
Measurement and Modelling of

Head-Related Transfer Function

for Spatial Audio Synthesis

Wen Zhang

B.E. (Xidian University, China)
M.E. (Hons 1) (The Australian National University, Australia)

August 2010

A thesis submitted for the degree of Doctor of Philosophy

of The Australian National University

Applied Signal Processing Group
School of Engineering

College of Engineering and Computer Science
The Australian National University





Declaration

The contents of this thesis are the results of original research carried out by myself,

under the supervision of A/Prof. Thushara D. Abhayapala, and Prof. Rodney A.

Kennedy. These have not been submitted for a higher degree to any other univer-

sity or institution.

Much of the work in this thesis has been published or has been submitted for pub-

lication in referee journal papers and conference proceedings. In some cases the

conference papers contain material overlapping with the journal publications. The

following is a list of these publications.

Journal Publications

1. W. Zhang, R. A. Kennedy, and T. D. Abhayapala, “Efficient continuous

HRTF model using data independent basis functions: Experimentally guided

approach”, IEEE Trans. Audio, Speech and Language Processing, vol. 17,

no. 4, pp. 819-829, May 2009.

2. W. Zhang, T. D. Abhayapala, R. A. Kennedy, and R. Duraiswami, “Insights

into head-related transfer function: Spatial dimensionality and continuous

representation”, The Journal of the Acoustic Society of America, vol. 127,

no. 4, pp. 2347-2357, Apr. 2010.

3. W. Zhang, M. Zhang, R. A. Kennedy, and T. D. Abhayapala, “On high

resolution head-related transfer function measurements: An efficient sampling

scheme”, IEEE Trans. Audio, Speech and Language Processing, (submitted

Sep. 2010).

i



ii

Conference Publications

1. W. Zhang, T. D. Abhayapala, and R. A. Kennedy, “Horizontal plane HRTF

reproduction using continuous Fourier-Bessel functions”, in Proc. 31st Audio

Engineering Society (AES) international conference on “New directions in

high resolution audio”, London, UK, June 2007, number 4, pp. 9 pages.

2. W. Zhang, R. A. Kennedy, and T. D. Abhayapala, “Signal estimation from

incomplete data on the sphere”, in Proc. IEEE 9th Australian Communica-

tion Theory Workshop (AusCTW07), Christchurch, New Zealand, Feb. 2008,

pp. 39-44.

3. W. Zhang, R. A. Kennedy, and T. D. Abhayapala, “Iterative extrapolation

algorithm for data reconstruction over sphere”, in Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing, ICASSP 2008, Las

Vegas, USA, Apr. 2008, pp. 3733-3736.

4. R. A. Kennedy, W. Zhang, and T. D. Abhayapala, “Spherical harmonic anal-

ysis and model-limited extrapolation on the sphere: Integral equation for-

mulation”, in Proc. 2nd International Conference on Signal Processing and

Communication Systems, Gold Coast, Australia, Dec. 2008, pp. 6 pages.

5. W. Zhang, T. D. Abhayapala, R. A. Kennedy, and R. Duraiswami, “Modal

expansion of HRTFs: Continuous representation in frequency-range-angle”,

in Proc. IEEE International Conference on Acoustics, Speech, and Signal

Processing, ICASSP 2009, Taipei, Taiwan, Apr. 2009, pp. 285-288.

6. M. Zhang, W. Zhang, R. A. Kennedy, and T. D. Abhayapala, “HRTF mea-

surement on KEMAR manikin”, in Proc. ACOUSTICS 2009 (Australian

Acoustical Society), Adelaide, Australia, Nov. 2009, pp. 8 pages.

Wen Zhang

College of Engineering and Computer Science,

The Australian National University,

Canberra,

ACT 0200,

Australia.



iii

DEDICATED

TO

MY FAMILY MEMBERS

WITH ALL MY LOVE





Acknowledgements

During My Ph.D. education at the Australian National University, I was fortu-

nate to have A/Prof. Thushara Abhayapala and Prof. Rodney Kennedy as my

supervisors.

Thushara introduced me into the research areas in audio and acoustics and

provided valuable suggestions and guidance throughout. We had many useful dis-

cussions which deepened my understanding on acoustic signal processing and pro-

vided insights into my research. I take this opportunity to sincerely acknowledge

his help, guidance and encouragement.

Rod trained me up in unit sphere and Hilbert space signal processing. I am

deeply grateful to him for his patience, for spending many hours with me, explaining

bits and pieces of fundamental signal processing knowledge. I learnt many things

from him including good research and good writing skills. I thank him for his

encouragement, guidance, insight and enthusiasm.

I am thankful to A/Prof. Ramani Duraiswami of the University of Maryland,

College Park. Discussion with him helped me enormously in broadening my knowl-

edge on the HRTF and the spatial audio applications.

I thank everyone in the Applied Signal Processing group for providing a con-

genial working environment. In particular, Ying Chen, Lin Luo, Karan Zhang,

Aastha Gupta, Jennifer Wu, Sean Zhou, and Sandun Kodituwakku deserve special

thanks for their friendly support. It is also my pleasure to acknowledge the help

from Lesley Goldburg, Elspeth Davies, and Rob Gresham on various administrative

and technical matters.

I would like to thank the Australian National University for provision of the

Ph.D. scholarship and National ICT Australia for the supplementary scholarship.

Finally, I thank my parents for their love and care without which I could not

have completed my research work. Thanks to my husband York for his love and

precious support during the most difficult times.

v





Abstract

There has been a growing interest in spatial sound generation arising from the de-

velopment of new communications and media technologies. Binaural spatial sound

systems are capable of encoding and rendering sound sources accurately in three di-

mensional space using only two recording/playback channels. This is based on the

concept of the Head-Related Transfer Function (HRTF ), which is a set of acoustic

filters from the sound source to a listener’s eardrums and contains all the listening

cues used by the hearing mechanism for decoding spatial information encoded in

binaural signals. The HRTF is usually obtained from acoustic measurements on dif-

ferent persons. In the case of discrete data and sets of measurements corresponding

to different human subjects, it is desirable to have a continuous functional repre-

sentation of the HRTF for efficiently rendering moving sounds in the virtual spatial

audio systems; further this representation should be well-suited for customization

to an individual listener.

In this thesis, modal analysis is applied to examine the HRTF data structure,

that is to employ the wave equation solutions to expand the HRTF with separable

basis functions. This leads to a general representation of the HRTF into separated

spatial and spectral components, where the spatial basis functions modes account

for the HRTF spatial variations and the remaining HRTF spectral components

provide a new means to examine the human body scattering behavior. The general

model is further developed into the HRTF continuous functional representations.

We use the normalized spatial modes to link near-field and far-field HRTFs directly,

which provides a way to obtain the HRTFs at different ranges from measurements

conducted at only a single range. The spatially invariant HRTF spectral compo-

nents are represented continuously using an orthogonal series. Both spatial and

spectral basis functions are well known functions, thus the developed analytical

model can be used to easily examine the HRTF data feature—individualization.

An important finding of this thesis is that the HRTF decomposition with the

spatial basis functions can be well approximated by a finite number, which is de-

fined as the HRTF spatial dimensionality. The dimensionality determines the least
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number of the HRTF measurements in space. We perform high resolution HRTF

measurements on a KEMAR mannequin in a semi-anechoic acoustic chamber. Both

signal processing aspects to extract HRTFs from the raw measurements and a prac-

tical high resolution spatial sampling scheme have been given in this thesis.
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