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ABSTRACT
This work is motivated by the need for low-order aerodynamic models to predict accurately the
effect on profile drag of controlling attachment line transition. Head’s entrainment method(1),
a rapid integral boundary layer technique used for design studies on swept wings, suffers from
the governing swept-tapered turbulent integral boundary layer equations being ill-posed in the
vicinity of the attachment line. This singularity has been treated using crude extrapolations
of the attachment-line similarity solution for over half a century, but this approach is unlikely
to deliver accurate predictions of the effect of changes in the attachment line flow on profile
drag. An experimental study has been carried out to explore the nature of the turbulent flow
in the vicinity of a highly swept swept attachment line and has revealed a quite complex, non-
monotonic development of the momentum thickness in this region. It has also revealed lower
levels of twist in the boundary layer velocity profiles than anticipated from the highly curved
character of the inviscid flow streamlines. These observations have prompted an alternative
approach to the modelling of the flow in this region which not only successfully eliminates
the lack of robustness in the swept-tapered equations but which also matches the experimental
results to within ±5%.

Keywords: turbulent attachment line; integral boundary layer; swept wings; aerodynamics;
turbulence
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NOMENCLATURE
β angle between the limiting and external streamline
c chord along the line of flight
cE entrainment coefficient used in Head’s method(1)

δ boundary layer thickness
δ1, δ2 boundary layer displacement thicknesses
η spanwise coordinate (colinear with y direction)
θ11, θ12, θ21, θ22 boundary layer momentum thicknesses
f1, f2, f3, f4 scaling factors relating crossflow integral length scales, defined in the

appendix
H boundary layer shape factor, H = δ1 / θ11

H1 entrainment shape factor, H1 = (δ - δ1) / θ11

k von Kármán’s constant from universal log-law
κT curvature of conical arc normal to generators of a swept-tapered wing,

κT = 1/r
� local sweep angle between line-of-flight coordinate ξ and spanwise

coordinate η

Rθ Reynolds number based on momentum thickness
r radius of curvature of conical arc normal to generators of a swept-tapered

wing
σ shorthand for sin ψ tan β

τ0 wall shear stress
Ue velocity of the inviscid flow at the edge of boundary layer
U1 component of Ue parallel to the x direction
u component of boundary layer velocity parallel to external streamline
u+ boundary layer velocity parallel to external streamline in wall units, u+ =

u/(Ue �(cf /2))
V1 component of Ue parallel to the y direction
v component of boundary layer velocity normal to external streamline
x conical coordinate normal to the direction of the wing generators
ξ line-of-flight coordinate
y conical coordinate parallel to the direction of the wing generators
z wall normal coordinate
z+ normalised wall normal coordinate, z+= (Ue z / υ) �(cf /2)
υ kinematic viscosity
ψ angle between inviscid streamline and x coordinate, ψ=tan–1 (V1/U1)

1.0 INTRODUCTION
For transport aircraft wings operating at high Reynolds numbers, the flow along the
Attachment Line (AL) is often turbulent, and numerical methods, including low-order
Computational Fluid Dynamics (CFD) codes, need to be able to predict the development of
the wing boundary layer flow starting from a turbulent AL. An example of such an application
is the recent Airbus study undertaken by Alderman et al(2) on the control of attachment line
transition using a turbulent contamination avoidance device. In contrast to an unswept wing,
the presence of a spanwise velocity component introduces large curvature in the inviscid
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Figure 1. Schematic representation of the flow along a swept wing.

streamline as the flow is turned from the spanwise direction at the AL towards the chordwise
direction by the acceleration normal to the Leading Edge (LE) as shown schematically in
Fig. 1. Modelling the flow in the vicinity of the AL poses significant challenges due to the
presence of highly curved streamlines and possibly large turbulence anisotropy arising from
the rapidly changing shear strain.

Recent years have seen complex-topology Reynolds-Averaged Navier–Stokes (RANS)
codes displace the lower-fidelity methods which formed the mainstay of the wing design
process during the 1980s and 1990s. However, there is renewed interest in low-order
CFD as a replacement for simple data-sheet methods in the conceptual/preliminary design
phases, particularly when flow control schemes are being considered. One such method is
the Airbus Callisto code, a turbulent boundary layer method based on the von Kármán
momentum integral equations, incorporating the lag-entrainment model of Green et al(3),
and modelling three-dimensional turbulence using the streamline analogy. The coupling of
boundary layer analysis with inviscid field analysis for attached and weakly separated flows is
described in detail by Lock and Williams(4), and has the advantage of requiring considerably
less computing resource than RANS, with comparable accuracy for attached flows, while
simplifying the isolation of the profile drag component of a wing.

The rationale behind the Callisto development was to develop a lag-entrainment code which
could be coupled to many different inviscid solvers, and indeed to develop an Object-Oriented
(OO) coupling framework which could be exploited by other boundary layer methods. Callisto
has now been coupled to a wide range of codes: the BAE Systems code RANSMB (structured
multi-block) and Flite3D (unstructured Euler); Fluent, via user-defined functions; and the
DLR TAU-Code. The method is accessed by the inviscid solvers as a shared object library; this
software architecture means that the same modelling, implemented via the same lines of code,
is accessed by each solver. As well as meeting the reusability objective for OO software, this
approach simplifies the transfer of novel flow-physics models (e.g., laminar flow control) from
research-type to industrial methods with some confidence. In order to permit rapid conceptual
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flow control studies on transonic wing geometries, Callisto has also been coupled to the full
potential aerofoil method of Garabedian and Korn(5), extended to handle infinite-swept and
swept-tapered wing flows using Lock’s transformation(6). Callisto Viscous Garabedian and
Korn, or CVGK, is therefore a 2½D version of the BVGK method developed at the Royal
Aircraft Establishment (RAE)(7). A recent numerical study conducted by Atkin and Gowree(8)

demonstrated that CVGK can predict the drag on swept wings in transonic flow with good
accuracy.

In the case of the turbulent AL, the streamline analogy leads to ill-posed governing
equations in a very confined region downstream of the AL where the streamline direction
is more or less perpendicular to the marching direction of the boundary layer solver. The
singularity at the AL itself is resolved by invoking local similarity arguments, but immediately
downstream of the AL, there are lingering robustness issues which seemingly cannot be
resolved. In Callisto, this region has to date been approximated by simply extrapolating the
results of the AL calculation over the first 0.5% or so of wing chord.

Due to the lack of detailed measurements in this region, it is difficult to benchmark this
approximation or to derive a more reliable semi-empirical model for the turbulence. The lack
of good data for a turbulent boundary layer at the LE of a swept wing may be explained by
the topological complexity of the three-dimensional (3D) boundary layer, which also tends to
be very thin at its origin and growing very slowly due to the presence of a favourable pressure
gradient. An experimental campaign was therefore conducted to investigate the behaviour of
the viscous flow in the vicinity of the AL generated on a wing model with very high LE sweep
so as to validate and, if possible, improve the near-attachment flow modelling in Callisto and
related boundary layer codes.

The layout of this paper is as follows. Section 2 contains a description of the numerical
modelling, comprising the governing equations and the approximation to these at the leading
edge to overcome numerical issues. In Section 3, a brief description of the experiment is
presented; more detail of the hot-wire and optical alignment system can be found in Gowree et
al(9), together with an analysis of the accuracy of the measurements. The experimental results
are presented in Section 4 and, based on the new insight from these findings, the governing
equations were modified for the region of the flow immediately downstream of the attachment
line. These modifications are presented in Section 5 along with a comparison of the old and
new approached with the new experimental results. The paper concludes with a discussion of
both experimental trends and numerical modelling and a summary of the contribution to the
body of knowledge.

2.0. NUMERICAL MODELLING IN CALLISTO
2.1 Coordinate system

The idealised geometry used by 2½D methods to model swept-tapered wings is illustrated
in Fig. 2. The wing is assumed to be of constant section and twist, with leading and trailing
edges meeting at a point O. All radii r joining the origin O with a point on the wing surface are
generators of that surface. This conical symmetry is assumed to extend to the external inviscid
flowfield such that isobars of surface pressure are coincident with the wing generators.

Both the magnitude and the direction of the inviscid flow at the boundary layer edge are
assumed to be independent of spanwise position. This allows the variation of the viscous
flowfield with spanwise position to be reduced to a simple length scale dependence: in laminar
boundary layer theory, the boundary layer thickness can be shown to vary with r½(10,11), while

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/aer.2017.30
https:/www.cambridge.org/core


Figure 2. (Colour online) Schematic of a swept-tapered wing illustrating the line-of-flight section AB and
the undeveloped computational arc AC for the boundary layer calculation.

for turbulent boundary layers, the integral length scale varies more or less as r(12). To simplify
reduction of the governing equations to infinite-yawed-wing form as the local taper radius r
tends to infinity, a taper curvature κT is used.

2.2 Governing equations

Although based upon a well-established theory, the integral boundary layer equations within
Callisto have been developed and refined over a number of years, starting with the entrainment
method of Head(1), which added to the classical von Kármán equation a transport equation for
the boundary layer shape factor, H. Green(13) extended Head’s method to compressible flows
by means of a transformed shape factor H̅, defined in Equation (6), and then introduced the
effects of turbulence history by adding an equation to account for the lag in the response
of the turbulence to changes in the strain field(3). At the same time, Smith(14) extended the
basic approach to three-dimensional flows by employing the streamline analogy, whereby
turbulence characteristics in a 2D boundary layer are assumed to be replicated by the flow
resolved the direction of the external streamline in a 3D boundary layer: closure of the
increasing number of momentum thicknesses is achieved by assuming functional dependence
of those length scales upon the streamwise momentum thickness, θ11, the transformed shape
factor H̅, and the twist β of the limiting streamline (at the wall) relative to the direction of
the inviscid flow. Smith’s fully 3D approach was adapted for the special case of swept-tapered
wings described above by Ashill and Smith(12), to provide a low-cost approach to assessing the
effect of sweep and taper on turbulent boundary layers on transonic wings. The advantages
of lower-cost, approximate methods are still evident today where they can be enablers for
CPU-intensive optimization strategies.

The governing equations in the Callisto code are derived from the system of three integral
equations for momentum, resolved parallel and normal to the inviscid flow streamline, and
for entrainment, as presented by Ashill and Smith(12). The latter system of equations is
presented in the appendix, as are the principal modifications to the notation and to the choice
of independent variables adopted for the Callisto method. The resulting system, expressed in
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the conical-surface (x,y) coordinate system illustrated in Fig. 2, can be written:

⎛
⎝Aθ Aβ AH̄

Nθ Nβ NH̄
Eθ Eβ EH̄

⎞
⎠ d

dx

⎛
⎝ θ11

tan β

H̄

⎞
⎠ =

⎛
⎝λ1

λ2

λ3

⎞
⎠ … (1)

and

∂θ11

∂y
= −θ11

r
(for turbulent flows) … (2)

∂β

∂y
= ∂H̄

∂y
= 0 … (3)

The non-trivial coefficients Am and λʹn are defined in the appendix. The independent
variables in the above equations relate to the 3D boundary layer profiles as follows:

θ11 =
∫ δ

0

ρu
ρeUe

(
1 − u

Ue

)
dz, … (4)

tan β =
∂v

/
∂z

∂u/
∂z

∣∣∣∣∣
z=0

, … (5)

H̄ = 1
θ11

∫ δ

0

ρ

ρe

(
1 − u

Ue

)
dz … (6)

For completeness, we note that the system of equations above can be solved only for
attached flows and that, for flows near to separation or mildly separated, the inviscid velocity
gradient becomes an independent variable (rather than a constant factor in the coefficients λ1,
λ2 and λ3) governed by an additional equation for the wall-normal velocity at the edge of the
boundary layer. The principles of the approach are well described by Lock and Williams(4);
however for the purposes of this paper, the basic three-equation system is sufficient to calculate
the development of a turbulent boundary layer near the AL. We also note here that the
entrainment equation can be augmented by Green’s lag equation but again, as it is not central
to the behaviour of the three-equation system at the AL, it will not be discussed in this paper.
One further complication is that the governing equations in Callisto are transformed into a
non-orthogonal coordinate system, (ξ,η) in Fig. 2. However, the additional terms do not alter
the numerical challenge at the leading edge and so again are not introduced in this paper.
Rearranging Equation (1) above, and substituting the expressions listed in the appendix, we
obtain the first-order, non-linear differential system:

d
dx

⎛
⎝ θ11

tan β

H̄

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

cos ψ − σ f2 − sin ψ f2θ11 −σ
d f2
dH̄

θ11

tan β (cos ψ f1 − σ f4) (cos ψ f1 − 2σ f4) θ11 tan β
(

cos ψ
d f1
dH̄

− σ
d f4
dH̄

)
θ11

cos ψ H1 + σ f3 sin ψ f3θ11

(
cos ψ

dH1
dH̄

+ σ
d f3
dH̄

)
θ11

⎞
⎟⎟⎟⎟⎠

−1 ⎛
⎝λ1

λ2
λ3

⎞
⎠ ,

… (7)
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Figure 3. The inviscid flow vectors in the vicinity of the AL.

where we have introduced the shorthand

σ = sin ψ tan β … (8)

This type of initial-value problem is well suited to solution by a Runge-Kutta scheme: the
variant due to England(15), with a facility to reduce the marching step size if the estimated
truncation error exceeds a pre-defined threshold, is used in Callisto.

2.3 Conditions for singularity of the viscous derivatives matrix

There are two conditions where the system of Equation (7) can clearly be seen to become
singular. The first is most clearly evident in case of 2D flow where tan β ≡ 0, cos ψ ≡ 1 and
sin ψ ≡ 0 for all x (so that σ ≡ 0), when the normal momentum equation can be de-coupled
from the rest of the system, leaving the following equation:

d
dx

(
θ11

H̄

)
=

(
1 0

H1
dH1

dH̄
θ11

)−1 (
λ1

λ3

)
… (9)

The singularity occurs when the parameter dH1

dH̄
in Equation (9) becomes zero (at

separation). This condition is well known and is dealt with by introducing a transpiration
equation to the system and by changing the dependent variables, as discussed above.

The second singular case is AL flow, as illustrated in Fig. 3 below: locally (at A-A) both
cos ψ = 0 and tan β = 0 so that σ = 0, leaving all but two terms in the matrix (7) equal to
zero.

This AL singularity was tackled by Cumpsty and Head(16) and later by Smith(17) by
differentiating the spanwise momentum equation with respect to the x coordinate to obtain
the following non-linear simultaneous equations for the flow gradients at the AL:

1
V1

dU1

dx
θ11 − f2 θ11

dβ

dx
= c f

2
, … (10)

2 f4

(
θ11

dβ

dx

)2

+
(

c f

2
− 3 f1

V1

dU1

dx
θ11

) (
θ11

dβ

dx

)
+ (H + 1)

(
1

V1

dU1

dx
θ11

)2

= 0,

… (11)
H1

V1

dU1

dx
θ11 + f3θ11

dβ

dx
= cE … (12)
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Note that U1 and V1 (see appendix) are re-introduced in the above equations, rather than
ψ, for clarity. These equations can be solved iteratively but straightforwardly to obtain the
momentum thickness and rate-of-change of limiting streamline angle at the AL (the rate
of change of U1 is a boundary condition given by the inviscid flowfield). The AL solution
provides the initial values for Equation (7) which, in principle, can be solved at any point
downstream of the AL, given the finite rate of change of both U1 (and therefore ψ) and β at
the AL. It turns out that, depending upon the resolution of the computational domain very near
the AL, Equation (7) is ill-posed until a short distance downstream of the AL – the experience
of the authors has been that the system of integral equations cannot be robustly tackled with
a Runge-Kutta scheme until the angle ψ has decreased to about 80°. Similar difficulties were
reported by Thompson and McDonald(18) and later by Smith(17), who adopted a numerical fix
similar to the one employed by Callisto and described below. The issue may not have been
encountered more widely because the problem region accounts for less than 1% of the chord
length and would not impact upon less finely resolved computations. However, standards of
resolution for the analysis of leading-edge flows have tightened in recent years, owing to the
need to resolve the development of crossflow instability on laminar leading edges: adoption
of the same numerical domain for the analysis of swept wings with turbulent AL invariably
throws up this numerical feature.

2.4 Leading Edge Approximation

On the basis that the rates of change of both ψ and β are small for some distance downstream
of the AL, a numerical fix was devised, involving a simple extrapolation of the AL similarity
solution, used by Cumpsty and Head(16) and Smith(17) over the region where the integral
equations were ill-posed, as defined by the criterion ψ > 80°. Such a sacrifice of accuracy
for robustness was justified on the basis of the very short region concerned and the strongly
favourable pressure gradient over this region, leading to the belief that the downstream
development of the boundary layer integral quantities would not be significantly affected,
hence providing acceptable accuracy for the calculation of the profile drag. This assumption
appears to have been justified, but a fuller discussion is left until later in the paper, along with
the demonstration of the effect of this numerical fix on the solution of the boundary layer
equations. At this point we simply observe that there were no experimental data available to
validate this approximation – hence the experimental study reported below.

3.0 EXPERIMENTAL INVESTIGATION
3.1 Experimental set-up and procedures

The experimental AL was generated on NACA0050 aerofoil profile, at zero angle of
incidence, swept back by 60°. The model was made of wood with a normal-to-LE chord
length of 466 mm and a LE radius of curvature of 114 mm. It was mounted between the floor
and ceiling of the test section of the T2 wind tunnel in the Handley Page Laboratory at City,
University of London, as shown in Fig. 4.

The T2 tunnel has a speed range of 4–55 m/s. The test section measures 1120 mm wide
by 800 mm high by 1.2 m long: the model extended into the tunnel diffuser by 150 mm. The
blockage ratio introduced by such a large model is mitigated to an extent by the high sweep
angle. Because the present investigation is focused on the flow very near the swept leading
edge, the necessary numerical adjustments to the accompanying calculations can be achieved
by an ‘effective sweep’ correction which infers the true magnitude of the velocity component
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Figure 4. Schematic of the swept-wing model mounted in the T2 wind tunnel.

Figure 5. (Colour online) Arrangement used to apply the techniques used by Gowree et al(9) to probe the
flow away from the leading edge of the model.

parallel to the attachment line based upon the measured value of the pressure coefficient at the
attachment line. The reader is referred to Ref. 9 for a comparison of the chordwise pressure
distributions obtained from parallel rows of pressure taps around the model near the root
(bottom), mid-span and tip sections. These pressure distributions and subsequent flow visual-
isations suggest that the flow separated at about 80% chord over most of the span of the model.

A surface-mounted boundary layer traverse probe with micro-displacement capability was
employed to capture the velocity profile, with a resolution of 2.5 μm per step achievable
within an accuracy of ±0.09 μm. This traverse, and the optical system used to calibrate probe
displacement from the surface, is described in detail by Gowree et al(9) for measurements on
the attachment line (almost exactly on the model centreline). The right-hand image in Fig. 5
shows the additions made to the traverse, still fixed to the centreline line of the model, to
allow the hot-wire probe to survey the flow away from the attachment line. The left-hand
image illustrates how the axis of the optical alignment system was inclined to enable the same
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technique as described in Ref. 9 to be used for determining distance between probe and model
surface.

A single normal (SN) hot-wire probe, Dantec 55P15, was used to capture the single
velocity component at the AL and a Single Yawed (SY) probe, 55P12, for the measurement
of the two in-plane velocity components downstream of the AL. The Constant Temperature
Anemometry (CTA) technique was used and the hot-wire probes were connected to the DISA-
55M10 CTA Standard Bridge (M-Unit) module. The M-Unit was in turn interfaced with a
National Instruments (NI)-DAQ card with built-in A/D converter and installed in a PC for
data acquisition using NI LabVIEW. The hot-wire output signal, sampled for 10 seconds at
10 kHz, was pre-filtered through a low-pass filter rated at 4.8 kHz prior to recording. King’s
law was applied for the reduction of hot-wire output voltage. The calibration of the SN probe
and measurement of a single velocity component at the AL was straightforward, but more
challenging for the SY probe used to measure the two velocity components immediately
downstream of the AL. In this case, Bradshaw’s method described in Ref. 19 was employed
and a yaw calibration was required due to the directional sensitivity of the SY probe.
The estimated error for the hot-wire measurements was less than 5%(19) but the excellent
agreement between the measured velocity profiles along a laminar attachment line and the
theoretical solution for swept Hiemenz flow (Fig 17 of Ref. 9) suggests that the actual error,
including probe interference, was marginal.

Preston’s(20) technique was employed for the measurement of local surface shear stress. At
the AL, the flow resolves into a single spanwise velocity component, similar to the streamwise
flow along a flat plate, thus the method was expected to yield reasonable accuracy. This
technique has thus far been restricted to 2D flows where the skin friction acts in the same
direction as the velocity component; however, for the flow downstream of the AL, an attempt
was made to extend this technique to the 3D boundary layer under the highly curved streamline
at the LE of a swept wing. The surface shear stress measurement was made by aligning
the pitot tube in the direction of the local external streamline, obtained from the velocity
components measured using the CTA technique at the edge of the boundary layer. The angle
between the external and the surface streamlines was small (approximately ±5° as discussed
in Section 4.2), and therefore this approach was felt to add negligible additional error: the
uncertainty analysis conducted by Gowree(19) yielded the same confidence level as for the 2D
case of purely spanwise flow along the attachment line.

4.0 EXPERIMENTAL RESULTS
4.1 Streamwise velocity profiles

Due to contamination by the turbulent boundary layer on the floor of the wind tunnel, the
flow along the AL was found to be intermittently turbulent for Rθ > 100. This threshold is
in agreement with the results of Pfenninger(21) and Gaster(22). The turbulent mean velocity
profiles were captured at various AL Reynolds numbers and, using the surface shear stress
measurements, these profiles were represented in wall units, Fig. 6. For the fully turbulent
velocity profiles, some measurements were acquired in the laminar sub-layer despite a
boundary layer thickness of the order of 3 mm, owing to the digital optical system(9) which
enabled the hot-wire probe to be positioned accurately very close to the wall. Figure 6 shows
that the logarithmic region of the velocity profiles deviates from the universal log-law used by
Cumpsty and Head(16), although significant scatter was observed in the latter’s experimental
results. Spalart(23) suggested, on the basis of DNS analysis, that on a flat plate, for Rθ < 620,
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Figure 6. The turbulent velocity profile at the AL.

the log-law was best defined using the von Kármán constant, k = 0.41. In the present work on
the attachment line, the best fit to the experimental data was obtained using k = 0.39.

The mean streamwise velocity profiles captured just downstream of the AL are presented
in Fig. 7 for an AL Reynolds number Rθ = 590. The good agreement between the port and
starboard side measurements demonstrates that the AL was coincident with the leading edge
of the model.

Using the surface shear stress measurements the velocity profiles were represented in wall
units, as shown in Fig. 8. The inner region of these velocity profiles matches the ‘universal
log-law’ with reasonable agreement, but the measurements in the viscous sub-layer vary
irregularly with chordwise position. However, the agreement with the universal log-law
suggests that the profiles were captured with reasonable accuracy outside the sub-layer and
can be useful for further analysis.

4.2 Crossflow velocity profiles

Figure 9 shows the crossflow profiles (velocity perpendicular to the external streamline, as
opposed to the spanwise direction) at different chordwise positions downstream of the AL.
Good agreement can be observed between the port and starboard measurements except at
x/c = 0.03. This is probably due to the limitation in the yaw sensitivity of the SY probe
which was, in anticipation, restricted to ±70° during the yaw calibration. More detail of the
crossflow was revealed when the profiles were plotted on the triangular hodograph model
proposed by Johnston(24), as shown in Fig. 10, where the normalised crossflow velocity
can be represented as a function of streamwise velocity. From Fig. 10 it is easier to detect
the development of the ‘S-type’ or ‘crossover’ crossflow profiles which are present for
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Figure 7. Streamwise velocity profiles at the LE for an AL Rθ = 590.

Figure 8. Streamwise velocity profiles in wall units, downstream of the AL at Rθ = 590.

x/c > 0.0025. Normally, the crossover point occurs very close to the wall and shifts upwards
further downstream, as observed in Fig. 10. Due to limited resolution in the near wall
measurements, it is difficult to capture the chordwise location where the crossover first
develops. The main issue with the triangular representation is the difficulty in applying a
linear fit to the profiles, especially around the maxima of the crossflow velocity.
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Figure 9. Crossflow velocity profiles downstream of the AL at Rθ = 590.

Figure 10. Triangular representation of crossflow profiles using Johnston’s model.

According to Johnston, the angle between the limiting and the external streamline, β, can
be approximated as the gradient of the line of best fit connecting the origin and the apex of the
triangle defined by the stationary points (maxima or minima) of the velocity profiles, which
is assumed to be the region where the surface shear stress is dominant. Using this approach,
on the port side of the model at x/c = 0.0025, the angle between the limiting and external
streamline, β, is –3.1°. The same method can be applied to the crossover profile but, due to
insufficient data in the near wall region for the measurement between 0.01 ≤ x/c ≤ 0.02, it
was not possible to determine β until x/c = 0.03, where the apex of the triangle could be
resolved. At this position, linear extrapolation of the velocity components suggests a limiting
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Figure 11. The orientation of the external streamline with respect to the chord normal
to the LE at an AL of Rθ = 590.

value of β = 18°. It appears unlikely from Fig. 10 that β attains large negative values before
the appearance of the crossover in the crossflow profiles: therefore, it seems fair to assume
that, within the current experimental domain, the limiting streamline angle ranged between
–3° < β < 18° and, nearer the attachment line, x/c ≤ 0.01, it appears that |β| < 3°. Given that
one might have expected the near-wall flow to respond more rapidly than the inviscid flow to
the very strong pressure gradient acting nearly perpendicular to the direction of flow in this
region, the limiting streamline angles are perhaps surprisingly small in value.

4.3 Topology of the flow at the leading edge

The external inviscid streamline can be resolved in terms of the chordwise and spanwise
velocity components measured at the edge of the boundary layer using the SY probe. The
variation in the streamline angle, ψ, relative to the normal-to-LE direction is plotted in Fig. 11.
At x/c = 0.0, ψ ≈ 90° as the flow along the AL is purely spanwise and at x/c > 0.03 the
external streamline is nearly aligned with the free stream.

In addition to the streamwise momentum thickness defined in Equation (4) above, the
following streamwise and crossflow boundary layer integral quantities were derived from the
experimentally measured streamwise and crossflow velocity profiles (under incompressible
conditions, ρ = ρe) which were captured within an accuracy of ±5%; the development of
these length scales in the vicinity of the AL is presented in Fig. 12.

δ1 =
∫ δ

0

(
1 − ρ u

ρeUe

)
dz, … (13)

δ2 =
∫ δ

0

(
− ρ v

ρeUe

)
dz, … (14)

θ12 =
∫ δ

0

ρ v

ρeUe

(
1 − u

Ue

)
dz, … (15)

θ21 =
∫ δ

0

ρ u
ρeUe

(
− v

Ue

)
dz, … (16)

θ22 =
∫ δ

0

ρ v

ρeUe

(
− v

Ue

)
dz … (17)
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Figure 12. The port side streamwise and crossflow integral quantities in the vicinity
of the AL at Rθ = 590.

The streamwise momentum thickness, θ11, increases by approximately 15% immediately
downstream of the AL, and so does the streamwise displacement thickness, δ1. A slightly non-
monotonic trend can be observed in the development of θ11 and δ1, which was initially thought
to be due to experimental uncertainty. But error analysis suggested that these differences were
significantly larger than ±5% and therefore could potentially be due to an unexpected physical
behaviour of the turbulent boundary layer. The crossflow momentum thicknesses θ12 and θ22

are almost negligible at the AL (as expected from the very small magnitudes of the crossflow
velocity) and do not vary significantly downstream. However, θ21 grows to about one-third of
the value of θ11 and δ2 to roughly one-eighth of the value of δ1. This growth in the integral
quantities is significant and is not captured by the LE approximation in Callisto, prompting
the numerical modelling to be revisited.

5.0 MODIFICATIONS TO THE GOVERNING EQUATIONS
IN CALLISTO

5.1 Modification to leading edge model

As discussed previously, in Callisto a numerical approximation to the governing equations
is imposed near the AL, specifically while ψ > 80°. For the current experiment this zone
ends somewhere in the region 0.005 < x/c < 0.01, as shown in Fig. 11. As discussed at
the end of Section 4.2, in this region the limiting streamline angle appears to be small in
magnitude, |β| < 3°. This experimental observation suggests that the governing equations
might remain ill-posed immediately downstream of the AL not simply because cos ψ ≈ 0,
but because tan β is also small in the same region: the slow development of cos ψ and tan β

means that the system of Equations (7) remains dominated by just two terms out of nine close
to the attachment line (see discussion in Section 2.3). This results in numerical error and poor
robustness when marching the boundary layer equations using a Runge-Kutta scheme. A new,
more subtle numerical approximation to the governing equations was therefore developed: to
extend the assumption – by Cumpsty and Head(16) and Smith(16) – of constant, finite ∂β/∂x at
the AL to the flow immediately downstream. This allows the normal momentum equation to be
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de-coupled, allowing the remaining two equations to be solved as a coupled system, as shown
below:

d
dx

(
θ11

H̄

)
=

(
cos ψ − σ f2 −σ

d f2

dH̄
θ11

cos ψ H1 + σ f3

(
cos ψ dH1

dH̄
− σ

d f2

dH̄

)
θ11

)−1
⎛
⎝λ1 + sin ψ f2θ11

dβ

dx

∣∣∣
AL

λ3 − sin ψ f3θ11
dβ

dx

∣∣∣
AL

⎞
⎠,

… (18)

dβ

dx
= dβ

dx

∣∣∣∣
AL

… (19)

The experimental results actually show that ∂β/∂x does vary downstream of the attachment
line, so Equation (20) can be thought of as the first term of an expansion for ∂β/∂x. In
this respect we are primarily looking for a more robust numerical treatment rather than for
a model of the highest accuracy. Moreover no attempt has been made (nor could be, given the
sparseness of the crossflow profile data obtained) to improve the Mager(25) crossflow profile
modelling (see Appendix) which – as is well-known – cannot cater for the type of crossover
profiles seen in the experimental results.

The revised solution process is then as follows: the first task is to solve the simultaneous
system described by Equations (10) through (12) for θ11, H (and therefore H̅) and ∂β / ∂x at
the AL; immediately downstream of the AL, Equations (18) and (19) are used to march the
solution until tan β recovers to a threshold value, whereupon the full 3D system of Equations
(7) can be restored. This threshold value is determined by numerical robustness and is so small
that the switch from Equation (18) to the full 3D form – Equation (7) – is hardly detectable in
the results.

5.2 Results obtained using the modification governing equations

The development of the streamwise momentum thickness obtained from the computation with
the improved LE modelling (new) can be compared with those from the previous version of
Callisto (old) in Fig. 13, where s/c represents the normalised coordinate along the surface
of wing profile in the direction normal to the leading edge. Computations with the modified
code were conducted for both the geometrical sweep condition, 60°, and the effective sweep,
which was calculated to be approximately 62° using the experimental static pressure at
x/c = 0 (see Section 5.4.1 in Ref. 19 for more details). These results are presented in Fig. 13
which shows a slight asymmetry in the computed results near the leading edge: Callisto-
VGK captures the significant trailing edge separation present over the aft 10% chord of the
model, but the resulting solution is mildly oscillatory (residual convergence to 10–4 rather than
the usual 10–6 employed for aerofoil analyses) and any given ‘snapshot’ of the solution will
feature some small circulation around the model, which results in the asymmetry visible in the
figure.

In Fig. 13, looking at the prediction from the original version of Callisto, θ11 remains
constant immediately downstream of the AL – due to the extrapolation of the attachment line
solution – and then starts to increase again once a solution of the full governing equations is
obtained, for ψ < 80°. In the modified version, the reduced set of governing equations can be
solved immediately downstream of the AL: a comparison between the computed results and
experimental results in Fig. 13 shows a significant improvement, as the momentum thickness
is now predicted to be within ±5% of the experimental results. The non-monotonic behaviour
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Figure 13. Comparison of θ values captured experimentally against those computed using the original
and the modified versions of Callisto.

in the experimental momentum thickness is also now replicated by the numerical results,
providing confidence in the experimental observation.

Figure 14 shows the computed development of the limiting streamline angle and the
transformed shape factor before and after the modifications to Callisto; these results all
include the effective sweep correction. Callisto employs a continuous coordinate system sʹ
(the developed surface distance around the model, normal to the leading edge) so that the sign
convention for β differs on one side of the model, compared to the experiment. The method
predicts a maximum value of β of around 13° at sʹ ≈ 0.13, (corresponding to x/c ≈ 0.03)
as compared with the 18° estimated at this location from the experimental velocity profiles.
This discrepancy is attributed to the relative simplicity of the Mager model used to capture
the crossflow (as discussed in Section 5.1). The new treatment of the governing equations
has a relatively small impact on the development of β: a slight discontinuity in ∂β/∂x, where
the method switches from a constant AL value to direct calculation of the derivative using
the marching scheme in equation (7), is visible in both cases. This suggests that the third
derivative ∂3β/∂x3, which is not resolved by either approach, is of significant magnitude of at
the AL. Interestingly the relative magnitudes of β predicted by the old and new schemes are
then reversed by the marching scheme, before converging much further downstream (off the
ends of the plot). The shape factor H̄ is also seen to be fixed at a constant AL value by the
old scheme, whereas the new scheme again allows a more rapid return to the trends predicted
by the marching scheme. Overall the figure illustrates the advantage of the new approach in
allowing Callisto to switch to the full system of equations at an earlier point in the analysis,
owing to the more precise diagnosis of the robustness problems in the governing equations;
however, there is little evidence that the flow development a long way downstream of the
AL would be sensitive to the change in leading-edge modelling – at least for this particular
case.
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Figure 14. β and H̄ values computed using the original and the modified versions of Callisto.

6.0 DISCUSSION
Figure 6 shows that, for Rθ ≥ 315, the logarithmic regions of the velocity profiles collapse
onto a single (modified) log-law. This finding is in agreement with Preston’s(25) criterion for
minimum Reynolds number for the existence of a fully turbulent boundary layer on a flat plate
for Rθ ≈ 320. Similar behaviour was also reported during the DNS study of Spalart(26), where
the inner layer of the velocity profiles tended towards the universal log-law at Rθ > 300. Based
on this result a new regime where the AL is intermittent can be defined for 100 < Rθ < 315. It
is our belief that the AL has been previously misinterpreted to be fully turbulent in this regime,
which is misleading in the context of flow control applications on swept wings. In addition,
on the mid-span and outboard section of the wings of short-haul airliners, and the outboard
section of long-haul airliners, Rθ < 300; therefore, numerical analysis which assumes fully
turbulent flow right from the AL is likely to be incorrect.

The marked growth in the boundary layer momentum thickness observed experimentally
immediately downstream of the AL underlines the need for improved modelling in Callisto.
The modification to the governing equations in the vicinity of the AL can be considered
satisfactory due to the much-improved agreement between the calculated and the experimental
results.

Despite the significant change in the AL modelling, the profile drag prediction was not
significantly affected: the predicted momentum thickness in the far wake was almost the
same from both the old and the new versions of Callisto. The revised computational results
in Fig. 13 show a rapid growth in momentum thickness downstream of the AL followed by
an equally rapid decay, presumably due to the interplay between streamline curvature and
favourable pressure gradient at the LE. From the mean flow measurements it is difficult to
understand and describe the physical mechanism responsible for the non-monotonic growth in
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θ11 in the vicinity of the AL, but as a similar trend was predicted by Callisto, a simple diagnosis
was conducted by analysing the individual terms of the streamwise momentum integral
equation. The local maximum in θ11 appears when the magnitude of the favourable pressure
gradient exceeds the skin friction immediately downstream of the AL, hence reversing the
growth in θ11. The minimum is associated with the relaxation of the favourable pressure
gradient to a point where the skin friction once again dominates, so that θ11 grows again. This
interesting trend reversal is partly a consequence of the streamline analogy implicit in the
treatment of turbulence by Head’s entrainment model, but it is clearly reproduced to an extent
by the flowfield measurements. From the experimental perspective, the question is whether or
not these streamwise-resolved integral properties provide the most insight into the physics of
the flowfield at the AL.

By x/c = 0.25, θ11 estimated by the modified Callisto is very similar to that obtained from
the original version, any residual differences being smaller than the effect of correcting for
effective sweep. Similar behaviour has also been observed during the analysis of the leading
edge flow over a transonic wing at cruise condition. Based on these observations, the overall
profile drag predictions obtained from earlier versions of Callisto can still be considered
robust.

The formation of crossover crossflow profiles in laminar boundary layers is usually
associated with a change in sign of the chordwise pressure gradient (which, from the
perspective of the streamlines very close to the AL, acts in the crossflow direction)
accompanied by an inflection point in the external streamline; however, the monotonic
trend in streamline direction seen in Fig. 11 rules out that explanation for the crossover
in the turbulent crossflow velocity profiles observed in the present experiment for x/c >

0.0025. Following analysis of the transverse momentum equation in curvilinear coordinates,
Gowree(19) suggested that, along a fully turbulent, highly curved streamline, this effect might
occur due to the rapid growth in transverse Reynolds stresses, compared to the gradually
decaying crossflow component of pressure gradient, resulting in a change of sign of the
resultant transverse force acting on the boundary layer flow and the consequent appearance of
crossover profiles.

7.0 CONCLUSIONS
Measurements at the leading edge of a swept wing model have helped to shed some light on
the development of the turbulent flow along a swept AL and have yielded a threshold Reynolds
number for a fully developed turbulent AL that is consistent with Preston’s criterion for the
turbulent flow on a flat plate.

Based on the observed small values of limiting streamline angle, β, near the AL, a new
approach to solving the 3D momentum integral equations near the AL has been implemented
in the Airbus Callisto method, solving a 50-year-old numerical problem. The results from
the revised method show good agreement with the experimental measurements, correctly
capturing the observed non-monotonic behaviour of θ11 in this region. Although significant
improvement in computing power has allowed the modelling of such flows using DNS and
LES that has enriched our understanding of the mechanics of fluids, there is still value in
developing low-order integral boundary layer methods to be able to capture relevant physical
phenomena such as those explored in this paper, as the benefits of flow control and similar
technologies will need to be captured as early as possible in the design process.
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The present experimental results can also be of use for the validation of higher-order
turbulence models which are aimed at capturing the effect of lateral strain from highly
diverging or converging streamlines.

APPENDIX

GOVERNING EQUATIONS
We start with the work of Ashill and Smith(12) who derived a system of three integral equations
for momentum, resolved parallel and normal to the inviscid flow streamline, and entrainment
expressed in the conical-surface (x,y) coordinate system illustrated in Fig. 2:

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ d

dx

⎛
⎝ θ11

tan β

H1θ11

⎞
⎠ =

⎛
⎝λ1

λ2

λ3

⎞
⎠ … (A.1)

The various coefficients in this equation are defined as follows:

A11 = U1

Ue
− V1

Ue
tan β

(
f2 − d f2

dH̄

dH̄
dH1

H1

)
… (A.2)

The notation above differs slightly to that used by Ashill and Smith(12) in that the symbols
U1 and V1 are used for the normal-to-generator and parallel-to-generator components of
the inviscid velocity field outside the boundary layer, rather than the symbols U χ and VR

respectively. Moreover V1 is positive towards the wing tip whereas VR is positive towards the
wing root.

The factor f2 above captures the relationship between the crossflow momentum thickness
θ12, Equation (15), and the streamwise momentum thickness θ11, Equation (4), as follows

f2
(
H̄

) ≡ cot β
θ12

θ11
… (A.3)

This and the other closure relationships fn(H̄ ) are determined by assuming the form of
the velocity profiles within the boundary layer, as is typical for integral methods: it simplifies
the analysis considerably to assume that these profiles are a function only of transformed
shape factor H̄, Equation (6). The closures popular with the RAE lag-entrainment codes, of
which Callisto is one family member, are based on the crossflow velocity profiles proposed by
Mager(27) and are detailed in Smith(17). How representative these profiles are of 3D boundary
layers in adverse pressure gradients has been the subject of much debate, but is beyond the
scope of this paper. Suffice to say that expressions of the form of Equation (A.3) are key to the
closure of the system of three-dimensional, integral equations. The transformed shape factor
H̅ is usually related to the classical shape factor for compressible boundary layer flow by the
following expression(13).

H = δ1

θ11
= (

H + 1
) (

1 + γ − 1
2

rM2
e

)
− 1 … (A.4)
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where δ1 is defined in Equation (13) and where r is the recovery factor. Also appearing in
Equation (A.2) above is the entrainment shape factor H1 defined as

H1
(
H̄

) = δ − δ1

θ11
… (A.5)

As with the closure relationships fn(H̄ ), the functional dependence H1(H̄ ) has been the
subject of much discussion(4). Suffice to say that the observed singularity in the boundary
layer equations at separation is captured by entrainment-based integral methods only if the
derivative dH1/dH̄ changes sign at separation. As with the rank of the boundary layer
equations, the problem of separating flows is not within the scope of this paper.

The remaining coefficients of the streamwise momentum equation are as follows:

A12 = −V1

Ue
f2θ11, … (A.6)

A13 = −V1

Ue
tan β

d f2

dH̄

dH̄
dH1

, … (A.7)

λ1 = c f

2
− θ11

Ue

[
U1

Ue

(
H + 2 − M2

e

) + V 2
1

U1 Ue

(
1 − tan2β f4

) + V1

Ue
tan β f4

]
dUe

dx

+ κT θ11

(
V1

Ue
+ U1

Ue
tan β f2

)
… (A.8)

Again there is a slight difference in notation in Equation (A.8) compared to the equivalent
equation quoted by Ashill and Smith(12), the taper curvature term κT above appearing as φ/l,
where φ is the angle AOC in Fig. 2 and l is the arc length AC. f4 in Equation (A.8) above is
given by

f4
(
H̄

) ≡ cot2β
θ22

θ11
, … (A.9)

where θ22 is defined in Equation (17)
The coefficients of the crossflow momentum integral equation are as follows:

A21 = tan β

(
U1

Ue
f1 − V1

Ue
tan β f4

)
− H1

dH̄
dH1

tan β

(
U1

Ue

d f1

dH̄
− V1

Ue
tan β

d f4

dH̄

)
,

… (A.10)

f1
(
H̄

) ≡ cot β
θ21

θ11
, … (A.11)

where θ21 is defined in Equation (16)

A22 =
(

U1

Ue
f1 − 2

V1

Ue
tan β f4

)
θ11, … (A.12)

A23 = tan β

(
U1

Ue

d f1

dH̄
− V1

Ue
tan β

d f4

dH̄

)
dH̄
dH1

, … (A.13)
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λ2 = c f

2
tan β −

[(
2

Ue

U1
− M2

e
U1

Ue

)
tan β f1 − V1

Ue

(
1 + H + tan2β f4

{
1 − M2

e

})] θ11

Ue

dUe

dx

+ κT θ11 tan β

(
V1

Ue
f1 + U1

Ue
tan β f4

)
… (A.14)

The coefficients of the entrainment integral equation are as follows:

A31 = V1

Ue
tan β f3 − V1

Ue
tan β

d f3

dH̄

dH̄
dH1

H1, … (A.15)

f3
(
H̄

) ≡ cot β
δ2

θ11
… (A.16)

where δ2 is defined in Equation (14)

A32 = V1

Ue
f3θ11, … (A.17)

A33 = U1

Ue
+ V1

Ue
tan β

d f3

dH̄

dH̄
dH1

, … (A.18)

λ3 = cE − θ11

Ue

[(
Ue

U1
− M2

e
U1

Ue

)
H1 − M2

e
V1

Ue
tan β f3

]
dUe

dx

+ κT θ11

(
V1

Ue
H1 − U1

Ue
tan β f3

)
… (A.19)

None of the equations above include the higher-order terms presented by Ashill et al(7)

which appear in the Callisto governing equations. These are mainly concerned with improved
modelling in regions of adverse pressure gradient and not included here as they have little
impact upon the prediction of the flow near the AL.

One feature of the governing equations employed by Callisto which needs to be detailed
is the different dependent variable used for the entrainment equation, the transformed shape
factor H̄ rather than H1θ11, so that the governing equations appear as:

⎛
⎝Aθ Aβ AH̄

Nθ Nβ NH̄
Eθ Eβ EH̄

⎞
⎠ d

dx

⎛
⎝ θ11

tan β

H̄

⎞
⎠ =

⎛
⎝λ1

λ2

λ3

⎞
⎠ … (A.20)

The left-hand side of Equation (A.1) can be written as

A11
dθ11

dx
+ A13

d
dx

(H1θ11) = [A11 + A13H1]
dθ11

dx
+ A13

[
θ11

dH1

dH̄

dH̄
dx

]
… (A.21)

This expansion can be repeated for the remaining normal-momentum and entrainment
equations, so by inspection of Equation (A.20), the transformations from the variables used
by Ashill and Smith to those used in Callisto can be written as:

Aθ = A11 + A13H1 Nθ = A21 + A23H1 Eθ = A31 + A33H1, … (A.22)
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Aβ = A12 Nβ = A22 Eβ = A32, … (A.23)

AH̄ = A13θ11
dH1

dH̄
NH̄ = A23θ11

dH1

dH̄
EH̄ = A33θ11

dH1

dH̄
… (A.24)

We also introduce the angle ψ between the direction of the inviscid streamline and the arc
AC in Fig. 2.

U1

Ue
= cos ψ

V1

Ue
= sin ψ … (A.25)

Following the change in independent variables, we obtain:

Aθ = A11 + A13H1 = cos ψ − sin ψ tan β f2, … (A.26)

AH̄ = A13θ11
dH1

dH̄
= − sin ψ tan β

d f2

dH̄
θ11, … (A.27)

Nθ = A21 + A23H1 = tan β (cos ψ f1 − sin ψ tan β f4) , … (A.28)

NH̄ = A23θ11
dH1

dH̄
= tan β

(
cos ψ

d f1

dH̄
− sin ψ tan β

d f4

dH̄

)
θ11, … (A.29)

Eθ = A31 + A33H1 = cos ψ H1 + sin ψ tan β f3, … (A.30)

EH̄ = A33θ11
dH1

dH̄
=

(
cos ψ

dH1

dH̄
+ sin ψ tan β

d f3

dH̄

)
θ11 … (A.31)
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