectively.”

Howell et al. (2007b) seem to proceed from the ontology of
reflective measurement and use the criteria and meaning
therein to criticize formative measurement.  Another perspec-
tive is provided by Petter et al. (2007) who appear to recog-
nize that formative measurement is based on a different
ontology than reflective measurement and recommend that we
keep each approach straight.  Petter et al. further show that a
significant number of articles have misspecified formative
constructs by mistakenly taking them for reflective constructs
(see also Diamantopoulos and Winklhofer 2001).  My posi-
tion is philosophically closer to that espoused by Petter et al.
and Diamantopoulos and Winklhofer who recognize that a
(philosophical) choice is required in measurement.  I also
believe that it is important to recognize the differences
pointed out by Howell et al. concerning what I termed above
local and global measurement consequences and the impli-
cations of the different approaches for structural parameters,
and hence the confirmation or interpretation of theoretical
meaningfulness in any test of theory.  While recognizing that
one’s choice of ontology supports the use of either formative
or reflective approaches to measurement, I wish to consider
the implications of both approaches by examining a number
of basic and generic cases of each.

Consider first the measurement model for reflective indicators
of factors:

y = Λyη + g (1)

where y is a p × 1 vector of p indicators (i.e., observed scores
or measures), Λy is a p × k matrix of regression weights (i.e.,
factor loadings), η is a k × 1 vector of latent variables (i.e.,
factors) underlying the p indicators, and g is a p × 1 vector of
disturbances (i.e., error terms or uniquenesses).9  The error
term, g, is sometimes taken as random or pure measurement
error, but it is important to realize that it might be written as 

g = e + s + m

where e is a random component, s is a component specific to
each measure (hence, termed measure specificity), and m is
a component specific to systematic error (e.g., method bias). 
Researchers often assume that s and m are small in com-
parison to e and therefore can be ignored, but some
researchers are increasingly discovering that such assump-
tions are unwarranted and failure to take s and m into account
may lead to Type I and Type II errors.  Importantly, structural
equation models within the context of multimethod research

8I wish to express my gratitude to the editor for pointing out errors in my
initial presentation of formative and reflective measurement and for helping
me realize the choice that must be made philosophically with respect to
ontological considerations in measurement and modeling (Detmar Straub,
personal communication, December 30, 2009).

9An equivalent specification for the reflective measurement model is  x = Λxξ 
+ δ, where the terms have analogous meaning and dimensionality as pre-
sented for equation (1).
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Figure 2.  Reflective and Formative Measurement:  Single Factor Case

designs can be used to represent different sources of variance
and scrutinize specific and method biases, as well as trait
variance and random error.

The left-hand panel of Figure 2 shows a graphical represen-
tation of a reflective measurement model for the case where
four measures indicate a single factor.  Under unrestricted
exploratory factor analysis with maximum likelihood estima-
tion, it is possible to test whether k factors account for a set of
measures.  Confirmatory factor analysis, where restrictions
are placed on Λy (and on the variance–covariance matrix of
factors, ψ, and the variance–covariance matrix of distur-
bances, θe, if warranted), goes farther than exploratory factor
analysis by permitting one to test the viability of different
models, not merely the number of factors.  For example, one
might have reason to test for the significance of correlated
factors, particular factor loadings, or specific correlated dis-
turbances, as well as an overall model.

There really is not a measurement model, per se, for formative
measurement, such as shown in the right-hand panel of
Figure 2, and no test of the entire model can be done, as is
possible for reflective measurement.  Nevertheless a set of
weights can be determined corresponding to γ1 – γ4.  How-
ever, no measure error is designated for the formative mea-
surement model.  One way that weights can be ascertained is
by use of principal components analysis where the measures,
x1 – x4, are transformed into a component (or multiple
orthogonal components, if applicable) that retains the original
amount of variance in a data set under study (Chin 1995). 
Sometimes researchers add an error term to η under the
formative model shown in Figure 2, but it is important to
recognize that neither the error variance, factor loadings, nor
the model as a whole can be tested in the way that the

reflective model implied by equation (1) can (e.g., Bollen and
Lennox 1991, p. 312).

To move formative measurement into a specification per-
mitting testing of hypotheses and interpreting the meaning of
formative “indicators” and a latent formative construct, it is
necessary to add either two or more reflective measures to η
in the model in the right-hand panel of Figure 2 or a latent
variable(s) with its own reflective measures dependent on η. 
Before we discuss these and other possibilities, consider the
formative model shown in Figure 3.  Here we have added a
reflective measure, y, to the formative model in Figure 2. 
This model (Case I) is estimable and testable.  However, one
should not interpret η as a formative construct and the x’s as
formative indicators of η.  The model is, in fact, a multiple
regression model with one dependent variable and four
independent variables, as can be seen when the equation is
written out, where we have made use of the facts that g = 0
and λ =1:

η(=y) = γ1x1 + γ2x2 + γ3x3 + γ4x4 + ζ (2)

Although the Case I model can be used to predict η, it is not
actually a formative model, and one should not interpret η as
a latent variable.  Rather all variables are measured variables
and are fully interpretable under classic conventions for
multiple regression.  With two or more y’s, the Case I model
would be a MIMIC model (see Case II below).

A somewhat analogous issue of interpretation can be seen
when we add a single predicted latent variable, η2, measured
with a single indicator, to the reflective model in Figure 2. 
Figure 4 presents this model.  There are two ways to interpret
this model.  If y5 is highly and proportionally correlated with
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Figure 3.  Formative Measurement and the Simplest Predictive Model (Case I)

Figure 4.  Reflective Measurement and the Simplest Predictive Model

y1 – y4, and y1 – y5 are conceptually and operationally similar
(i.e., they have similar empirical meaning), then one inter-
pretation is that one factor exists and y1 – y5 measure this
factor (assuming the model fits well overall).  Alternatively,
if the model fits well overall, but (1) β is significant yet
sufficiently different from λ1 – λ4, (2) y1 – y4 are highly
correlated and comparably defined, and (3) y5 is conceived
differently than y1 – y4 and correlated at a different level with
them and is subsumable under a different theoretical specifi-
cation than y1 – y4 (i.e., η1 and η2 differ), then it may be
possible to interpret β as a parameter relating η1 to η2.  How-
ever, with but a single measure of η2, there will normally be
some ambiguity whether η2 is different from η1, or whether y5

can be conceived as a poor measure of η1.  It would be better
to have at least two measures of η2 instead of one, if one
desires to claim that η1 influences η2 and the measures of the
two constructs (1) achieve convergent and discriminant
validity and (2) support a predictive link between the two
latent variables.  A meaningful predictive model under reflec-
tive measurement that does not harbor the above mentioned
ambiguities can be seen in Figure 5.

To recap up to this point, let us summarize what we have
learned about reflective and formative measurement, for these
principles put measurement into perspective, reveal dif-

ferences, and suggest building blocks for bare-bones baseline
models discussed below, while pointing to extensions of the
baseline models:  The simplest stand-alone reflective mea-
surement model has one factor, is meaningful, and in the most
interesting case has at least four measures; moreover, param-
eters are estimable and hypotheses can be tested.  With two or
more reflective factors, as few as two measures of each factor
are required to avoid ambiguity, although three or more mea-
sures per factor would be better (because a tougher test of
hypothesized factors is provided, the greater the number of
measures per factor).

The simplest, pure formative measurement model assumes
that measures have no error and is not estimable and testable
in the way that reflective measurement models are.  However,
weights can be estimated that relate measures to com-
ponent(s).  But it should be mentioned that a gap exists
between the pure formative measurement model and forma-
tive measurement where a formative construct predicts two or
more measures or latent variables.  This occurs because, for
principal components analysis, each component typically
shows high weights based on moderate to high sharing of
variance for the measures corresponding to a component,
whereas for formative measurement models, where the forma-
tive construct predicts other variables, which is the most com-
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Figure 5.  Reflective Measurement and a Meaningful Predictive Model

mon case, it is “not necessary for indicators to covary with
each other” (Jarvis et al. 2003) and indeed researchers recom-
mend that formative indicators be dropped when VIF > 3.3
(e.g., Diamantopoulos and Siguaw 2006).  Thus a trade-off
might exist between what is required for a meaningful forma-
tive measurement model under principal components analysis
and what is required for a meaningful formative model when
formative measurement is combined with prediction.

Finally, with regard to prediction, a single predicted measure
cannot be a basis for concluding that a formative construct
exists (see Figure 3 and the discussion in text where it is
claimed this model is really a multiple regression equation),
nor can it be concluded unambiguously that such a predicted
measure is explained, as an indicator of a second latent
variable, by another reflective latent variable antecedent to it
(see Figure 4 versus Figure 5 and the discussion in the text).

What, then, is the simplest, meaningful formative model?  A
candidate is the MIMIC (multiple indicator, multiple causal)
model where two or more independent formative measures
impinge upon a single latent variable and the latent variable
influences two or more reflective measures.  Figure 6 (Case
II) presents an example for the particular case with four  x’s,
three y’s, and a single η.10  This model is fully estimable and

testable (see Bagozzi et al. 1981).  But how should the Case
II formative model be interpreted?  Can the x’s be construed
as formative measures of η? Because MIMIC models are
actually close versions of the canonical correlation model, a
special interpretation is in order.  I submit that η under a
MIMIC model can be interpreted, figuratively, as an operation
mathematically transforming or linking information in the x’s
to information contained in the y’s.  More formally, the
MIMIC model finds a linear combination of the x’s that
maximally correlate with a linear combination of the y’s (e.g.,
Anderson 1958; Stewart and Love 1968).  Under this inter-
pretation, we do not have a formative construct measured by
formative measures.  What we have is a model focused on
prediction: prediction of y’s by x’s.  The MIMIC model is
valuable in forecasting the effects of a group of measures of
independent variables on a group of measures of dependent
variables.

For instance, researchers might be interested in predicting
effort on the job (y1), bad mouthing (y2), and withdrawal
intentions (y3), as a function of satisfaction with pay (x1),
supervision (x2), coworker relations (x3), and opportunity for
advancement (x4).  However, such a MIMIC model would not
permit the interpretation of η as, say, latent job satisfaction. 
Rather, the latent variable η should be interpreted figuratively
as a transformational mechanism between the x’s and the y’s,
and might have additional practical utility, for instance, in
forecasting y’s for a new sample of employees who have
scores on the x’s.

10The Case II model differs from the Case I model, which is not a MIMIC
model.  The Case I model is a multiple regression model with one dependent
variable indicator, and the operation entailed is not one of a linear trans-
formation of a set of predictors into a set of predicted variables.  As a MIMIC
or canonical correlation model, the Case II model requires at least two
predictors and two predicted variables for such a transformation as entailed
by canonical correlation to take place; with only one independent variable
and two or more dependent variable indicators, the model is a reflective
model with one latent variable measured by two indicators and the latent
variable is predicted by a single independent variable measured with one

indicator.  Only when we have two or more independent variable indicators
and two or more dependent variable indicators in the Case II model will we
have a transformation of a set of independent variable predictors into a set of
dependent predicted variables.
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Figure 6.  Formative Measurement and a Meaningful Model:  The MIMIC Model (Case II)

The interpretation of latent formative constructs changes
when these predict latent constructs that are measured by two
or more reflective indicators.  For example, returning to the
MIMIC model described above, for measures of satisfaction
predicting job outcomes, an interesting expansion consists for
the case where job effort, bad-mouthing, and job withdrawal
intentions are each latent variables (η2 – η4), with two or more
reflective measures each, and are predicted by formative mea-
sures through an η.  We will return to this distinct formative
construct model when we consider Case IV below.  But first
an ambiguous special case.

The top panel of Figure 7 (Case III) presents a formative
model with one formative latent variable, η1, predicting one
reflective latent variable, η2.  Ostensibly, researchers might
intend this specification to represent the effects of a latent
variable measured formatively by x1 – xi on a latent variable
measured reflectively by y1 – yj.  To take an example, imagine
that a researcher proposes that η1 is job satisfaction, with
measures x1 – x4 as described above, and η2 is performance on
the job with two measures, y1 and y2 (e.g., a supervisor rating
and a self-rating).  Can we interpret η1 as job satisfaction and
β its effect on performance?  Not unambiguously.  It turns out
that the model in the top panel of Figure 7 is actually equi-
valent to the model in the bottom panel of the figure (see
MacCallum and Browne 1993; Rindskopf 1984).  That is, the
former model is indistinguishable from the latter, which is a
MIMIC model.  This conclusion, in fact, generalizes:  all
formative constructs predicting a single latent variable that is
measured reflectively with two or more indicators can be
transformed into a MIMIC model.  Substantively, therefore,
we have two seemingly distinct models that are statistically
equivalent.  Hence the aforementioned ambiguity.  To the
extent that the rule of parsimony is valid, this would seem to
suggest that the MIMIC model should be chosen, if one has
to make a choice.  But this means that we lose the inter-
pretation of a formative latent construct influencing a reflec-
tive latent construct.  Instead, we are left with the less concep-

tually precise predictive interpretation mentioned above for
MIMIC models.  The model in the top panel of Figure 7 pro-
vides more information than the MIMIC model conceptually
but statistically is indistinguishable from it.  There is yet
another ambiguity with formative construct models that
unfortunately applies in nearly any conceivable configuration
going beyond the models described up to this point.

Figure 8 (Case IV) can be used to demonstrate the issue. 
Here we have three formative measures, x1 – x3, for a single
formative construct, predicting three latent reflective con-
structs, where each is shown with two measures for
simplicity.11  For a similar model, but with only two latent
reflective variables instead of three, Howell et al. (2007b)
showed that the formative parameters (γ1 – γ3) are dependent
on the association between the x’s and y’s and amongst the
y’s.  For the model shown in Figure 8, I further showed that
the γ’s are dependent on the relationships between x’s and
y’s, even holding the associations amongst the y’s constant
(Bagozzi 2007).  This means that formative measurement
parameters, which are claimed to relate x’s to a latent variable
and somehow measure it, can change (1) when measures are
added to or subtracted from existing latent reflective variables
that are dependent on the formative latent construct, or
(2) when additional latent reflective variables and new mea-
sures are added as variables predicted by the formative
construct, or (3) when one or more latent reflective variables
that are dependent on the formative latent construct or
measures of existing latent reflective constructs are removed.

Why is this an issue of concern?  The dependence of γ’s on
relationships between x’s and y’s (and possibly amongst y’s)
means that formative constructs potentially have ambiguous
meanings that shift from analysis to analysis on the same set

11The principles developed here apply also to cases with two or more forma-
tive measures predicting four or more latent reflective constructs.  We will
consider the case with two latent reflective constructs shortly.
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Figure 7.  Two Equivalent Formative Models (Case III)

Figure 8.  A Formative Measurement Predictive Model Exhibiting a General, Fundamental Ambiguity
(Case IV)

of data when the inclusion of y’s change, within a study, and
from analysis to analysis across studies that propose similar
theoretical variables and hypotheses and use similar or differ-
ent measures.  One implication is that the empirical meaning
of formative constructs is unstable and the real possibility
exists for a lack of comparability across studies as to the
meaning of theoretical constructs and the generalizability of
findings in this regard as noted above.  The problem is analo-
gous to classic drawbacks with definitional operationalism
which stipulates that to understand the meaning of a concept
an operational procedure is needed and every concept is
nothing more than its specific operationalization.  Every
operation, then, implies a different concept.  Compared to
reflective measurement practices, formative measurement
tends to proliferate concepts and findings of relationships

between concepts when different formative indicators or
different numbers of formative indicators and different reflec-
tively measured latent variables are used across studies.  Note,
however, that this consequence is not a problem under the on-
tology presumed in formative measurement, and researchers
following this approach maintain that the empirical meaning
of concepts can be spread throughout a model, and the struc-
tural parameters derived therein are dependent on the par-
ticular specification and measures used, such that formative
loadings and structural parameters may well change from
context to context and study to study, depending on the for-
mative indicators and reflective indicators used in a particular
application.(e.g., Campbell 1969).  Nevertheless, this property
makes it difficult to make comparisons with and across data
sets and to accumulate knowledge.
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Figure 9.  A Formative Measurement Predictive Model Exhibiting Additional Limitations (Case V)

A related implication is that it is difficult to know what it is
that is being measured if purported measures of a proposed
formative construct are dependent on the measures of hypoth-
esized effects of the formative construct.  It is also difficult in
such cases to make strong claims about the distinctiveness of
measures of formative constructs from measures of the reflec-
tive constructs it predicts.  To the degree that the γ’s are
ambiguous and measures of formative and reflective con-
structs are confounded in the same model, it is problematic to
make strong interpretations and claims about prediction and
causality between formative and reflective constructs.  This is
especially the case when one desires to interpret the formative
construct as a meaningful latent variable.  Of course, if one is
more concerned about the predictions in the entire model and
accepts the ontological assumptions with formative indicators
and their associated constructs, then these concerns are not an
issue, given the assumptions.

A further limitation of formative measurement can be seen in
Figure 9 (Case V).  Here we have a special case of Case IV in
that a single formative construct predicts two latent reflective
constructs.  The model has two potentially restrictive assump-
tions that are untestable:  namely, ζ2 and ζ3 must be presumed
uncorrelated and no path(s) can be estimated between η2 and
η3.  The first assumption would hold only if all variance in η2

and η3 were fully explained by η1, except for random error,
and no omitted variables explaining both η2 and η3 existed. 
This is unlikely to occur in many substantive tests of the
model, and in any case cannot be ascertained because the
hypothesis of uncorrelated errors is not testable.12  The
assumption of no causal paths between η2 and η3 for the

model in Figure 9 also substantively limits its applicability
and testability.13

Clearly the bottom line is that researchers contemplating the
use of formative measures and constructs should make
explicit their ontological assumptions and carefully assess the
theoretical and empirical meaningfulness of any model in this
regard.  Meaningfulness cannot be established fully by scru-
tinizing the nature or conceptual meaning of a construct in
isolation from empirical meaning or spurious meaning.  To
reiterate points from the presentation so far, formative mea-
surement and formative constructs have a place in research,
but it is crucial to recognize that their applicability is
restricted to a few narrowly defined models, unless one is
willing to make a commitment to the ontology behind the
approach and forgo the ontology and implications of the use
of reflective measures exclusively.  The main conclusions are
presented in Table 1.

Construct Validity and Common
Method Variance

Common method variance has received detailed discussion in
recent years in the information systems and organization
research literatures (e.g., Le et al. 2007; Malhotra et al. 2006;
Podsakoff et al. 2003a; Richardson et al. 2009; Sharma et al.
2009).  Although some debate exists concerning how preva-
lent and significant common method variance is, with some
claiming that such bias is often low (e.g., Malhotra et al.
2006; Spector 1987) and others concluding that the bias may
be substantial (e.g., Doty and Glick 1998; Podsakoff et al.
2003a; Sharma et al. 2009; Williams et al. 1989), there is rea-

12For the Case IV model (Figure 8) and for models with four or more latent
reflective constructs dependent on at least one formative construct, correlated
errors amongst the reflective constructs can be estimated and tested.

13Causal paths amongst η2 – η4 for the model in Figure 8 can be estimated and
tested, as can correlated errors for ζ2 – ζ4.
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Table 1.  Summary of Conclusions Comparing Formative and Reflective Measurement

1. The formative measurement model (e.g., η = γ1x1 + γ2x2 + … γnxn) assumes that no measurement error exists (see right-hand panel
of Figure 2) and does not provide a model to test of the sort provided for the analogous reflective measurement case where, further,
error terms are included in the specification (see left-hand panel of Figure 2).  Nevertheless, it is possible to derive weights for
measures corresponding to formative components (e.g., by principal components analysis; Chin 1995).  Sometimes researchers
characterize the formative measurement model as follows:  η = γ1x1 + γ2x2 + … γnxn + ζ.  But here it is important to realize that this
model is not identified and to achieve identification one must add either reflective indicators to η or one or more latent variables
that η predicts (see Figures 6–9).  As Bollen and Lennox (1991, p. 312) stress for formatively measured latent constructs,

Because the latent construct is a linear combination of its causes (and a disturbance), its validity, and indeed its psycho-
logical meanings cannot be judged from its item covariances.  Without external criteria, a cause induced latent trait is
psychologically uninterpretable.  Also, the causal indicator model in isolation is statistically underidentified.  Only when
imbedded in a causal model that includes consequences of the latent construct can the causal indicator model be
estimated.

2. A seemingly formative model, wherein the formative construct predicts a single observed variable, is not really a formative model
(see Figure 3).  Indeed, the model is simply a multiple regression model.  The formative construct is illusory and should not be inter-
preted as a latent variable in this case.  Unlike under the MIMIC model (see below), the formative measurement model predicting
a single indicator does not provide for a linear combination of a set of independent variables predicting a linear combination of a
set of dependent variables.

3. A formative construct predicting two or more observed variables is called a MIMIC model and is estimable, testable, and meaningful
(see Figure 6).  However, the latent variable is similar to a phantom or imaginary latent variable and should not be interpreted
substantively.  Rather it functions figuratively in a transformative sense similar to that found in canonical correlation analysis.  That
is, a linear combination of independent variables predicts a linear combination of dependent variables.  Focus of the MIMIC model
is more on prediction than explanation, per se, because no identifiable latent independent or dependent variable exists.  Instead,
one gets an optimum prediction (in the sense of maximum correlation) from independent variable indicators to dependent variable
indicators; the indicators on either side of the transformation may arise from, or represent, one or multiple distinct constructs; it is
not possible to interpret the empirical meaning of constructs in the MIMIC model.

4. The case of a formative construct predicting a single latent variable measured reflectively (see Figure 7) is ambiguous because
it is indistinguishable mathematically from a MIMIC model (e.g., MacCallum and Browne 1993, p. 538).  Here two apparently
different substantive interpretations cannot be adjudicated by findings.  Thus, it is unclear that the formative construct one might
think is present is, in fact, valid and meaningful, and the predictive meaning implied by the MIMIC model may be the most justifiable
interpretation here (see point 3 above).

5. In formative models, where two or more reflective latent variables are predicted by a formative construct (see Figures 8 and 9), a
fundamental dependency exists between the relationships of x and y measures, which makes parameter estimates for γ’s potentially
unstable, as one adds or subtracts latent reflective endogenous variables and their measures or adds to or subtracts from measures
of existing latent reflective variables (Bagozzi 2007).  This makes interpretations of the meaning of formative measurement
potentially indeterminate and generalizations across studies or even interpretations across analyses within a study potentially
problematic, unless one is willing to commit to the ontology of formative measurement.  Note also that adding to or subtracting from
formative indicators of a construct will also in general change loadings of existing indicators or change the meaning of the formative
construct (Bollen and Lennox 1991).

6. Most of the above conclusions apply whether the formative construct occurs as an exogenous or endogenous variable embedded
in a larger model.  Moreover because the models shown in Figures 8 and 9 are often parts of larger models, formative measurement
within such models will frequently be difficult to interpret in such cases.  The interpretation of any such formative construct in terms
of its relationship with formative indicators will likely be ambiguous.  Mixing formatively and reflectively measured constructs in the
same model entails accepting two different ontologies and should be justified by the researcher doing so.  The two ontologies seem
to be incommensurable because the interpretation of indicators and the constructs they are purported to measure, including the
meaning of correspondences between indicators and latent variable, are based on different theoretical assumptions.  Likewise, the
meanings of inferred structural parameters between latent variables might also differ between the two ontologies because of the
differences in meanings of constructs and the empirical differences in dependencies of structural parameters across models based
on formative versus reflective measurement.

7. There is a place for formative measurement in information systems and organization research.  For example, the MIMIC model
might be useful when prediction is a central concern.  Also some theoretical variables might seemingly fit formative concep-
tualizations better than reflective ones (e.g., Diamantopoulos and Winklhofer 2001; Petter et al. 2007; Podsakoff et al. 2003b). 
However, the caveats mentioned in points 1–6 above and in the text should be kept in mind when considering formative constructs. 
Further, given our present technologies, when issues of internal consistency reliability, construct validity, and generalizability are
of specific interest, it is best to consider reflective measurement whenever feasible.  Also, common method biases are more
straightforwardly handled by reflective measures than by formative measurement.
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son to believe that the bases for making assertions as to the
magnitude and prevalence of common method biases may be,
in part, due to different procedures used to assess such bias
(e.g., Bagozzi and Yi 1990; Bagozzi et al. 1991).  In any case,
editors are calling increasingly for researchers to ascertain the
validity of their findings:  “authors need at a minimum to
address potential threats to validity occasioned by common
methods…[so] method issues…cannot be ignored” (Ash-
kanasy 2008, quoted in Richardson et al. 2009, p. 36).

It can be argued that common method bias is but one con-
tributor to variance in any measure and that a full accounting
of measure variance requires representation of five sources
(e.g., Bagozzi et al. 1999; Le et al. 2007):  (1) an underlying
concept, construct, or trait, (2) method bias, (3) measure spe-
cificity, (4) occasion specific effects when measurement is
done over time, and (5) random error.  Further, to ascertain
construct validity in its fullest sense, one needs to carefully
consider all five sources of variance.  Construct validity is the
extent or degree to which an operationalization measures a
concept it is supposed to measure (e.g., Cook and Campbell
1979).  The classic procedure for assessing construct validity
examines convergent and discriminant validity by use of the
multitrait–multimethod (MTMM) matrix, which is a corre-
lation matrix consisting of two or more measures of two or
more constructs obtained by two or more methods (Campbell
and Fiske 1959).  The MTMM matrix approach is a strongly
empirical one that attempts to ascertain from the pattern and
magnitude of correlations whether substantial trait variance
and method variance exist.  Because the variances of mea-
sures reflected in the correlation coefficients in a MTMM
matrix are in a sense the resultants of the five effects men-
tioned above, it is difficult to make definitive conclusions
about the presence and magnitude of any of the sources of
variance from inspection of any MTMM matrix.  As a conse-
quence, a number of more formal statistical procedures have
been developed to look at method bias and other aspects of
construct validity.

Below, I discuss five general procedures for examining
method variance and construct validity.  The approaches are
ordered roughly from least to most useful and comprehensive,
but it should be acknowledged that all exhibit pros and cons. 
My aim is to briefly describe each procedure, point out key
limitations and advantages, and bring some coherence to the
topic, as the literature is fragmented and occasionally con-
tradictory and misleading.  Table 2 presents a summary of
these five procedures and their pros and cons.  A point to keep
in mind when thinking about the five procedures is that no
single one is applicable in all or even many cases; each rests
on strong assumptions and each needs to be reconciled with
the nature of the data at hand as well as the meaning of the
model and statistical methods needed to implement it.

Unmeasured Latent Method Factor

Perhaps the easiest approach to apply is the addition of a
factor to a test of a substantive model, wherein all measures
in the substantive model are specified to load on the factor. 
The substantive model could be a confirmatory factor analysis
(CFA) model or causal model, and the extra factor added to
the substantive model has been purported in the literature to
represent method variance.  About 50 documented studies
have employed this approach to date (Richardson et al. 2009,
p. 9).  Figure 10 provides an example.

Two procedures have been followed to implement the unmea-
sured latent method factor approach.  One is to run a model
without the method factor and compare this model to the one
with the method factor added.  If the introduction of the
method factor fails to change substantive conclusions (e.g., γ1,
γ2, and β are significant in both models in Figure 10), then it
is concluded that the amount and extent of method variance
do not pose a threat to the validity of tests of hypotheses.

The other way to implement the unmeasured latent method
factor approach is where we take a CFA as an example (e.g.,
Williams et al. 1989).  First a CFA is run with hypothesized
trait factors (the trait-only model).  Then a single factor model
is run with all measures loading on it (the method-only
model).  Finally a CFA is run with the focal traits and the
single factor added with all measures loading on the latter (the
trait–method model).  The trait-only model can be compared
with a χ2 difference test to a null model of modified inde-
pendence (i.e., a model where only error variance is esti-
mated) to ascertain the significance of trait variance; likewise
the method-only model can be compared to the null model to
determine the significance of method variance.  The trait–
method model can be compared with a χ2  difference test to
the trait-only model to evaluate the significance of method
variance; and the trait–method model can be compared to the
method-only model to appraise the significance of trait
variance.

The advantage of the unmeasured latent method factor
approach for detecting and correcting for method variance is
its ease of implementation.  It is not necessary to acquire
additional data such as required by the other procedures
described below.

But two problems with the unmeasured latent method factor
approach should be mentioned.  First, the basis for claiming
that the added factor with all measures loading on it captures
method bias has not been convincingly established.  Can we
interpret the factor and significant loadings on it as method
variance?  No clear answer to this question has been given. 
I submit that significant loadings on the added factor represent
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Table 2.  Summary of Five Procedures Used in the Assessment or Control of Common Method Bias and
Their Pros and Cons

Procedure Description Pros Cons

Unmeasured
latent method
factor (see
Figure 10)

All indicators in a CFA or causal
model are allowed to load on one
common “method” factor, and this
model is compared to the CFA or
causal model without the method
factor.  Changes in factor loadings,
correlated factors, paths between
factors, and model fit are taken to
reflect method bias.

Easy to implement.  No
measures or indicators other
than those used in the focal
CFA or causal model are
needed.

Unclear whether significant loadings on the method
factor actually represent or correct for method bias. 
Significant method factor loadings could reflect
some (unknown) combination of measure speci-
ficity, method bias, and/or some other source of
systematic error.  Adding a method factor to a
model that already fits satisfactorily could induce
such consequences of over-fitting as improper solu-
tions (e.g., out of range factor loadings, negative
error variances); failures in the estimation program
to converge; incongruous, counterintuitive, or incon-
sistent causal parameter estimates; and different
signs of method factor loadings on the same or
different factors or patterns of loadings where some
are significant, others nonsignificant, and no
convincing rationale can be provided for this.

(Correlated)
marker variable
approach

A variable and its measures are
chosen as surrogates for method
variance and then used to partial
out method bias.  One way that
this has been done is to compare
regression parameters for a
model without taking into account
the marker variable to regression
parameters for a model where
the method bias has been
partialled out.

Relatively easy to implement
once an appropriate marker
variable has been found.

• Difficult to find measures of a marker variable that
are unrelated theoretically to measures of the
substantive variables already in the model.

• For the case where variables have a single
measure or indicator, measurement error might
be high but unknown.  

• Not clear whether systematic variance is due to
the marker or a combination of method, measure
specificity, or other confounds.

• If the marker is related theoretically to one or
more substantive variables, the approach could
remove substantive variance.

• Assumes that common method biases have the
same effect on all observed variables.

(Dedicated)
marker variable
approach

Measures of a hypothesized
contaminator (e.g., social
desirability) are modeled as indi-
cators of a factor, and measures
of the remaining variables in the
focal model load on this factor.

Controls for explicit biases
associated with the dedicated
marker.

Method bias may not, and generally would not, be
controlled for, beyond the dedicated marker. 
Method bias, measure specificity, and other
systematic biases are not dealt with explicitly and
may be confounded.

Method–
Method
Pair technique

Within the context of a meta-
analysis, ANOVA is used to
model variation in a correlation of
interest across studies, as a
function of within-study and
between-studies variances.

Suggests the consequences
of using different methods to
measure variables in a
theory.

• Unknown whether method bias identified is con-
founded with method–method pairs and error and
what the extent of such confounding might be.

• No explicit representation is provided of the type
of error found in each method.

• Relies on between-studies variation in methods to
assess common method bias.

Confirmatory Factor Analysis Approaches:

Additive trait–
method–
error model
(see Figure 11)

Each measure is modeled as a
function of a specific trait–
method combination by use of a
CFA in a multitrait–multimethod
matrix design.  The fullest and
most interesting design for this
and the other CFA approaches
requires the use of as different
and as similar methods as
possible.

Provides a partitioning of
measure variance into trait,
method, and error compo-
nents.  Overcomes limitations
of the Campbell-Fiske proce-
dure, yet gives greater intui-
tion and stronger statistical
criteria to assess achieve-
ment of convergent and
discriminant validity (as well
as reliability).

• Measure specificity and random error are
confounded.

• Often yields ill-defined solutions: empirically
under-identified models, failure of estimation
program to converge, parameter estimates
outside allowable ranges, excessively large
standard errors.  

• When correlations among traits and/or methods
are too high, trait and method component
partitions may not yield trait-free or method-free
interpretations.
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Table 2.  Summary of Five Procedures Used in the Assessment or Control of Common Method Bias and
Their Pros and Cons (Continued)

Procedure Description Pros Cons

Correlated
uniqueness
model (see
Figure 12)

Under a CFA specification, each
measure is modeled as a function
of a specific trait–error
combination and residuals of
measures are correlated,
corresponding to methods.

Overcomes certain limitations
of the Campbell-Fiske proce-
dure, yet gives greater
intuition and stronger statis-
tical criteria to assess
achievement of convergent
and discriminant validity (as
well as reliability).  Gives an
estimation of trait and error
variance.  Seldom produces
ill-defined solutions.  
Methods not assumed to be
unidimensional.

• Methods and traits assumed independent of each
other.

• Measure specificity and random error
confounded.

• Interpretation of correlated uniquenesses can be
difficult (see text).

• Assumes methods uncorrelated.
• Factor loadings may be underestimated to the

degree measure specificity occurs.
• Effects of specific methods difficult to interpret.

Direct product
model

Hypothesizes that traits and
methods statistically interact to
produce variation in
measures,while error is additive.
The multiplicative effects occur
such that sharing a method
across traits exaggerates the
correlations between highly
correlated traits relative to traits
that are relatively independent.

Useful when self-, peer-, and
expert-ratings are used in a
study.  The stronger the true
associations are between
traits, the more likely they are
to be noticed and exag-
gerated.  Useful also when
multiple occasions are
methods.  A high correlation
between two traits will be
more attenuated over time
than will a low correlation.

• The assessment of convergent and discriminant
validity is complex.

• Convergent validity assessment is rather global
and nonspecific.

• Trait and method variation confounded.

Additive trait–
method–error
model with
explicit
measures of
methods

Each measure is modeled as a
function of a specific trait–
method–error combination. 
Specific measures of methods
are modeled.

Provides a partitioning of
measure variance into trait,
method, and error compo-
nents.  Overcomes certain
limitations of the Campbell-
Fiske procedure, yet gives
greater intuition and statis-
tical criteria to assess
achievement of convergent
and discriminant validity (as
well as reliability).  Gives the
most precise interpretation of
the meaning of methods of all
procedures.  Ill-defined
solutions less common than
with the additive trait–
method–error model where
no explicit measures of
methods are provided.

• Measure specificity and random error are
confounded.

• May be difficult to identify source of method bias
and obtain appropriate measures.

Direct product
model with
measurement
occasion

Traits, methods, and
measurement occasions interact
statistically to produce variation in
measures, while error is additive.

Models both differential
augmentation and differential
attenuation.

• The assessment of convergent and discriminant
validity is complex.

• Convergent validity assessment is rather global
and nonspecific.

• Trait, method, and occasion variation confounded.

MIS Quarterly Vol. 35 No. 2/June 2011 279



Bagozzi/Measurement and Meaning in IS and Organizational Research

Table 2.  Summary of Five Procedures Used in the Assessment or Control of Common Method Bias and
Their Pros and Cons (Continued)

Procedure Description Pros Cons

Correlated
trait–correlated
method minus
one model (see
Figure 13)

Indicators are modeled as
functions of traits, methods, and
error, except for one method
which is omitted to achieve a
comparison standard.  Works for
meaningful methods that are
structurally different (as opposed
to interchangeable methods).

Measurement error separated
from true trait and method
effects.  Method effects
modeled as trait specific
rather than assumed uniform
across traits.  Observed
variance partitioned into trait-
specific, method-specific, and
error components.  Trait
factors are the true-score
variables of the comparison
standard, and method-
specific factors are functions
of the residuals.  Method
factors specific to a trait can
be allowed correlated with
trait factors for the other
traits, if desired.

Multiple indicators are needed for each trait–method
unit to specify trait-specific method effects which
may be difficult to obtain in many information
systems and organization contexts.  May be difficult
to specify a meaningful method as the comparison
standard.

Multilevel
confirmatory
factor analysis
model (see
Figure 14)

A special case of the random
effects ANOVA, this model
represents deviations in a target
trait from the mean across all
traits, where multiple trait factors
occur for each trait–method unit. 
The model has one method factor
per trait, where method effects
reveal the deviation of the error-
free or true-score of raters from
the trait value on target traits.

Method-specific sources of
variance are separated from
error-specific sources.  Trait,
method, and error variance
can be partitioned.  Useful
formulas exist for computing
reliability, consistency, and
method specificity
coefficients.

Method factors corresponding to common trait–
method units are assumed to be unidimensional. 
The fullest implementations require multiple
trait–method unit indicators, which may be difficult
to obtain in many organizational and information
systems contexts.

unknown systematic variance.  This variance could be a com-
bination of measure specificity, method bias, and/or some
other unknown source of systematic bias not related to the
method of data collection (e.g., social desirability).  With only
a single method employed in the typical study, it is impossible
to separate method variance from other sources of systematic
bias and from true-score variance.  The problem is somewhat
analogous to the issue of reliability when only a single item
is available.  Internal consistence reliability requires multiple
items.  To validly ascertain the source and amount of method
variance may well require multiple methods.

A second problem with the unmeasured latent method factor
approach stems from possible ambiguous or invalid empirical
outcomes with its application.  Researchers sometimes find
that a causal model or the trait-only model fits the data satis-
factorily, yet they then go ahead and add the method factor to
the model.  Whenever an additional factor is added to a good
fitting model, there is always the possibility of over-fitting the
model to the data.  A common consequence of over-fitting is

the occurrence of improper solutions (e.g., out-of-range factor
loadings, negative error variances).  In addition, failures of the
estimation program to converge may occur.  Still further,
incongruous, counterintuitive, or inconsistent parameter esti-
mates for causal paths can happen.  For example, some
method factor loadings might be negative and significant,
others positive and significant.  Finally, many loadings on a
method factor may be nonsignificant.  How are we to interpret
differential effects of a purported single method factor when
in fact all measures were obtained by use of a common
method?  How are we to interpret items loading on one trait
factor that show differential significance or different signs for
loadings on the method factor?

In sum, despite its ease of use, the unmeasured latent method
factor approach has serious problems in both conceptual and
operational senses.  It is difficult to be sanguine about its use,
except perhaps in a loose, suggestive sense as revealing the
possible presence of systematic error.
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Figure 10.  Unmeasured Latent Method Factor Approach to Common Method Variance

The Marker Variable Approach

The marker variable approach attempts to find a variable that
might be a surrogate for method variance and then to partial
out the shared variance between measures of variables in a
model and the measure(s) of the marker variable (e.g., Lindel
and Whitney 2001).  Common method bias is estimated as a
function of the smallest positive correlation between a mea-
sure in the substantive model and the marker.  Ideally, a
marker is chosen and designed into a study a priori by
selecting a measure(s) of a variable that is expected, theo-
retically, to be unrelated to measures of the substantive vari-
ables already included in the study.  Alternatively, if one is
unable to provide an ideal marker, it may be possible ex post
facto to choose the “smallest correlation among the manifest
variables…[as] a reasonable proxy” for common method bias
(Lindell and Whitney 2001, p. 115), although it has been
argued that a more conservative approach is to select the
second smallest positive correlation amongst manifest
variables as a conservative estimate of common method bias.

Under the correlational marker approach, the following equa-
tion is used to remove shared variance between a measure of
the marker variable and measures of other variables in a
study:

ryi.m = (ryi – rs)/(1 –rs)

where ryi.m is the partial correlation between a measure of the
marker and another measure purportedly controlling for
common method bias, ryi is the observed correlation between

the marker measure and measure i, and rs is the smallest (or
second-smallest) correlation found between the measure of
the marker variable and a measure of one of the substantive
variables.  This formula can be used to compute a new matrix
of correlations corrected for common method bias, and the
adjusted correlation matrix can be used in multiple regression,
path analysis, or causal modes to test hypotheses (e.g.,
Malhotra et al. 2006; Podsakoff et al. 2003a; Richardson et al.
2009).  A comparison of regression parameters with and with-
out the correction for the marker provides an indication of the
effects of common method bias on hypothesized relationships.

A number of limitations with the correlational marker ap-
proach should be mentioned.  Especially when all variables
are measured with single items, measurement error may not
only be high but is not taken into account in the procedure.
Likewise, it remains unknown whether all of the remaining
systematic variance can be attributed to hypothesized vari-
ables or whether it contains some proportion of systematic
error due to method, measure specificity, or other confounds.
Further, to the extent that a marker is related theoretically to
substantive variables, the correlational marker approach might
remove some substantive variance (e.g., Richardson et al.
2009, pp. 6-7).  Finally, the approach “assumes that common
method biases have the same effect on all observed variables”
(Podsakoff et al. 2003a, p. 890), which may not be realistic.

A creative extension of sorts to the correlational marker
procedure has been termed “controlling for the effects of a
directly measured latent method factor” (Podsakoff et al.
2003a, p. 893) or the “congeneric common method variance
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model” (Richardson et al. 2009, p. 5).  Here measures are
obtained for a hypothesized contaminator, and the con-
taminator is specified as a factor with all measures of the
substantive variables loading on it.  For example, if one
believes that social desirability systematically influences
people’s responses, over and above the presumed true
meaning of measures of substantive variables, items from a
social desirability scale could be included in a study, and a
social desirability factor created to test for and partial out the
effects of social desirability.

The dedicated marker variable approach, as the above exten-
sion might be called, may be an effective way to test for
explicit biases.  Findings with and without the dedicated
marker factor can be compared to ascertain such biases.
However, it should be emphasized that such an approach
focuses on the bias specific to whatever contamination one
suspects and measures.  The dedicated marker approach does
not, in general, control for common method bias, except
perhaps to the extent that the hypothesized factor and
measures actually measure bias associated with the method
itself.  This would normally be difficult to accomplish.  For
instance, social desirability biases may be distinct forms of
biases unique to the method(s) used in a study.  The dedicated
marker variable approach assumes that method bias, measure
specificity, and other systematic bias (e.g., that associated
with time when multiple occasions are investigated in a study)
are small in comparison to random error, and in any case,
these are not tested for under the approach.  In sum, although
the dedicated marker procedure permits the test of particular
biases, it does not address common method and other system-
atic biases, if any, and may even be contaminated with these.

The Method–Method Pair Technique

The approaches to construct validity discussed above and the
ones mentioned in the sections following the present one can
be applied in principle to a single study and a single sample. 
The method–method pair technique is used in conjunction
with a meta-analysis to explain variance in observed between-
studies correlations of measures of substantive variables (e.g.,
Sharma et al. 2009).  For example, the following random
effects ANOVA model can be used  in this regard:

Var(ri) = Var (ui + ei) = σ + Γ2

where ri = observed correlation reported in study i, ui = effect
of between-studies differences on the correlation coefficient
of study i, ei = within-studies error, and σ2 and Γ2are the
within-study variance (sampling error) and between-studies
variance, respectively.

In an innovative study, Sharma et al. (2009) examined the
effects of common method variance on the correlation
between perceived usefulness and usage from the technology
acceptance model literature (Davis et al. 1989).  Common
method variance (ui) was operationalized by method–method
pairs across five categories: system-captured (e.g., from
historical records or archives), behavioral continuous (e.g., as
recorded on open-ended scales), mixed behavioral continuous
and behaviorally anchored, behaviorally anchored (e.g., as
recorded on close-ended scales), and perceptually anchored
(e.g., agree–disagree scales).  The aforementioned ordering
was hypothesized to reflect common method variance going
from very low to very high.  All measures of perceived use-
fulness employed perceptually anchored scales, whereas
measures of usage utilized across data sets came from all five
categories.  Using information from 75 data sets, Sharma et al.
found that 56.09 percent of the variance in the correlations
between perceived usefulness and usage could be attributed
to method variance, with 36.28 percent due to error and the
rest partitioned amongst control variables.  These findings
point to a considerable amount of method bias.

The main advantage of the method–method pair technique is
that it can be used to suggest the consequences of employing
different methods in the measurement of variables in a theory
to test.  Of course, conclusions drawn from such a study have
to be taken as a matter of faith and incorporated into a subse-
quent research study someone conducts; the method–method
pair technique does not address construct validity in any
specific study and cannot be implemented as such.

The primary limitations of the method–method pair technique
are the following.  Because the explained variable is an
observed correlation, and therefore is differentially affected
potentially by up to five sources of variation, it is unclear that
the effect of method–method pairs can be attributed entirely
to method bias.  Indeed, it is possible that trait and method
variance are confounded.  Likewise, error and method bias
may be confounded.  At least it seems to be unknown whether
method bias of different sorts might be confounded with
method–method pairs and error and what the extent of such
confounding might be.  Another problem is the nonspecifity
of the nature of error entailed in any method–method pair
ranking.  No explicit representation is provided of the type of
error found in each method.  Moreover, in some research
contexts system-captured bias might be of an entirely
different sort and greater than behaviorally and perceptually
anchored biases; yet there is no way to ascertain this with the
proposed method–method pair ranking.  In fact, the rank
ordering of method–method pairs assumes that this variable
has no error of its own.  Perhaps future applications of the
method–method pair technique could be performed on corre-
lations corrected for measurement error or both measurement
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and method error.  Sharma et al. (2009, pp. 485-486) discuss
additional limitations of the method–method pair technique.

The CFA Approach Applied to
MTMM Matrix Data

To more definitively ascertain method variance, it is neces-
sary to formally consider multiple methods and multiple traits
in an integrated way.  A number of models have been pro-
posed to accomplish this, and we will briefly consider seven
here.

The approach that seems to be close in spirit to the MTMM
matrix perspective proposed by Campbell and Fiske (1959) is
the additive trait–method–error model shown in Figure 1 for
the case of three traits and three methods.  Here the variance
in each measure, xmt, is partitioned into three parts:  that due
to method, trait, and error.  For example, x1 = λ14ξm1 + λ11ξt1 +
δ1, where ξm1 is  method factor 1, ξt1 is trait factor 1, λ14 is the
factor loading relating x1 to ξm1, λ11 is the factor loading
relating x1 to ξt1, and δ1 is a disturbance.  Convergent validity
is achieved when the overall model fits satisfactorily and
factor loadings are significant and high in value.  Ideally,
standardized trait factor loadings of about .7 or greater are
desired.  The logic seems to be that one wants at least 50
percent of variance in a measure to be attributable to a trait. 
This may not be feasible in many practical applications, and
a more realistic minimum might be .6 or greater for trait factor
loadings, as this still demonstrates a strong relationship
between trait factor and measure.  Certainly, as trait loadings
fall below .5, however, they point to rather low trait variance. 
Discriminant validity is attained when correlations amongst
traits are significantly less than 1.00 and can be tested by
inspection of the confidence interval for correlations, or better
yet by chi-square difference tests, where chi-squares for a
model with and without a φij constrained to 1.00 are compared
with one degree of freedom.  Finally, the trait–method–error
model yields a convenient partitioning of measure variance
into trait, method, and error components, which is a useful
diagnostic not found in many approaches to construct validity.

An important design issue should be mentioned.  Campbell
and Fiske originally asserted that the MTMM matrix should
be formed so as to employ maximally different methods, and
researchers using CFA to analyze construct validity often
echo this recommendation.  The rationale appears to be the
belief that, to the extent that two or more very different
methods agree, and construct validity is achieved, we should
come away with the greatest assurance that this indeed is the
case.  But I think that the strongest evidence for construct
validity will be accomplished when a set of maximally similar

and a set of maximally dissimilar methods are employed. 
Why?  Well, it should be more difficult to demonstrate dis-
criminant validity when similar methods are used, and like-
wise more difficult to settle convergent validity when
different methods are applied.  Using only similar methods
makes it too easy perhaps to achieve convergent validity; but
using only different methods makes it too easy to attain
discriminant validity.  Hence the recommendation to use as
different and as similar methods as possible.

In sum, the trait–method–error model elegantly operation-
alizes the intent of appraising construct validity originally
proposed under the MTMM matrix procedure and indeed goes
beyond this procedure.  It is intuitive and easy to apply.  It
permits methods to correlate freely and allows for differential
effects of methods on measures (the MTMM matrix proce-
dure assumes that methods are uncorrelated and methods
influence all traits equally).  It provides for a statistical test of
the model, as well as parameter estimates of key aspects of
construct validity (the MTMM matrix procedure does not
provide these).  It permits the computation of reliability (the
MTMM approach assumes measures are equally reliable).
Finally, it yields estimates of the proportion of variance due
to trait, method, and error.

The trait–method–error model has shortcomings too.  Measure
specificity and random error are confounded (as they are in
most approaches, except in two mentioned below).  In prac-
tice, the model often yields ill-defined solutions:  empirically
under-identified models, failure of the estimation program to
converge, parameter estimates outside allowable ranges, and
excessively large standard errors (Marsh 1989).  Of course,
such outcomes occur when models are over-fitted to data or
when a model is fitted to data not appropriate to the data at
hand.  Nevertheless, Marsh and Bailey (1991) report that
about 75 percent of their attempts to run the trait–method–
error model yielded ill-defined solutions in their simulations
and analyses covering 435 MTMM matrices.  What is one to
do when ill-defined solutions occur?  In rare cases, it may be
possible to provide one’s own starting values when failures to
converge occur; also, it may be appropriate to fix a negative 
error variance to zero and rerun the model (when the negative
variance is nonsignificant), but this requires some skill and
judgment to achieve meaningful results (see Bagozzi 1993).
More often than not, ill-defined solutions suggest model
misspecification, and the best course of action is to try
another model, such as those discussed below.  Finally, when
correlations amongst traits and/or methods are too high, the
trait–method–error model may not yield partitions into trait
and method components with “trait-free” and “method-free”
interpretations (e.g., Kumar and Dillon 1992), and trait and
method variance may become confounded (e.g., Marsh 1989).
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Figure 11.  Trait–Method–Error Model

The correlated uniqueness model, shown in Figure 12, is
similar to the trait–method–error model, but instead of explicit
method factors, error terms for measures corresponding to
method effects are allowed to be correlated (e.g., Marsh
1989).  This specification permits the estimation of differen-
tial impacts of each method on the multiple measures
corresponding to that method.

Three advantages of the correlated uniqueness model over the
trait–method–error model are the following.  First, the corre-
lated uniqueness model seldom produces ill-defined solutions;
Marsh and Bailey, for example, found that only 2 percent of
the MTMM matrixes they examined exhibited improper
solutions.  Second, methods are not assumed to be unidimen-
sional.  The confounding of method variance with trait vari-
ance is avoided (when this is due to common trait variation
across methods and traits are highly correlated).  Third, when
four or more traits are measured with at least three methods,
one can test the assumption that all correlated uniquenesses
associated with one particular method can be explained in
terms of a single, unidimensional factor (the test can be
conducted by comparing χ2  tests).  It turns out that the trait–
method–error model with correlations among methods con-
strained to be zero is a special case of the correlated unique-
ness model.  For cases where three traits and three methods
are used, the models are identical.  But when four or more

traits are examined, more parameters are associated with each
method under the correlated uniqueness model than the
trait–method–error model with orthogonal methods.

Four shortcomings of the correlated uniqueness model should
be mentioned.  First, the interpretation of correlated unique-
ness as method effects is not always clear.  Two possible
empirical outcomes make the meaning of findings potentially
ambiguous:  the presence within the same method of (1) signi-
ficant positive and negative correlations and (2) significant
and nonsignificant correlations.  The former is incongruous,
since it is difficult to conceive of reasons why the same
method has opposite effects on measures of different traits
when the traits are expected to covary in either a positive or
negative direction.  The latter finding is possible in theory, but
in practice is difficult to explain unless one has a priori meth-
odological reasons accounting for differences in the  signifi-
cance and nonsignificance of correlated uniquenesses for a
common method.  In sum, whereas a correlated uniqueness
model may fit the data well, the presence of one or both of the
above outcomes may be a consequence of model mis-
specification or capitalization on chance.

A second, broad limitation of the correlated uniqueness model
is that it assumes that methods are uncorrelated.  This may be
reasonable when highly different methods are purposively
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Figure 12.  Correlated Uniqueness Model

chosen in a construct validation study.  But for the typical
study perhaps, where different kinds of self-reports constitute
the methods, methods would be expected to be significantly
correlated, possibly highly so.  Even different methods may
be significantly correlated under some conditions.  To the
extent that the assumption of uncorrelated method effects is 
violated, parameter estimates for trait variances and co-
variances will be biased (e.g., Conway et al. 2004).  Another
limitation to note is that factor loadings will be underesti-
mated to the degree that measure specifity occurs, although
measure specifity is often low in practice.  Finally the cor-
related uniqueness model does not permit the flexibility of
measuring specific sources of method bias and modeling these
(because method factors, per se, are not part of its
specification).

The trait–method–error model and the correlated uniqueness
model both hypothesize that traits and methods supply inde-
pendent additive effects to variation in a measure.  But in
some circumstances it may be possible for traits and methods
to interact in the sense that “the higher the basic relationship
between two traits, the more that relationship is increased
when the same method is shared” (Campbell and O’Connell
1982, p. 95).  Here the direct product model may apply.  The
general equation for the direct product model can be written
as 

Σ - Z(Pm q Pt + E2)Z

where Σ is the variance-covariance matrix of observed mea-
sures, Z is a diagonal matrix of scale constants, Pm and Pt are
method and trait correlation matrixes, respectively, whose
elements are particular multiplicative components of common
score correlations (i.e., correlations corrected for attenuation)
q is a right-direct (Kronecker) product, and E2 is a diagonal
matrix of unique variances.  This model can be implemented
in standard structural equation model programs (e.g., Bagozzi
and Yi 1990), although Browne’s (1990) MUTMUM program
may be easier to use.  From an intuitive perspective, the direct
product model hypothesizes multiplicative effects of methods
and traits such that sharing a method across traits exaggerates
the correlations between highly correlated traits relative to
traits that are relatively independent.  That is, the higher the
inter-trait correlation, the more the relationship is enhanced
when both measures share the same method, whereas the rela-
tionship is not affected when inter-trait correlations are zero.

The main advantage of the direct product model over other
approaches mentioned so far is that it is the only one to expli-
citly take into account trait–method interaction effects.  Yet,
the direct product model has been criticized for not being
readily implemented and for not fitting many contexts.  By
contrast, Campbell and O’Connell (1967, p. 44) imply that
trait–method interactions may be the rule rather than the
exception.  Where might the direct product model fit in
research?  One case is where self- and peer-ratings or self-
and expert-ratings are employed.  Each rater might have an
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implicit theory and set of expectations about the co-
occurrence of certain traits, which lead to rater-specific
biases.  In such cases, the stronger the “true” associations are
between traits, the more likely they are to be noticed and
exaggerated, thus producing the multiplicative trait–method
pattern.  This is called  differential augmentation in the litera-
ture (e.g., Campbell and O’Connell 1967, 1982).  Another
case that fits the direct product model is termed differential
attenuation.  This occurs, for example, when measurement is
done over time and multiple occasions are employed as
methods.  Here correlations between measures over time are
typically lower for longer than shorter lapses in time, demon-
strating an auto-regressive or Markov process.  Accordingly,
a high correlation between two traits will be more attenuated
over time than will a low correlation.  In contrast, a correla-
tion of zero can erode no further, and thus remains zero when
computed across methods (i.e., occasions, here).

The direct product model has a number of drawbacks.  One is
that it is difficult to assess convergent and discriminant
validity.  For some guidance here, as well as examples and
description of a set of useful hypotheses under the direct
product model, see Bagozzi and Yi (1992).  Compared to the
trait–method–error model, the direct product model applies
rather global interpretations of convergent validity and does
not supply the degree of convergent validity.  Second, trait
and method variation are confounded under the direct product
model.  So one cannot assess variation in a measure due to
trait and method separately.

An extension of the trait–method–error model should be
noted.  When one has explicit measures related to the nature
of two or more methods, it may be useful to use these mea-
sures as indicators of method factors, with the appropriate
measures of traits loading on these factors.  For example, if
under the key informant approach, one gathered data from
CEOs and subordinates at each of a number of organizations
on properties or processes in the organizations, then separate
“method” factors for the CEO and one or more subordinates
could be specified.  Because CEOs and subordinates have
differential knowledge of, investment in, concerns about, etc. 
organization properties and processes, measures of these (e.g.,
extent of knowledge) could be obtained and used to opera-
tionalize the method factors.  Notice that such a specification
is different than the dedicated marker variable approach in
that specific measures of the multiple methods are acquired,
whereas under the dedicated marker variable approach mea-
sures for biases other than that specifically reflecting biases
of the methods are obtained.  Indeed, it may be possible to
model the effects of both method biases tied directly to each
method in a multimethod study, in addition to a systematic

bias such as social desirability modeled as a dedicated marker
effect.

Another model we wish to consider under a CFA speci-
fication occurs in at least two senses.  One is the additive
model where trait, method, measure specificity, and error are
represented explicitly.  Bagozzi et al. (1991) consider such a
model and provide an example.  An alternative model that
permits estimation of measure specificity is the panel model
(e.g., Bagozzi and Yi 1993).  The four sources of variance can
also be studied by use of a three-facet design.  For instance,
Bagozzi et al. (1999) extended and illustrated the direct
product model to incorporate measurement occasion (po) as a
measure specific-like factor:

Σ = Z(po q pm q pt + E)Z

The additive and multiplicative models for incorporating the
four sources of variance go farther than the ones considered
heretofore, and in this sense overcome the limitations therein. 
However, each shares the other limitations pointed out under
the descriptions provided above.

For the case where methods are structurally different (i.e.,
when they are not randomly selected but rather come from
different sources), Eid et al. (2003) propose an approach that
explicitly compares and contrasts the different methods. 
Figure 13 presents an example for the case where each trait–
method–error pair has one indicator (the approach is more
informative when each trait–method pair has two or more
indicators; for an illustration with three indicators for each
trait–method pair, see Eid et al. 2008).  An example might be
the key informant method where three different key infor-
mants (e.g., the physician, pharmacist, and nurse on hospital 
pharmaceutical and therapeutics committees) estimate pro-
perties of the committees they sit on (e.g., degree of conflict,
information sharing, and trust).  The approach has been
termed, the correlated trait–correlated method minus one
model.  Notice in Figure 13 that the first indicator of each trait
does not load on a method factor, whereas every other
indicator loads on either the second or third method factor. 
The first factor is taken as the comparison standard.

For the generalization of the model shown in Figure 13 where
multiple indicators exist for each trait–method pair, a number 
of benefits can be mentioned for this perhaps seemingly
strange specification (Eid et al. 2003, pp. 54-55).  One is that
measurement error is separated from true trait and method 
effects.  Second, method effects can be modeled as trait-
specific rather than assumed uniform across traits.  Third, the
observed variance in measures can be partitioned into trait-
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Figure 13.  Correlated Trait–Correlated Method Minus One Model for Multitrait–Multimethod Data Where
Methods Are Structurally Different

specific, method-specific, and error components.  Fourth, trait
factors are the true-score variables of the comparison stan-
dard, and the method-specific factors are functions of the resi-
duals, which gives trait and method factors clear meanings. 
Finally, if desired, method factors specific to a trait can be
allowed correlated with trait factors for the other traits.

A limitation of the correlated trait–correlated method minus
one model is that multiple indicators are needed for each
trait–method unit to specify trait-specific method effects.
This makes implementation of such models difficult because
of the increased data demands over most of the other confir-
matory factor analysis approaches discussed herein.  Never-
theless the above mentioned benefits make such an approach
desirable if one has the resources and opportunity to collect
such data.  Another drawback is that the method selected as
a standard must be meaningful.  Eid et al. (2003) provide an
example where self-ratings are the standard of comparison for
two peer ratings, one by friends and the other by acquain-
tances.  Here the contrast of self with two peers seems to
make sense, but other meaningful cases may be difficult to
find.

The last confirmatory factor analysis case I wish to consider
is the multilevel confirmatory factor analysis model (see Eid

et al. 2008).  Figure 14 presents an illustration, where again
the single indicator trait–method pair case is shown for
simplicity.  The multilevel CFA model applies when methods
are interchangeable.  For example, a researcher might select
three employees at random in a sample of employees across
organizations to express their evaluation of the empathy,
fairness, and trust of their supervisors.  The model shown in
Figure 14 is a special case of the random effects analysis of
variance model and, continuing our example, values for each
trait factor represent the deviations of supervisors from the
means across all supervisors for each trait characteristic,
where it can be seen that three trait factors occur for each 
characteristic.  Note also that there is one method factor per
trait, which means that employee-specific sources of variance
are unidimensional for each trait characteristic.  As Eid et al.
(2008, p. 234) point out, method effects show the deviation of
the error-free or true-score of employees as raters from the
trait value (mean of all supervisors plus source of variance
from trait) on the target characteristics.

A primary advantage of the multilevel confirmatory factor
analysis model is that it separates method-specific from error-
specific sources of variance.  It also permits the partitioning
of variance into trait, method, and error components, and
yields straightforward ways to compute the proportion of total 
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Figure 14.  Multilevel Confirmatory Factor Analysis Model for Multitrait–Multimethod Data and
Interchangeable Methods

variance that is not due to random error (reliability coeffi-
cient), the degree to which true differences between ratings by
employees represent differences between target characteristics
(consistency coefficient), and the proportion of true variance
of ratings that is due to differences between employees (and
not due to differences between supervisors) (method speci-
ficity coefficients) (Eid et al. 2008, p. 235).  A restrictive
assumption of this model is that the method factors corre-
sponding to common trait–method units are unidimensional. 
It should be noted that Eid et al. (2008) consider models
where both interchangeable and structurally different methods
apply, but of course this requires special data requirements. 
Again the most useful and powerful analyses occur when one
has multiple indicators for each trait–method combination, but
this is also the most difficult design to implement and will be
difficult to accomplish in many organizational behavior and
information systems studies.

Comments on Approaches to 
Common Method Variance

There are so many ways to approach construct validity and
analysis of method bias, and so many issues to consider when

implementing these and interpreting results, that we might be
apt to throw up our hands in frustration and conclude that no
approach is viable.  Certainly all approaches have many pros
and cons.  But it would be misleading and self-defeating to
conclude that construct validity cannot be assessed and bias
corrected for in certain instances.  It is important to keep the
claims and limitations of the many approaches in perspective.

The method–method pair technique, for example, is not im-
plementable within a single study with one or a few samples,
but under this approach, we can learn which methods are
better than others and try to incorporate findings from any
meta-analysis into our next study.  Likewise, we can benefit
from looking across studies employing one or another con-
struct validity approach.  This might provide guidance on
what methods or measures to accentuate or avoid in the future
and what is to be learned by abstracting up from individual
studies and looking for useful patterns of findings and conclu-
sions, both methodologically and substantively.  An argument
can be made that it is important to approach construct validity
through a program of interconnecting studies over time.

Some drawbacks of approaches should not be taken as
absolute stigmas and lead one to categorically avoid them. 
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For instance, while the trait–method–error approach fre-
quently fails to yield interpretable results, it does on occasion
succeed and gives useful information on trait, method, and
error variance to help in appraising construct validity and help
in the selection of measures and items for further research. 
Other approaches may confound trait and method variance or
neglect measure specificity, say, yet still be useful in a predic-
tive model where an interesting dependent variable is exam-
ined and certain systematic and random errors are controlled
for, while predicting the dependent variable.  Here we at least
correct for errors even though we do not know their separate
contributions.  Yet other research contexts will dictate what
can and cannot be done because the context is additive,
multiplicative, or in some other way restrictive, requiring that
one consider the context–approach fit.  And we should recog-
nize that something is to be gained by combining different
approaches in a single study, as in the above mentioned
example of integrating the dedicated marker variable ap-
proach with the trait–method–error approach.  Other com-
binations are possible as well.

The study of construct validity is a time and energy intensive
endeavor and, done right, will require the implementation of
multiple methods and traits and the application of advanced
statistical and methodological procedures.  But this does not
mean that everyone must apply a MTMM matrix design in
any piece of research or that editors should necessarily require
that every study should demonstrate lack of contamination
due to method or other systematic bias.  Sometimes a well-
done, thorough multimethod study will establish precedents
for future studies where multiple methods are not required and
emphasis is placed more on theory development and “ade-
quate” tests of the theory.  We should encourage and reward
exemplary studies, yet what we learn from them might not
need to be repeated in their entirety for researchers building
on these studies.  Of course, real opportunities exist for
doctoral students, faculty members, and other researchers
willing to put the time and effort into developing valid scales
and constructs and testing substantive hypotheses with them,
while examining and controlling for construct validity.  The
thorough study of construct validity, whether in and of itself
or as part of a broader piece of research or program of
research, is a high investment, high risk undertaking but
offers the possibility of high rewards.  Administrators of any
portfolio of research, whether by an individual researcher,
team of researchers, or journal, should think about including
such a study.

A final comment to note is the following.  Different types of
data require different types of models and statistical proce-
dures.  Sometimes the type of data will dictate, or at least

narrow, the choices of models appropriate for analysis.  For
example, if one has random or interchangeable methods, then
the multilevel confirmatory factor analysis model might be
appropriate, whereas the correlated trait–method minus one
model would not be a good fit; conversely, if one has struc-
turally different methods and a meaningful comparison
method can be identified, then the correlated trait–method
minus one model would be a good choice, while the multi-
level model would not.  Of course, both of the aforementioned
models require multitrait–multimethod data, preferably with
multiple trait–method unit indicators.  When such data are not
available, the only recourse may be to use one or more of the
other approaches reviewed herein.  The advantages and disad-
vantages discussed above for each model  also provide some
guidance narrowing choices, in addition to the type of data at
hand, per se.  So although many models have been proposed
for analyzing construct validity and method bias, the problem
at hand and the researcher’s purposes will shape the choice of
approach(es).  Generally, it is safe to say that there is no
single approach that dominates all others, so the hope for a
“gold standard’ is, at present at least, unrealistic, and no
substitute exists for sound judgment (in the face of imperfect
methods and uncertain data).

Conclusion

There is an inherent tension between our desire for precise
guidelines and standards for designing, conducting, and
interpreting research, on the one hand, and the characteristic
complexities, uncertainties, and ambiguities of research prob-
lems, on the other hand.  Measurement and construct validity
are at the messy end of the spectrum of things and defy simple
solutions.  Yet we do not believe or want to hear this, and we
ln search for an elusive research elixir to make the messiness
go away.  An admittedly exaggerated analogy might help to
demonstrate my point.  Students and researchers accustomed
to the seemingly absoluteness of the meaning of F tests in
regression and ANOVA analyses, say, often expect analogous
standards of interpretation for structural equation models.  But
no single test, not even the χ2 test, can be applied definitively
to ascertain the meaningfulness of most models, and instead,
one must rely on a holistic interpretation of the χ2 test along
with a set of additional goodness-of-fit tests (some of which
sometimes conflict with each other), as well as other
diagnostics.

I do not think it is wise to make broad, either–or categorical
statements concerning formative and reflective measurement
and construct validity and method bias.  Rather, I think these
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areas fit the classic dictum where scholars are encouraged to
embark on ever deeper question posing and to regard answers
along the way as temporary guidelines but not necessarily
conclusive criteria.  My intent in this paper was to provide
some language for looking into the issues and encourage the
reader to use this language to discover his or her own perspec-
tive on the issues.  What seems to be undeniable is that if
researchers in information systems and the other organiza-
tional sciences make careful and concerted attempts to
validate their scales and instrumentation, the rigor of our
research efforts will gradually improve and the credibility of
our scientific results will be enhanced.  This is an admirable
goal that should be sought out.
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