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In real-time quantum feedback protocols [1, 2], the record of a continuous measurement is used to
stabilize a desired quantum state. Recent years have seen highly successful applications in a variety
of well-isolated micro-systems, including microwave photons [3] and superconducting qubits [4]. By
contrast, the ability to stabilize the quantum state of a tangibly massive object, such as a nanome-
chanical oscillator, remains a difficult challenge: The main obstacle is environmental decoherence,
which places stringent requirements on the timescale in which the state must be measured. Here we
describe a position sensor that is capable of resolving the zero-point motion of a solid-state, nanome-
chanical oscillator in the timescale of its thermal decoherence, a critical requirement for preparing
its ground state using feedback [5]. The sensor is based on cavity optomechanical coupling [6], and
realizes a measurement of the oscillator’s displacement with an imprecision 40 dB below that at the
standard quantum limit [7], while maintaining an imprecision-back-action product within a factor
of 5 of the Heisenberg uncertainty limit. Using the measurement as an error signal and radiation
pressure as an actuator, we demonstrate active feedback cooling (cold-damping [8]) of the 4.3 MHz
oscillator from a cryogenic bath temperature of 4.4 K to an effective value of 1.1±0.1 mK, corre-
sponding to a mean phonon number of 5.3±0.6 (i.e., a ground state probability of 16%). Our results
set a new benchmark for the performance of a linear position sensor, and signal the emergence of
engineered mechanical oscillators as practical subjects for measurement-based quantum control.

Feedback control of mechanical oscillators has a long tra-
dition, dating back to steam governors [9], mechanical clock-
works [10] and deflection galvanometers [11]. A basic ap-
proach uses a sensor to track the oscillator’s position and an
actuator to convert the measurement record into a continu-
ous, ‘real-time’ feedback force. Recently the quantum limits
of real-time feedback [1, 2] have been explored in the con-
text of well-isolated, individual quantum systems, realizing
spectacular applications such as generation of microwave Fock
states [3] and persistent Rabi oscillations in a superconduct-
ing qubit [4]. In these protocols, the basic paradigm involves
a ‘weak measurement’ capable of tracking a quantum state as
rapidly as it decoheres due to measurement back-action [12].
For mechanical oscillators, ideal weak position measurements
[13] have in fact been available since the advent of the laser,
in the context of shot-noise-limited interferometry [7]. Only
recently, however, with the confluence of low-loss, cryogenic
micromechanics and on-chip, integrated photonics [6], has it
been feasible to consider their application to quantum feed-
back protocols [8, 14]. The main challenge is that for a typical,
radio-frequency micromechanical oscillator, the thermal envi-
ronment constitutes an additional, strong decoherence chan-
nel. In order to control a micromechanical oscillator using
measurement-based quantum feedback, it is necessary that
the measurement be weak (minimally invasive) and yet at the
same time efficient enough to resolve the oscillator’s quantum
state within its thermal decoherence time. This places strin-
gent demands on the measurement precision.

Feedback cooling is a well-studied [5, 8, 15, 16] control pro-
tocol that illustrates both the utility and the challenge of
quantum feedback applied to mechanical systems. In feed-
back cooling protocols, a mechanical oscillator undergoing
thermal Brownian motion is steered towards its ground state
by minimizing a measurement of its displacement, Sx (here
expressed as a spectral density evaluated at the mechanical
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frequency, Ωm). The conventional strategy [8] is to apply a
feedback force which is proportional to the oscillator’s veloc-
ity, thereby damping the motion until it coincides with the
measurement imprecision, Simp

x . Ground state cooling (an
oscillator phonon occupancy of nm < 1) is possible when the
imprecision remains lower than the zero-point fluctuations of
the damped oscillator, i.e., if Simp

x . Szp
x /nth (see S.I.) where

Szp
x is the oscillator’s undamped zero-point displacement and

nth is the thermal bath occupation. Practically, this amounts
to resolving the undamped thermal noise, Sx ≃ 2nthS

zp
x , with

a signal-to-noise greater than 2n2
th. Equivalently, it corre-

sponds to the ability to resolve the zero-point motion of the
oscillator at a characteristic measurement rate [13],

Γmeas ≡
x2
zp

2Simp
x

&
Γth

8
, (1)

where xzp is the oscillator’s zero-point amplitude, Γth ≃
Γmnth is its thermal decoherence rate and Γm is its intrin-
sic mechanical damping rate (note Szp

x = 4x2
zp/Γm; see S.I.).

Meeting the requirement set by Eq. (1) is a daunting techni-
cal challenge, owing to the large thermal occupation and small
zero-point amplitude of typical micromechanical oscillators.

An additional, fundamental caveat at once compounds the
challenge of feedback cooling and hints at the underlying
virtue of quantum feedback: Heisenberg’s uncertainty prin-
ciple predicts that a weak (Γmeas ≪ Ωm) continuous posi-
tion measurement [13] with an imprecision of Szp

x /2 will pro-
duce a stochastic ‘back-action’ force that disturbs the posi-
tion of the oscillator by at least the same amount [7, 13].
By inference, an imprecision of nimp ≡ Simp

x /2Szp
x equiva-

lent bath quanta results in an effective increase of the ther-
mal bath occupation by nba ≥ 1/16nimp (see S.I.). This
penalty would appear to prohibit ground-state cooling, as it
entails substantially heating the oscillator to achieve the nec-
essary measurement precision. Remarkably, however, feed-
back counteracts back-action [17], so that a phonon occu-

pancy of nm ≈ 2
√

nimp(nba + nth) − 1/2 < 1 (see S.I.) can
still be achieved [8, 16, 18]. The limiting case of nm → 0
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FIG. 1. Measuring and controlling the position of a nanomechanical beam using a near-field optomechanical

transducer. (a) Whispering gallery modes of a SiO2 microdisk are excited using a tapered optical fiber driven by a pair of
tunable diode lasers. Displacement of a Si3N4 nanobeam, sampling the evanescent mode volume of the microdisk, is recorded
in the phase of the transmitted sensor field using a balanced homodyne detector. Radiation pressure feedback is applied by
modulating the amplitude of the feedback laser with an electrically processed (delayed, bandpass-filtered, and amplified) copy of
the homodyne photocurrent. (b) Above: Finite element model of the optical mode (field amplitude). Optomechanical coupling
is proportional to the field intensity gradient at the position of the beam. Below: SEM image of the optomechanical system.
(c) Thermomechanical noise spectrum of the fundamental beam mode, measured with varying intracavity photon number.
(d) Broadband extraneous (shot-noise-subtracted) homodyne signal expressed as apparent cavity frequency noise. Solid red
corresponds to measurement data. Dashed blue, green, and black lines correspond to estimated contributions from nanobeam
thermomechanical, microdisk thermomechanical, and microdisk thermorefractive noise, respectively. Colored bands denote the
imprecision required for Γmeas = Γth: S

imp
ω = g20~Qm/2kBT , assuming g20 ∝ 1/Ω and Qm = 7.6 · 105.

is approached when the measurement record is dominated
by back-action-induced fluctuations. This occurs when the
measurement is maximally efficient [12], i.e., when the mea-
surement rate, Γmeas = Γm/16nimp, approaches the effective
thermal decoherence rate, Γtot = (nth + nba)Γm ≥ Γmeas. To
meet this condition for a typical micromechanical oscillator, a
linear position sensor must achieve an imprecision far (∼ nth

times) below the natural scale set by the ‘standard quantum
limit’ (SQL) [7] (nimp = nba = 1/4), while maintaining back-
action near the uncertainty limit: 4

√
nbanimp ≥ 1.

Integration of micromechanical oscillators with optical and
microwave cavities has emerged as a promising pathway
to meeting the above requirements. Transduction in such
‘cavity-optomechanical’ systems [6] arises from a parametric
coupling, G = ∂ωc/∂x, between the position of the oscilla-
tor and the resonance frequency ωc of a cavity. For wide-

band sensing applications, characterized by a cavity decay
rate κ ≫ Ωm, a resonant laser field passing through the
cavity acquires a phase shift 2Gδx/κ; this can be resolved
in a conventional homodyne interferometer with a quantum-
noise-limited imprecision of Simp

x = (8G2ncη/κ)
−1, where

nc is the mean intracavity photon number and η ∈ [0, 1]
is the effective photon collection efficiency (see S.I.). The
associated quantum-limited measurement rate is given by
Γmeas = 4g20ncη/κ ≡ Γm · C0ncη, where g0 ≡ Gxzp is the
vacuum optomechanical coupling rate and C0 ≡ 4g20/κΓm,
the ‘single-photon cooperativity’ [6], characterizes the per-
photon measurement rate. To achieve efficient measurements,
contemporary cavity-optomechanical systems build on relent-
less progress in the NEMS/MEMS and photonics communities
— dovetailing fabrication techniques which enable substantial
miniaturization of the mechanical resonator and the optical
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FIG. 2. Measurement imprecision and back-action versus intracavity photon number. Red, blue, and green points
correspond to measurements of total effective bath occupation, ntot = nth + nba, measurement imprecision referred to an
equivalent bath occupation, nimp, and the apparent imprecision-back-action product, 4

√
ntotnimp, respectively. Short-dashed

red, blue, and black lines correspond to models of nba = C0nc, nimp = 1/16C0nc, and their sum, nba + nimp, respectively.
Dash-dotted black line represents the apparent bath occupation ntot+nimp. Long-dashed red and blue lines highlight excursion
from their counterparts due to extraneous back-action, Cex

0 = 0.56, extraneous imprecision, nex
imp = 0.70 · 10−5, and imperfect

detection efficiency, ξ = 0.23, as described in the main text. Green line models the apparent imprecision-back-action product
using the Eq. 3. Insets highlight the measurement region.

cavity while reinforcing low-loss and strong co-localization.
As a consequence, measurements with an imprecision below
that at the SQL [19–21], as well as quantum-back-action (i.e.,
radiation pressure shot noise) limited measurements [22–25]
have recently been realized. In none of these experiments,
however, was Γmeas ≈ Γth demonstrated at the detector, ow-
ing to a combination of factors including large thermal oc-
cupation, extraneous imprecision, optical loss, and dynamic
instabilities.

Our system addresses these challenges by exploiting a form
of optomechanical coupling — near-field coupling [26] — that
allows for integration of mechanical and optical resonators
with widely differing material and geometry. To achieve high
cooperativity, we integrate a mechanical oscillator possess-
ing an exceptionally high Q/(mass) ratio and low optical ab-
sorption — a high-stress Si3N4 nanomechanical beam [27] —
with an optical cavity possessing a high Q/(mode volume)
ratio and low optical nonlinearity — a chemically polished
SiO2 microdisk [28]. As visualized in Fig. 1b, coupling is
achieved by carefully localizing a portion of the beam within
the evanescent volume of one of the microdisk’s whispering
gallery modes. Both resonators are integrated on a silicon
chip [29], allowing for robust cryogenic operation.

Specifically, we study a system consisting of a 65 µm × 400

nm × 70 nm (effective mass m ≈ 2.9 pg) nanobeam placed
∼ 50 nm from the surface of a 30 µm diameter microdisk.
The microdisk is optically probed using a low-loss (≈ 6%)
fiber-taper [30] and light supplied by a tunable diode laser.
Mechanical motion is observed in the phase of the transmit-
ted cavity field using a balanced homodyne interferometer.
We interrogate two optical modes: a ‘sensor’ mode (used for
homodyne readout) at λc ≈ 775 nm that exhibits an intrinsic
photon decay rate of κ0 ≈ 2π · 0.44 GHz and a ‘feedback’
mode (used for radiation pressure actuation) at λc ≈ 843 nm
that exhibits a decay rate of κ0 ∼ 2π · 1 GHz. For the me-
chanical oscillator, we use the Ωm ≈ 2π ·4.3 MHz fundamental
out-of-plane mode of the nanobeam. The optomechanial cou-
pling strength between the oscillator and the sensor mode is
g0 ≈ 2π · 20 kHz, corresponding to a frequency pulling factor
of G ≈ 2π · 0.70 GHz/nm for the estimated zero-point am-

plitude of xzp ≡
√

~/2mΩm ≈ 29 fm. Our experiments are
conducted in a 3He buffer gas cryostat at a nominal operating
temperature of T ≈ 4.4 K (nth ≃ kBT/~Ωm ≈ 2.1 · 104) and
at gas pressures below 10−3 mbar. Ringdown measurements
here reveal a mechanical damping rate of Γm ≈ 2π · 5.7 Hz
(Qm ≈ 7.6 · 105). Our system is thus able to operate with a
near-unity single-photon cooperativity of C0 ≈ 0.64.

For all position sensors, extraneous thermal fluctuations
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FIG. 3. Radiation pressure feedback cooling to near the ground state. Blue and red points correspond to measurements
of the phonon occupancy of the mechanical mode, nm (plus a phonon-equivalent zero-point energy of 1/2) and its component
due to feedback of measurement noise nm,fb = nimpg

2
fb/(1 + gfb), respectively, as a function of effective damping rate, Γeff =

(1+gfb)Γm. Red, blue, and black dashed lines correspond to models of components in Eq. 4: ntot/(1+gfb), nm,fb, and nm+1/2,
respectively, using experimental parameters Γm = 2π ·5.7 Hz, ntot = 2.4 ·105, and nimp = 2.9 ·10−4, respectively. Inset: in-loop
mechanical noise spectra for various feedback gain settings; fits to these spectra were used to infer blue and red points.

place a fundamental limit on the achievable precision. For
cavity-optomechanical sensors, the main sources of extraneous
imprecision arise from thermomechanical [31, 32] and ther-
morefractive [33] fluctuations of the cavity substrate. These
result in excess cavity frequency noise, Simp,ex

ω , and limit the
measurement rate to

Γmeas =
g20/2

Simp,shot
ω + Simp,ex

ω

=
Γm/16

nshot
imp + nex

imp

(2)

where Simp,shot
ω is the photocurrent shot noise referred to

apparent cavity resonance frequency noise and n
shot(ex)
imp ≡

S
imp,shot(ex)
ω /2Szp

ω . Fig. 1d shows the extraneous noise floor of
our sensor over a broad range of frequencies surrounding the
fundamental beam resonance. We obtained this spectrum by
subtracting shot noise from a measurement made with a large
intracavity photon number, nc > 105. (To mitigate thermo-
optic and optomechanical instabilities, the measurement was
in this case conducted using ∼ 10 mbar of gas pressure at an
elevated temperature of 15.7 K.) High- and low-Q noise peaks
correspond to thermal motion of the nanobeam and the mi-
crodisk, respectively. In the vicinity of the fundamental noise
peak, we observe an extraneous frequency noise background
of Simp,ex

ω ≈ (2π · 30Hz/
√
Hz)2, corresponding to an extrane-

ous position imprecision of Simp,ex
x ≈ (4.3 · 10−17m/

√
Hz)2.

We identify this noise as a combination of microdisk ther-
morefractive noise [20], diode laser frequency noise [34], and
off-resonant thermal motion of the neighboring in-plane beam
mode at 4.6 MHz. Owing to the large zero-point motion
of the oscillator, Szp

ω ≡ 4g20/Γm = (2π · 6.7 kHz/
√
Hz)2

(Szp
x = (0.95 · 10−14m/

√
Hz)2), the equivalent bath occu-

pancy of this noise has an exceptionally low value of nex
imp ≈

1.0·10−5, nearly 44 dB below the value at the SQL. Encourag-
ingly, the measurement rate associated with this imprecision,
Γm/16nex

imp ≈ 2π ·36 kHz, is equal to the thermal decoherence
rate at an experimentally accessible temperature of 1.3 K. The
more lenient requirements for feedback cooling to nm < 1 (i.e.,
Γmeas < Γth/8) should thus be accessible at 10 K.

The performance of our sensor is limited in practice by
constraints on the usable optical power, including photon col-
lection efficiency, photothermal and radiation pressure insta-
bilities, and extraneous sources of measurement back-action,
such as heating due to optical absorption. We investigate
these constraints by recording the measurement imprecision,
nimp, and the total effective bath occupation, ntot ≡ nth+nba,
as a function of intracavity photon number, nc (see S.I.),
comparing their product to the uncertainty-limited value,
4
√
nimpntot > 1 (Fig. 2). Two considerations are crucial

to this investigation. First, in order to efficiently collect pho-
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tons from the cavity, it is necessary to increase the taper-
cavity coupling rate to κex & κ0, thereby increasing the total
cavity decay rate to κ = κ0 + κex. We operate at a near-
critically coupled (κex = κ0) value of κ ≈ 2π · 0.91 GHz,
thus reducing the single photon cooperativity to C0 ≈ 0.31
in exchange for a higher output coupling efficiency of ηc =
(κ − κ0)/κ ≈ 0.52. Second, in order to minimize Simp

x , it is
necessary to maximize intracavity photon number while mit-
igating associated dynamic instabilities. We accomplish this
by actively damping the oscillator using radiation pressure
feedback. Feedback is performed by modulating the drive
intensity, and therefore the intracavity photon number, of
the secondary feedback mode using an electronically ampli-
fied and delayed (by τ ≈ 3π/2Ωm) copy of the homodyne
photocurrent as an error signal. The resulting viscous radia-
tion pressure gives rise to a well-known cooling effect (‘cold-
damping’) [15, 35–38], reducing the phonon occupancy of the
mechanical mode to a mean value of nm ≈ ntotΓm/(Γm+Γfb),
where Γfb is the optically-induced damping rate. It should be
noted that added damping leads to an apparent imprecision,
n′
imp = nimp(Γm + Γfb)/Γm, that differs from the intrinsic

value (Γfb = 0). We here restrict our attention to the lat-
ter, noting that the associated cooling preserves the apparent
imprecision-back-action product: nmn′

imp = ntotnimp.
Representative measurements of the oscillator’s thermal

motion are shown in Fig. 1c. We determine ntot and nimp

by fitting each noise peak to a Lorentzian with a linewidth
of Γeff = Γm + Γfb + Γba (including a minor contribution
from dynamic back-action, Γba; see S.I.), a peak amplitude
of Sω(Ωm) ≈ 2ntot(Γm/Γeff)

2Szp
ω , and an offset of Simp

ω =
2nimpS

zp
ω . For low intracavity photon number, nc ≪ nth/C0,

we observe that the effective bath occupation is dominated by
thermalization to the cryostat, ntot ≈ nth, and that impre-
cision scales as nimp = (16ξC0nc)

−1, where ξ ≈ 0.23. ξ rep-
resents the ideality of the measurement, and includes both
optical losses and reduction in the cavity transfer function
due to mode splitting (see S.I.). Operating with higher input
power — ultimately limited by the onset of parametric insta-
bility in higher-order beam modes — the lowest imprecision
we have observed is nimp ≈ 2.7(±0.2) ·10−5, corresponding to
an imprecision 39.7±0.3 dB below that at the SQL. The asso-
ciated measurement rate, Γmeas ≈ 2π ·(13±1) kHz, is a factor
of 9.2 lower than the rate of decoherence to the ambient 4.4
K bath, Γth ≈ 2π · 120 kHz. Significantly, this value is within
15% of the requirement for feedback cooling to nm < 1.

For large measurement strengths, quantum measurement
back-action (radiation pressure shot noise [23]) should in prin-
ciple exceed the ambient thermal force, scaling as nba = C0nc

(see S.I.). As shown in Figure 2, our system deviates from
this ideal behavior due to extraneous back-action, manifest-
ing as an apparent excess cooperativity, Cex

0 ≈ 0.56, and
limiting the fractional contribution of quantum back-action
to C0/(C0 + Cex

0 ) ≈ 35%. Similar behavior for high-order
mechanical modes suggests that photo-absorption heating is
the cause of this excess back-action, as does our observation
that Cex

0 is markedly higher at lower cryostat temperatures
— consistent with the universal reduction of thermal con-
ductivity in amorphous glasses below 10 K [39]. Combin-
ing this extraneous back-action with non-ideal measurement
transduction/efficiency, we model the apparent imprecision-
back-action product (green curve in Fig. 2) as

4
√
nimpntot =

√

1

ξ

(

1 +
nth

C0nc
+

Cex
0

C0

)(

1 +
nc

nex
c

)

, (3)

where nex
c ≡ (16ξC0n

ex
imp)

−1 is the photon number at which
extraneous and shot-noise imprecision are equal. Operating
at nc ≈ 5 · 104 ≪ nex

c , we observe a minimum imprecision-
back-action product of 4

√
nimpntot ≈ 5.0. Thus a maximum

measurement efficiency of Γmeas/Γtot ≈ 0.040 is achieved.
To illustrate the utility of this measurement efficiency, we

consider what temperature can be reached by increasing the
strength of the feedback used to damp the oscillator in Fig.
1c. The limits of ‘cold-damping’ have been well-studied [8,
18]. Ignoring back-action due to the weakly driven (nc <
100) feedback optical mode, the effective phonon occupancy of
the cooled mechanical mode depends on the balance between
coupling to thermal, measurement, and feedback reservoirs at
rates Γth, Γmnba, and gfbΓmnimp, respectively, where gfb ≡
Γfb/Γm is the open loop feedback gain (see S.I.):

nm +
1

2
=

1

1 + gfb
ntot +

g2fb
1 + gfb

nimp ≥ 2
√
nimpntot. (4)

Note that here Γba ≪ Γfb has been assumed. The mini-
mum occupation is achieved for an optimal gain of gfb =
√

ntot/nimp, and corresponds to suppressing the apparent po-
sition noise to the imprecision noise floor (cf. yellow curve in
Fig. 3, inset). Notably, in the absence of extraneous back-
action, nm < 1 requires nimp < 1/2nth. Results shown in Fig.
2 suggest that nm ≈ 2 should be achievable with our system.

Fig. 3 shows the result of feedback cooling using a mea-
surement with an imprecision far below that at the SQL. We
emphasize that for this demonstration, imprecision was de-
liberately limited to nimp ≈ 2.9 · 10−4 in order to reduce
uncertainties due to extraneous heating and due to the off-
resonant tail of the thermal noise peak at 4.6 MHz (which
limits applicability of Eq. 4 to effective damping rates of
Γeff = (1+gfb)Γm . 2π·200 kHz). The feedback gain was con-
trolled by changing the magnitude of the electronic gain, leav-
ing all other parameters (e.g. laser power) unaffected. Fitting
the closed loop noise spectrum (Fig. 3, inset) to a standard
Lorentzian noise squashing model [36] (see S.I.), we estimate
the phonon occupancy of the mechanical mode from the for-
mula nm +0.5 ≈ Γeff · (Sω(Ωm)+Simp

ω )/2Szp
ω , where Simp

ω de-
notes the off-resonant background. Accounting for extraneous
back-action, we infer a minimum occupation of nm ≈ 5.3±0.6
at an optimal damping rate of Γeff ≈ 2π ·52 kHz, correspond-
ing to a ground state probability of 1/(1 + nm) ≈ 16%. The
value agrees well with the prediction based on Eq. 4 and Fig.
2. Notably, for larger feedback strengths, shot noise squash-
ing [2, 15] leads to an apparent reduction of nimp, while nm

physically increases.
Collectively, our results establish new benchmarks for lin-

ear measurement and control of a micromechanical oscilla-
tor. The enabling advance is a position sensor capable of
monitoring the oscillator’s displacement with an imprecision
39.7 ± 0.3 dB below that at the SQL, a 100-fold improve-
ment over results reported to date [19–21], combined with an
imprecision-back-action product within a factor of 5.0 of the
uncertainty limit. Achieving this sensitivity requires the use
of a small mass, high-Q mechanical oscillator operating in a
cryogenic environment. For our system, a 4.3 MHz nanome-
chanical beam oscillator operating at 4.4 K, the achieved im-
precision corresponds to the ability to resolve the oscillator’s
zero-point motion within an order of magnitude of its intrinsic
thermal decoherence rate, Γmeas/Γth ≈ 0.11, and with a total
measurement efficiency of Γmeas/Γtot ≈ 0.040. Taking ad-
vantage of this efficiency, we show that traditional radiation
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pressure cold-damping [15] can be used to cool the oscilla-
tor to a mean phonon occupancy of 5.3± 0.6; this represents
a 40-fold improvement over previous active feedback cooling
applied to solid-state mechanical oscillators [35–38, 40], and
invites comparison [18, 41, 42] to the success of coherent feed-
back (i.e. sideband) cooling in cavity optomechanics [43, 44].
With moderate reduction of extraneous back-action, we antic-
ipate that nm < 1 should be possible. Looking forward, high
efficiency optomechanical sensors open the door to a variety
of measurement-based feedback applications, notably back-
action evasion [17, 45] and mechanical squeezing [14].
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GLOSSARY OF IMPORTANT VARIABLES

Introduced in Sec. I

x, p position and momentum operator of the mechanical oscillator

xzp, pzp
√
variance of the position and momentum in the ground state

y position estimate (apparent position inferred from measurement)

ximp imprecision of position estimate

Ωm,Γm resonant frequency and damping rate of the oscillator

m effective mass of the (extended) elastic oscillator mode

χm intrinsic susceptibility of the oscillator position to an external force

T temperature of the ambient thermal environment

Fth Langevin force associated with the ambient thermal environment

Fba, Fba,th Measurement back-action force, Langevin force associated with measurement noise

Ffb, Ffb,th Feedback force, Langevin force associated with feedback noise

χfb, χba susceptibility of the linear feedback network, and back-action

χeff ,Γeff effective susceptibility and damping rate of the oscillator in the presence of feedback
and/or back-action

nth, nba, nfb effective thermal occupancy of the ambient thermal bath, measurement (‘back-
action’) noise reservoir, and feedback noise reservoir.

nimp position imprecision referred to an effective thermal occupation

nm, nm,min mean phonon occupancy of the oscillator in the presence of feedback, minimal possible
occupation

gfb, gfb,opt feedback gain, optimal value of feedback gain

Γth thermal decoherence rate (= nthΓm)

Introduced in Sec. II

ωc, ωℓ, λ cavity resonance frequency, carrier frequency of optical input, wavelength of optical
carrier (λ = 2πc/ωℓ, where c is the speed of light)

∆0,∆ bare and renormalized laser-cavity detuning (∆0 = ωℓ − ωc)

κ0, κex, κ intrinsic, coupling-induced, and total cavity decay rates (κ = κ0 + κex)

ηc cavity coupling efficiency (= κex/κ)

γ cavity mode splitting

a±, c intracavity field operator for the measurement (a) and feedback (c) optical mode, in
a frame rotating at ωℓ; +(−) refers to field propagating in (counter) the direction of
injected power

n± steady state intracavity photon numbers

s±in field operators for modeling for the injected traveling wave, in a frame rotating at ωℓ

δs±in, δs
±
vac white noise operators modeling the vaccuum fluctuations coupled in via the travelling

wave inputs (‘in’), and the intrinsic decay channels of the cavity (‘vac’)

χ
(γ)
a susceptibility of the optical field to cavity input noises, in the presence of splitting γ

g0 vacuum optomechanical coupling rate

u normalized mechanical position operator (= x/xzp)

δfth, ξth normalized thermal force and associated white noise operator

fba, δfba dynamical and stochastic components of the normalized radiation pressure force from
the measurement mode

ffb normalized radiation pressure feedback force

Ωba,Γba mechanical frequency and damping rate renormalized by dynamic back-action

C0 single-photon cooperativity (= 4g20/κΓm)

Introduced in Sec. III

G optomechanical coupling expressed as a cavity frequency pull parameter (= ∂ωc/∂x =
g0/xzp)
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NOTE ON CONVENTION

For any variable X, X̄ denotes its classical steady state value, and δX(t) = X(t) − X̄, the fluctuation from that
steady state. We define the Fourier transform of an operator X(t) by

X̃(Ω) :=

∫ +∞

−∞

X(t)eiΩt dt. (1)

Following standard definition [1], we employ the symmetrized spectral density,

S̄XX(Ω) :=

∫ ∞

−∞

1

2
〈δX(t) δX(0) + δX(0) δX(t)〉 eiΩt dt, (2)

to describe the spectral distribution of the variance of the operator-valued process, δX(t). The single-sided spectral
density is then given by (strictly for Ω ≥ 0)

SX(Ω) = 2 S̄XX(Ω). (3)

To make contact with experiment and with the main text, we hereafter adopt the single-sided convention unless
otherwise necessary for clarity.

I. THEORY OF FEEDBACK COOLING OF A HARMONIC OSCILLATOR

Consider a harmonic oscillator, whose motion is described by position coordinate x(t), moving in a harmonic
potential of frequency Ωm. We specialize to a case in which the oscillator is subject to three stochastic forces: a
thermal force (Fth) associated with the ambient environment, a ‘back-action’ force (Fba) associated with the oscillator’s
coupling to a measurement device, and a feedback force (Ffb) that controls the oscillator. The dynamics of this system
are described by the Langevin equation [2],

m
(
ẍ+ Γmẋ+Ω2

mx
)
= Fth + Fba + Ffb

⇒
(
Ω2

m − Ω2 − iΩΓm

)

︸ ︷︷ ︸

:=χm(Ω)−1

x̃ = m−1
(

F̃th + F̃ba + F̃fb

)

. (4)

where χm is the intrinsic mechanical susceptibility (note that, for notational convenience in section II, we have scaled
the conventional expression for χm by m).

We adopt the following model for the back-action and feedback forces:

F̃ba = −mχba(Ω)
−1 x̃+ F̃ba,th (5a)

F̃fb = −mχfb(Ω)
−1 ỹ + F̃fb,th. (5b)

Each force has two components: a ‘dynamic’ component, characterized by a linear susceptibility, that contains cor-
relations with the oscillator’s position, and an effective thermal component. Notably, the dynamic component of the
feedback force is linear in an apparent (measured) position, ỹ = x̃+ x̃imp, where x̃imp is the measurement imprecision.
Hereafter, for simplicity, we neglect the dynamic portion of the back-action force. We revisit this approximation in
detail in section IIA.

A. Optimal feedback cooling

In feedback cooling, we are interested in minimizing the mean phonon occupancy of the oscillator, viz.

min
χfb

(2nm + 1) = min
χfb

√
〈

x2

x2
zp

〉〈
p2

p2zp

〉

−
〈
xp+ px

2xzppzp

〉

, (6)

where x2
zp = ~

2mΩm
, and xzppzp = ~

2 . For a thermal state, the constraint reduces to

min
χfb

〈
x2
〉

x2
zp

. (7)
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The problem described herein — that of a linear system driven by weak-stationary Gaussian noise (Eq. (4)), and
controlled by linear measurement and actuation (Eq. (5a)), with the aim of minimizing a quadratic cost function
(Eq. (7)) — is an archetype of the linear quadratic gaussian (LQG) paradigm of classical control theory [3–5].
Recently, such problems have been formalized and studied in the quantum mechanical context [6, 7].
The optimal feedback filter, χfb, can be solved for exactly in our case. From Eq. (4) and Eq. (5a) (and neglecting

χba), the oscillator position and measurement record are

(
χ−1
m + χ−1

fb

)
x̃ = m−1

(

F̃th + F̃ba,th + F̃fb,th

)

− χ−1
fb x̃imp

(
χ−1
m + χ−1

fb

)
ỹ = m−1

(

F̃th + F̃ba,th + F̃fb,th

)

+ χ−1
m x̃imp.

(8)

Identifying the effective mechanical susceptibility, χ−1
eff := χ−1

m + χ−1
fb and total effective thermal force, Stot

F = Sth
F +

Sba
F + Sfb,th

F , Eq. (8) implies

Sx(Ω) = |χeff |2
(
m−2Stot

F + |χfb|−2Simp
x

)

Sy(Ω) = |χeff |2
(
m−2Stot

F + |χm|−2Simp
x

)
.

(9)

for the (single-sided) spectral density of the position and measurement records.
The LQG problem can be stated concretely as (using double-sided spectra temporarily)

min
χfb

∫ ∞

−∞

S̄xx(Ω)
dΩ

2π
. (10)

The solution to this variational problem is given by the Euler-Lagrange equation,

D S̄xx

Dχfb
= 0, (11)

where D stands for the variational (Gateaux) derivative. This is most effectively solved in terms of the magnitude
|χfb| and phase φfb = argχfb of the optimal filter; resulting in the solution,

φfb(Ω) = arctan
Imχm

Reχm

|χfb(Ω)| S̄tot
FF = |χm(Ω)|−1 S̄imp

xx .

(12)

B. Practical feedback cooling

The optimal feedback phase near resonance is

φfb(Ω) = arctan
ΩΓm

Ω2
m − Ω2

≈ ±π

2
+ 2

Ω− Ωm

Γm
. (13)

In practice, it is easiest to implement φfb = π/2 across the mechanical oscillator bandwidth, and choose |χfb|−1 ∝ Ω,
i.e.,

χfb(Ω)
−1 = −iΩΓfb(Ω), (14)

where ideally the feedback gain Γfb(Ω) = gfbΓm, with gfb the dimensionless gain of the filter. The ensuing effective
susceptibility,

χ−1
eff := χ−1

m + χ−1
fb = Ω2

m − Ω2 + iΩΓm(1 + gfb)
︸ ︷︷ ︸

:=Γeff

, (15)

is characterized by a modified damping rate, Γeff .
To see how this damping leads to cooling, we reconsider the three components of the thermal environment: (1) an

ambient reservoir with which the oscillator equilibrates, (2) a reservoir constituted by stochastic measurement back-
action, and (3) a reservoir constituted by stochastic fluctuations of the feedback actuator. For a high-Q oscillator,
each reservoir can be assigned a thermal noise equivalent occupation: nth, nba and nfb respectively, where nth =
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1
2 coth (~Ωm/2kBT ) in terms of the ambient bath temperature, T . Thus the total effective thermal force may be
expressed:

Stot
F (Ω) =

(
nth + nba + nfb + 1

2

)
·m2|χm(Ωm)|−2 · 2Szp

x (Ωm). (16)

where we have introduced for convenience the (peak) position spectral density in the ground state:

Szp
x (Ωm) =

4x2
zp

Γm
. (17)

We further introduce the imprecision quanta, nimp, as the apparent thermal occupation associated with noise in
the measurement:

Simp
x (Ω) = nimp · 2Szp

x (Ωm). (18)

Thus the spectra of physical position and the measurement record, Eq. (9), are given by

Sx(Ω)

2Szp
x (Ωm)

=
(nth + nba + nfb + 1

2 )Ω
2
mΓ

2
m + nimp g

2
fbΩ

2Γ2
m

(Ω2
m − Ω2)2 +Ω2Γ2

eff

Sy(Ω)

2Szp
x (Ωm)

=
(nth + nba + nfb + 1

2 )Ω
2
mΓ

2
m + nimp

(
(Ω2

m − Ω2)2 +Ω2Γ2
m

)

(Ω2
m − Ω2)2 +Ω2Γ2

eff

.

(19)

The mean phonon occupancy of the cooled oscillator is then given by

2nm + 1 =

∫ ∞

0

Sx(Ω)

x2
zp

dΩ

2π

⇒ nm =
(nth + nba + nfb + 1

2 ) + nimpg
2
fb

1 + gfb
− 1

2
.

(20)

In the relevant limit of nth ≫ 1
2 , a minimum of

nm,min ≈ 2
√

(nth + nba + nfb)nimp − 1

2

≈ 1

2~

√

Stot
F (Ωm)S

imp
x (Ωm)−

1

2

(21)

is attained at an optimal gain of

gfb,opt ≈
√

nth + nba + nfb

nimp
, (22)

as anticipated by Eq. (12).
In particular, for the experimentally relevant case of nth ≫ nfb, the conventional condition for ground state cooling,

nm < 1, translates to

nimp <
9

16
(nth + nba)

−1. (23)

Finally, in the regime where feedback cooling is strong (gfb ≫ 1) and quantum-limited (nfb = 0), intuition can
be garnered by noticing that Eq. (20) can be expressed as the detailed balance condition,

(
nm + 1

2

)
Γeff = (nth +

nba)Γm +nimpΓfb. This suggests that cooling as affected by feedback can be understood as a thermodynamic process
which proceeds by the reduction of entropy of the mechanical oscillator to a level ultimately set by the entropy due
to the imperfect estimation of the mechanical position.

C. Limits due to stochastic back-action

In section IID, it is shown that stochastic back-action associated with a cavity-optomechanical position measurement
is bound by the imprecision-back-action product: ~2Simp

x Sba
F = 16nimpnba ≥ 1. Imposing this limit, Eq. (23) implies

that a necessary condition for ground-state cooling is

nimp < (2nth)
−1. (24)
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Notably, from Eq. (18), the associated condition on the measurement imprecision becomes

Simp
x <

Szp
x

nth
=

4x2
zp

nthΓm
=

4x2
zp

Γth
, (25)

where Γth := Γmnth is the thermal decoherence rate. Notably Eq. (25) corresponds to an imprecision nth/2 times
below that at the standard quantum limit (Eq. (48)), or equivalently, as a measurement rate [1, 8]

Γmeas :=
x2
zp

2Szp
x

=
Γm

16nimp
>

Γth

8
(26)
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II. READOUT AND FEEDBACK USING A CAVITY

In our system, the mechanical oscillator is dispersively coupled to an optical cavity mode. The cavity field exerts
a radiation pressure force on the oscillator; the unitary nature of this interaction affects a phase shift of the cavity
field commensurate with the amplitude of mechanical motion.

FIG. 1. Schematic of the relevant input, output and couplings between the various subsystems in the experiment.

We adopt the following set of coupled Langevin equations to model the dynamics of the cavity mode (characterized
by the slowly varying amplitude of the intracavity field, a) and the mechanical mode (characterized by its normalized
position, u := x/xzp):

ȧ+ =
(

i∆0 −
κ

2

)

a+ +
iγ

2
a− + ig0ua+ +

√
ηcκ s

+
in +

√

(1− ηc)κ δs
+
vac

ȧ− =
(

i∆0 −
κ

2

)

a− +
iγ

2
a+ + ig0ua− +

√
ηcκ s

−
in +

√

(1− ηc)κ δs
−
vac

(27a)

ü+ Γmu̇+Ω2
mu = δfth + fba + ffb. (27b)

Notably, in Eq. (27a) we use a two-mode model to describe the microdisk cavity. Subscripts + and − refer to
whispering gallery modes propagating along (‘clockwise’) and against (‘counter-clockwise’) the conventional direction
(+) of the injected field, respectively. The two modes are coupled at a rate γ by scattering centers [18], leading to a
characteristic splitting of the optical resonance (cf. Eq. (31) and Sec. III F). Motivated by the geometrical nature of
the interaction, we assume that both modes share a common vacuum optomechanical coupling rate, g0.

Light is physically coupled to the microdisk cavity using an optical fiber [18]. In Fig. 1 and Eq. (27a), we model this
coupler as a two port waveguide. Fields entering(exiting) the ‘clockwise’ port, s+in(out), couple directly to the clockwise

cavity mode. Fields entering(exiting) the ‘counter-clockwise’ port, s−in(out), couple directly to the counter-clockwise

mode. The cavity-waveguide coupling rate is κex = ηcκ, where κ = κex+κ0 is the total cavity decay rate and κ0 is the
intrinsic cavity decay rate. In addition, each cavity mode is driven through its intrinsic decay channel by a vacuum
state with amplitude δs±vac. Input field amplitudes are here normalized so that P±

in = ~ω±
ℓ |s±in|2 is the injected power.

∆0 = ωc − ω±
ℓ denotes the detuning of the drive field carrier frequency, ω±

ℓ , from the center frequency of the optical
mode doublet, ωc.
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The dynamics of the mechanical oscillator are governed by Eq. (27b). Note that owing to the dimensionless form
of u, generalized forces fth,ba,fb have dimensions of (time)−2; the actual forces (cf. Sec. I), in units of Newtons, are
given by Fi = mxzp fi (i ∈ {th, opt, fb}). Using this convention, the thermal Langevin force is given by

δfth = ΩmΓm

√

2(2nth + 1) ξth, where nth =
1

2
coth

(
~Ωm

2kBT

)

(28)

and ξth the is unit variance white noise process modeling the bath fluctuations.
We model the measurement back-action force as the radiation pressure imparted by the excited mode doublet a±:

fba = Ωmg0(a
†
+a+ + a†−a−). (29)

We likewise model the feedback force as the radiation pressure imparted by an independent, auxiliary cavity mode
with amplitude c and optomechanical couplng rate g1:

ffb = Ωmg1 c
†c. (30)

In the following treatment, both optical modes are driven by optical fields entering the clockwise port of the optical
fiber. The field driving mode doublet a± is refered to as the ‘sensor’ field. The field driving mode c is referred to as
the ‘feedback’ field. The counter-clockwise port of the optical fiber is used to monitor the transmitted sensor field, but
is otherwise left open. We hereafter confine our attention to the back-action force associated with the cavity mode a±.

Steady state. When the cavity is excited by the sensor field, the static component of the ensuing radiation pressure
force displaces the oscillator to a new steady-state position, ū, and leads to a renormalization of the laser-cavity
detuning to ∆ = ∆0 + g0ū. In practice the frequency of the sensor field is stabilized so that ∆ = 0. In this case the
steady state intracavity field amplitude (ā) and oscillator position are given by

ā+ =
√
n+, ā− = i

√
n− and ū =

g0
Ωm

(n+ + n−),

where n+ =
4ηc
κ

P+
in/~ωc

(1 + γ2/κ2)2
and n− =

(γ

κ

)2

n+.
(31)

denote the mean intracavity photon number of the clockwise and counter-clockwise modes, respectively. Note that
when describing Fig. 2 in the main text, we associate the intravity photon number with that of the clockwise mode,
i.e. nc = n+.
Splitting of the cavity resonance can be observed spectroscopically in the normalized steady state transmission.

Using the input-output relation s̄+out = s̄+in −√
ηcκ ā+ gives

∣
∣
∣
∣

s̄+out
s̄+in

∣
∣
∣
∣

2

=
P+
out

P+
in

= 1− ηcκ
2

(
∆2 + (γ/2)2 + (κ/2)2

)
− ηc

(
∆2 + (κ/2)2

)

(∆2 − (κ/2)2 − (γ/2)2)
2 , (32)

which is used in Sec. III F.

Fluctuations. Fluctuations of the cavity field, δa = a − ā, and the mechanical position, δu = u − ū, are coupled
according to Eq. (27). To first order:

δȧ± =
(

i∆− κ

2

)

δa± +
iγ

2
δa∓ + ig0ā± δu++

√
ηcκ δs

−
in ±+

√

(1− ηc)κ δs
±
vac (33a)

δü+ Γmδu̇+Ω2
mδu = δfth + δffb + g0Ωm

∑

j=±

(ājδa
†
j + ā∗jδaj). (33b)

The ensuing radiation pressure force fluctuations

δfba = g0Ωm

∑

j=±

(ājδa
†
j + ā∗jδaj) (34)

contain both a dynamic and stochastic component, as detailed in section IIA and IIB, respectively.
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Taking the Fourier transforms of Eq. (33) recasts the optomechanical interaction in terms of optical(mechanical)
susceptibilities, χa(m):

χ(γ)
a (Ω)−1 δã± = ig0

(

ā± +
iγ

2
χ(0)
a ā∓

)

δũ

+
√

(1− ηc)κ

(

δs̃±vac +
iγ

2
χ(0)
a δs̃∓vac

)

+
√
ηcκ

(

δs̃±in +
iγ

2
χ(0)
a δs̃∓in

)

(35a)

(
χm(Ω)

−1 + χfb(Ω)
−1 + χba(Ω)

−1
)
δũ = δf̃th + δf̃fb,th + δf̃ba,th. (35b)

Here χfb and χba are the modification to the intrinsic mechanical susceptibility due to feedback and dynamic back-
action, respectively. Likewise ffb,th and fba,th represent effectively thermal components of the feedback and mea-
surement back-action forces, respectively, adopting the notation from Sec. I. Before elaborating, we emphasize the
following simplifications in the experimentally relevant ‘bad-cavity’ limit, κ ≫ Ωm, assuming a resonantly driven
cavity (∆ = 0) and adopting the dissipative feedback strategy described in Sec. I B:

χ(0)
a (Ω)−1 := −i(Ω +∆) +

κ

2
≈ κ

2

χ(γ)
a (Ω)−1 :=

χ
(0)
a (Ω)−1

χ
(0)
a (Ω)−2 + (γ/2)2

≈ κ

2

(

1 +
γ2

κ2

)

χm(Ω)
−1 := Ω2

m − Ω2 − iΩΓm

χfb(Ω)
−1 := Ω2

fb(Ω)− iΩΓfb(Ω) ≈ −iΩΓm(1 + gfb)

χba(Ω)
−1 := Ω2

ba(Ω)− iΩΓba(Ω) ≈ 0.

(36)

A. Dynamic back-action

When the cavity is driven away from resonance (∆ 6= 0), correlations between the radiation pressure back-action
force and the mechanical position give rise to a well known dynamic radiation pressure back-action force [9]. In the
high-Q (Ωm ≫ Γm), bad-cavity (κ ≫ Ωm) limit relevant to our experiment, dynamic back-action manifests as a
displaced mechanical frequency (the optical spring effect) and passive cold-damping [9]. Accounting for cavity mode
splitting, the optically-induced spring shift (∆Ωba) and damping rate (Γba) are given by:

∆Ωba := Ωba(Ωm)− Ωm ≈ 2g20
κ

4ηcP
+
in

κ~ωc

∑

j=±

(κ/2)3(∆ + jγ/2)

[(∆ + jγ/2)2 + (κ/2)2]
2 (37a)

Γba(Ωm) ≈
Ωm

4κ
· 2g

2
0

κ

4ηcP
+
in

κ~ωc

∑

j=±

κ5(∆− jγ/2)

[(∆ + jγ/2)2 + (κ/2)2]
3 . (37b)

Eq. (37a) is used in conjunction with Eq. (32) to estimate g0 in section Sec. IIID. Note that both terms vanish for
resonant probing.

B. Stochastic back-action

When the cavity is driven on resonance (∆ = 0), the thermal component of the radiation pressure back-action force
takes the form

δf̃ba,th =
8g0Ωm√

κ (1 + γ2/κ2)

{(√
n+ +

γ

κ

√
n−

)√
ηcδq̃

+
in +

(√
n+ +

γ

κ

√
n−

)√

1− ηcδq̃
+
vac

−
(γ

κ

√
n+ −√

n−

)√
ηcδp̃

−
in −

(γ

κ

√
n+ −√

n−

)√

1− ηcδp̃
−
vac

}

,

(38)
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where q(p) denote the amplitude(phase) quadrature of each field: δs = δq + iδp. In Eq. (38), we have retained the
explicit dependence on n± in order to emphasize their role in weighting the various noise components. We note that
as a consequence of the scattering process, (amplitude)phase fluctuations entering the (clockwise)counter-clockwise
mode are converted to intensity fluctuations by two pathways.
Assuming that the drive field is shot-noise limited in its amplitude quadrature (S̄in

qq = 1
2 ) and that the cavity is

otherwise interacting with a zero temperature bath (S̄vac
qq = 1

2 = S̄vac
pp ), we find that the effective thermal occupation

of the remaining ‘quantum’ stochastic back-action is given by

nba = C0
1

1 + γ2/κ2
(n+ + n−) = C0n+; (39)

here expressed in terms of the ‘single-photon cooperativity’ parameter,

C0 :=
4g20
κΓm

. (40)

C. Measurement imprecision

The cavity transmission, δs̃+out = δs̃+in −√
ηcκ δã+, at ∆ = 0 is given by,

δs̃+out = −i
√
ηc

2g0
√
n+√
κ

(
1− γ2/κ2

1 + γ2/κ2

)

δũ+

(

1− 2ηc
1 + γ2/κ2

)

δs̃+in − i
2ηc(γ/κ)

1 + γ2/κ2
δs−in

− 2
√

ηc(1− ηc)

1 + γ2/κ2

(

δs̃+vac + i
γ

κ
δs̃−vac

)

.

(41)

As depicted in Fig. 1, the transmitted field is amplified in a balanced homodyne receiver with a coherent local oscillator
(LO) slo. The fields transmitted at either ports of the homodyne beam-splitter are,

(

s̃1
s̃2

)

=
1√
2

(

1 i

i 1

)(

slo
δs̃+out

)

; (42)

the optical intensities detected by independent identical photodetectors are, δĨi = s̃†i s̃i (i = 1, 2). The operator
corresponding to the resulting subtracted homodyne intensity is,

δĨhom = δĨ1 − δĨ2 = 2|slo|
(
δp̃+out cos θlo − δq̃+out sin θlo

)
, (43)

where |slo| is the amplitude of the large coherent LO field, and θlo the relative mean phase between the LO and
the cavity transmission. The path length of the LO arm is electronically locked to maintain θlo ≈ 0, so that the
homodyne signal picks out the phase quadrature of the cavity transmission. For photodetectors with gain Gd (A/W)
and quantum effeciency ηd, the resulting shot-noise-normalized spectrum of photocurrent fluctuations is given by [10]:

Shom
i (Ω) = G2

dηd

(

1 + ηd
〈: δĨhom(Ω) δĨhom(−Ω) :〉

〈Ihom〉

)

= G2
dηd

(

1 + ηdηc
16g20n+

κ

(
1− γ2/κ2

1 + γ2/κ2

)2

Su(Ω)

)

.

(44)

Using Eq. (18) and u ≡ x/xzp, the shot noise floor of the homodyne photocurrent spectrum can be expressed as an
equivalent thermal bath occupation,

nimp =

(
1

16ηcηdC0n+

)(
1 + γ2/κ2

1− γ2/κ2

)2

. (45)

Note that mode splitting causes the optical susceptibility (Eq. (33)) to flatten near resonance, leading to divergence
of Eq. (45) when γ = κ.
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D. The uncertainty principle and the standard quantum limit

Eq. (39) and Eq. (45) imply that a cavity-optomechanical position measurement is bound by the imprecision-back-
action product,

4
√
nimpnba =

1

~

√

Simp
x Sba

F ≥ 1. (46)

Using Eq. (16) and Eq. (17), we identify

Simp
x = nimp · 2Szp

x (47a)

Sba
F = nba ·m2|χ(Ωm)|−2 · 2Szp

x = 4~nbaΩmΓmm (47b)

as, respectively, the shot-noise limited imprecision of the homodyne measurement, Eq. (45), (referred from the pho-
tocurrent to the mechanical position) and its associated stochastic back-action, arising from radiation pressure shot
noise, Eq. (34).
This product places a limit on the apparent motion of the oscillator. Namely, in the absence of feedback, Eq. (19)

gives

Sy(Ωm)

2Simp
x

= nth + nba + nimp +
1

2
≥ nth + 1 ≥ 1. (48)

The limiting case in Eq. (48) occurs for nth = 0 and nba = nimp = 1
4 . This corresponds to an oscillator in contact with

a zero-temperature ambient thermal bath, measured with an imprecision of Szp
x /2, and exhibiting, due to stochastic

back-action, a physical displacement of Szp
x /2 on top of its zero-point displacement, of magnitude Szp

x .
A more general treatment [1] reveals the RHS of Eq. (46) and the RHS of Eq. (48) to coincide with the Heisen-

berg uncertainty principle and the standard quantum limit for a weak continuous (linear) position measurement,
respectively.
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III. EXPERIMENTAL DETAILS

A. Sample design and fabrication

Our optomechanical system consists of a doubly clamped Si3N4 beam of length L ≈ 68 µm, width w ≈ 400 nm,
and thickness t ≈ 70 nm placed z ∼ 50 nm above the surface of a wedged silica microdisk [11] with radius Rd ≈ 15
µm, thickness td ≈ 0.65 µm, and wedge angle θd ≈ 30 degress. Beam and microdisk are monolithically integrated
on a Si microchip The dimensions of the system were chosen with the aim of maximizing single-photon cooperativity
C0 = 4G2x2

zp/κΓm for the fundamental out-of-plane mode of the nanomechanical beam. Towards this end, a crucial
consideration is the co-locolization of the mechanical and optical mode volumes. Finite element modeling (COMSOL
4.3) was used to compute the field distribution of the whispering gallery optical mode and its overlap with the
mechanical mode; the vertical gradient of this overlap integral is proportional to the frequency pulling factor G [13].
As a rule of thumb, G is increased by centering the lateral position of the beam (x) within the evanescent optical
mode and by minimizing the vertical separation (z) between the beam and surface of the disk (Fig. 1 of main text).
Optimal values of {t, w} are determined by maximizing Gxzp while fixing all other dimensions, in this case leveraging
the trade-off between increasing mode overlap and mechanical mass. G may also be increased by decreasing td and
Rd; this enhancement however comes at the cost of increased optical losses, including waveguide coupling to the beam.
The sample under study was thus chosen from an experimental sweep of C0 versus {Rd, w, x}. The chosen value of
L inherits from fabrication constraints as well as an effort to localize the frequency of the fundamental out-of-place
mode in a region of low extraneous noise (Fig. 1D of main text).

R
d

w

t

t
d

z

x

FIG. 2. Microdisk-nanobeam geometry

The fabrication process begins by dry oxidation of a float zone Si wafer, in order to grow a high purity SiO2 film.
The microdisk and nanobeam support pads are defined by photolithography and transferred to the SiO2 by wet
etching in buffered hydrofluoric acid. A second photolithography and wet etching step is used to selectively thin the
microdisk only, which defines the gap between the nanobeam and microdisk. An etch-stop layer of Al2O3 is deposited
by atomic layer deposition, in order to protect the microdisk later in the process, when the nanobeam is etched. Next
a poly-Si layer is deposited and planarized by chemical mechanical polishing. The planarization is stopped when
the nanobeam support pads are exposed, but a thin sacrificial layer of poly-Si still remains above the microdisk.
Afterwards, a high stress Si3N4 film is deposited by low pressure chemical vapor deposition. A series of steps are
carried out to expose alignment marks defined in the SiO2 layer. The nanobeam pattern is defined and precisely
positioned, using the alignment marks, by electron beam lithography. The Si3N4 is etched with SF6 chemistry, using
an inductively coupled plasma etcher. Finally the microdisk and nanobeam are undercut by etching in a potassium
hydroxide solution, followed by critical point drying.

B. Cryogenic Operation

The sample is embedded in a 3He buffer gas cryostat (Oxford Instruments HelioxTL). As detailed in Riviere et.

al. [14], laser light is coupled to the microdisk by means of a straight tapered optical fiber affixed to the cryostat
probe head. To position the microdisk relative to the optical fiber, the sample chip is mounted on a 2-axis Attocube
nanopositioner (ANPx50/LT). An important practical consequence of the near-field coupling architecture is that it
enables us to place the tapered fiber in physical contact with the microdisk without influencing the quality factor
of the nanobeam. We operate in this “contact mode” in order to suppress fluctuations in the coupling strength κex

due low frequency cryostat vibrations, as well as drift due to temperature change. As shown in Fig. 7, changing the
position of the contact point allows access to a wide range of coupling strengths, including nearly ideal [15] critical
coupling.
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We regulate the pressure and temperature of our cryostat in order to address different experimental challenges. Mea-
surements which require independent knowledge of the sample temperature (e.g. optomechanical coupling, Sec. IIID)
are performed using a large buffer gas pressure of ∼ 100 mbar in order to ensure good thermalization with the sample
holder, whose temperature is monitored using a calibrated Cernox sensor. Measurements requiring high mechanical
quality factor are conducted with the buffer gas evacuated to a pressure of < 10−3 mbar. We have verified that
the sample remains thermalized with the sample holder at temperatures as low as 4 K (Fig. 3), by monitoring the
thermomechanical noise of multiple beam modes using a weak sensor field (Fig. 3). Below 4 K, a dramatic rise in
temperature is observed for all modes (inset to Fig. 3). This temperature rise scales linearly with optical power, and
suggests an increase in susceptibility to absorption heating. We conjecture that this effect is due to a rapid drop in
thermal conductivity consistent with the universal behavior of amorphous glass (in this case Si3N4) at temperatures
below ∼ 10K [39]. To avoid this strong effect, we operate in temperature ranging from 4-5 K for all of the reported
experiments.
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FIG. 3. Mode temperature vs. cryostat temperature.

C. Experimental setup

A schematic of the experiment setup is shown in Fig. 5. At its heart is the cryogenic, taper-coupled microdisk
(Sec. III B). The taper is spliced into a ∼ 9 meter, single mode optical fiber (780HP), penetrating the cryostat probe
through a pair of teflon vacuum feedthroughs. Optical fields coupled to the fiber are supplied by two intensity-stabilized
(Thorlabs NE LCC3112H) external cavity diode lasers (ECDL, New Focus Velocity 6312 and 6316) operating at λ ≈
775 nm and 850 nm: the ‘sensor’ and ‘feedback’ laser, respectively. Each laser is phase modulated using a broadband
EOM (PM, New Focus 4002). Phase modulation at 61(42) MHz is used to generate a PDH error signal with which
to stabilize the sensor(feedback) laser frequency to the sensor(feedback) cavity mode. For the sensor field, a second
phase modulation tone at Ωcal/2π = 40 MHz is used to calibrate the homodyne measurement (Sec. IIID). Directly
before(after) the signal fiber, the sensor and feedback fields are combined(split) using a dichroic mirror (DM). The
sensor(feedback) PDH error signal is derived from a weak pickoff of the reflected(transmitted) cavity field.
The homodyne detector is formed by incorporating the cryogenic signal fiber into one arm of a carefully length-

matched Mach-Zehnder interferometer. The local oscillator (LO) arm of the interferometer is derived from the sensor
field using a beamsplitter located after the broadband EOM. Cancelling the signal generated by common-mode phase
modulation on a single port of the balanced photodetector (FEMTO HCA-S) enables us to match the length of the
signal and LO arm to within 1 mm, practically eliminating contamination of the measurement by laser phase noise.
Subsequent power balancing of the two detection ports achieves a common-mode rejection of residual amplitude
modulation — mainly arising due to optical fiber etalons — by ∼ 30 dB. The balanced photodetector, based on a
matched pair of Si PIN photodiodes, features a low gain, DC-coupled transimpedance amplifier and a high gain (5 ·104
V/A) AC-coupled transimpedance amplifer with a low NEP of ∼ 10 pW/

√
Hz at 5 MHz. We use a LO power of 4

mW to achieve a shot noise to detector noise ratio of & 6 dB at Fourier frequencies near Ωm/2π = 4.32 MHz. The
DC photosignal is used to stabilize the path length of the interferometer by feedback to a piezo-actuated mirror in
the LO path.
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FIG. 4. Schematic of experimental setup

For characterization of measurement imprecision, the AC homodyne photosignal is sent directly to the spectrum
analyzer (SA, Tektronix RSA5106A). For feedback cooling, the photosignal is split on a 20 dB directional coupler
(Minicircuits ZFDC-20-3+). The weak port is sent to the SA. The strong port is directed to a low Vπ(≈ 5 V) fiber
intensity modulator (EOSPACE) in the feedback beam path. For the signal(feedback) power used in the reported
cooling experiment, 5.5(0.1) µW, it was necessary to further amplify the photosignal in order to achieve the largest
reported damping rates. A low noise voltage amplifier (Minicircuits ZFL-500LN) was thus placed after the directional
coupler, followed by a voltage-controlled RF attenuator (Minicircuits ZX73-2500-S+), used to tune the feedback gain.
In order to suppress feedback to higher-order beam modes, the photosignal was also passed through a 5 MHz low-
pass filter (Minicircuits BLP-5+). The remaining electronic path length was manually fine tuned, by minimizing the
feedback spring effect, to achieve a total feedback delay of 3π/2Ωm ≈ 175 ns.

D. Calibration of optomechanical coupling rate g0

We determine the zero-point optomechanical coupling rate g0 of our system by calibrating the transduction factor
GV ω connecting thermomechanical cavity frequency noise, Sω(Ω) ≈ 8g20nth/Γm · |χm(Ω)/χm(Ωm)|2 with the measured
homodyne photocurrent noise, SV (Ω) = |GV ω(Ω)|2Sω(Ω) (here photocurrent has been referred to the voltage V
measured at the output of the photodetector transimpedance amplifier). Following the method detailed in [17], we
take advantage of the fact that the cavity transduces laser frequency fluctuations and cavity frequency fluctuations
in the same way. To calibrate GV ω, we phase-modulate the sensor field at frequency Ωcal with a known modulation
depth β; this produces a reference tone of magnitude Scal

V (Ω) = 1
2Ω

2
calβ

2δ(Ω − Ωcal)|GV ω(Ω)|2. Comparing the

integrated area beneath the reference tone,
〈
V 2
〉

cal
= 1

2Ω
2
calβ

2|GV ω(Ωcal)|2, and the thermomechanical noise peak,

〈V 2〉m = 2g20nth|GV ω(Ωm)|2, gives,

g0 =
βΩcal

2

√

1

nth

〈V 2〉m
〈V 2〉cal

∣
∣
∣
∣

GV ω(Ωcal)

GV ω(Ωm)

∣
∣
∣
∣
. (49)

An example of a g0 measurement is shown in Fig. IIID. For this measurement, a buffer gas pressure of ∼100
mbar was used to ensure good thermalization of the sample to probe head at T ≈ 3.3 K (nth ≈ 1.6 · 104). The
resulting mechanical gas damping rate, Γm ≈ 2π · 64 kHz, also allows us to ignore dynamic back-action effects for
the moderate sensor power used, P+

in ≈ 1 µW. From separately determined β ≈ 0.057 (inferred from a heterodyne
beat measurement), Ωcal = 2π · 40 MHz (the value of Ωcal ≫ Ωm was chosen in order to reduce residual amplitude
modulation), and |GV ω(Ωc)|/|GV ω(Ωm)| ≈ 0.98, we infer g0 ≈ 2π · 21 kHz.
As an independent measure of g0, we red-detune the sensor field and compare the resulting shift of the mechanical

frequency to a standard model for radiation pressure dynamical back-action Eq. (37). For this measurement, the
mechanical damping rate was reduced by evacuating the buffer gas pressure to < 10−3 mbar (Sec. III E). In Fig. IIID,
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FIG. 5. Calibration of g0 by two methods. Left: Using thermal noise and calibrated RF frequency modulation tone [17].
Right: Using a model for the optical spring shift.

the observed spring shift ∆Ωba is plotted versus cavity transmission for an input power of P+
in ≈ 1µW and a measured

cavity linewidth of κ ≈ 2π · 1070 MHz. Incorporating the effect of measured cavity mode splitting (Sec. III F) into
the model, the measured spring shift is consistent with g0 ≈ 2π · 19 kHz. The seperately determined values of 19 kHz
and 21 kHz (Fig IIID) are used to set error bars on estimates of C0 and nimp in the reported experiments (Table I).

E. Mechanical damping rate

To determine the intrinsic mechanical damping rate, Γm, it is necessary to minimize extraneous sources of physical
and apparent damping; these include gas pressure, radiation pressure and bolometric back-action, and slow thermal
drift of the mechanical frequency. To mitigate the former, we conduct experiments with the buffer gas in our cryostat
evacuated to a level < 10−3 mbar. We verify that the oscillator still thermalizes with the sample holder to a
temperature as low as 4 K (Fig. 6). To mitigate back-action and drift, we extract Γm from an impulse-response
measurement conducted with a weak probe (feedback) beam power of < 50 nW.

The step-response measurement is conducted as follows: the mechanical oscillator is driven with radiation pressure
by intensity modulating the feedback field at a frequency Ωd ≈ Ωm. An RF switch is then used to rapidly shutter
off the modulation. The subsequent exponential (ringdown) decay of the mechanical energy, with e-folding time
τ = 2π/Γm, is observed by demodulating the homodyne photocurrent at Ωd with a demondulation bandwidth of
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FIG. 6. Mechanical damping rate versus temperature. See Section III E. Inset: ringdown example data (blue) and fit (red).
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B ≫ Γm. An average of 100 such ringdowns in shown in the inset of Fig. 6. To record Γm vs temperature in this
figure, it was necessary to track the frequency of the oscillator over a (temperature-induced) drift range of ∼ 10 kHz.
This was accomplished by incorporating the modulation and demodulations signal into a phase-locked-loop, using a
digital lock-in amplifier (Zurich Instruments UHFLI).

F. Mode splitting of probe cavity

To accurately estimate intracavity photon number, nc, measurement imprecision, nimp, and stochastic measurement
back-action, nba, it is necessary to account for cross-coupling between optical cavity modes. In a whispering gallery
microresonator, Rayleigh scattering from surface defects leads to coupling of otherwise degenerate clockwise (CW)
and counter-clockwise (CCW) propagating modes [18] at a rate γ (Eq. (27a)). Since only the clock-wise mode (by
convention) is driven by the field from the optical taper, this leads to an effective reduction of photon collection
efficiency by a factor (1+γ2/κ2)2 (Eq. (31)). At ∆ = 0, coherence between the CW and CCW fields leads to a further
decrease in homodyne readout sensitivity by a factor (1+ γ2/κ2)2/(1− γ2/κ2)2 (Eq. (45)) and the simplified form for
nba given in Eq. (39).

As a confirmation of the coupled-mode model, we have characterized the steady state cavity transmission (Eq. (32))
as a function of external coupling strength, κex (accessed by changing the taper’s contact point on the microdisk’s
surface). As shown in Fig. 7, the relationship of resonant transmission and total decay rate κ = κ0 + κex shows good
consistency with the model for an intrinsic decay rate of κ0 = 2π · 440 MHz and mode splitting γ = 2π · 360 MHz.
These values are used to analyze data presented in Figures 1-3 of the main text.
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FIG. 7. Taper coupling ideality probed by cavity transmission. Inset: examples of cavity transmission (red) calibrated by
using a pre-calibrated “comb” from a fiber loop cavity (gray).

IV. SUMMARY OF EXPERIMENTAL VALUES AND SYSTEMATIC UNCERTAINTY

Values used to determine experimental data points and their uncertainty in Figures 2-3 of the main text are
summarized in Table I. We restrict our attention to sources of systematic uncertainty, as these were found to dominate
over statistical uncertainty (e.g. for least-squares fitting of thermomechanical spectra). Uncertainties in {nimp,
ntot} (vertical axis of Fig. 2 of main text) are primarily due to uncertainty in the value the cryostat temperature.
Uncertainties in {neff , nfb} (vertical axis of Fig. 3 of main text) are primarily due to uncertainty in both the cryostat
temperature and the magnitude of extraneous back-action heating. Horizontal error bars in Figure 2 of the main text
are primarily due to uncertainty in magnitude of the vacuum optomechanical coupling rate.
We highlight two sources of systematic uncertainty in the mechanical mode temperature: (1) discrepancy between

the cryostat Cernox sensor reading and the temperature at the location of the sample, and (2) heating due to
extraneous back-action. With regards to (1): two independently calibrated sensors placed in different locations on the
sample holder read values T = 4.1 K and 4.6 K. We take this to be the systematic uncertainty. With regards to (2):
Extraneous back-action heating is recorded versus optical power in Fig. 2 of the main text. A similar measurement
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Symbol Expression used Value Measurement method and source of systematic uncer-
tainty

λ 775 nm Wavelength meter.

κ 2π · 910 MHz (Fig. 2)
2π · 1850 MHz (Fig. 3)

Fit to transmission versus detuning (Sec. III F).

γ 2π · 360 MHz Fit to transmission versus detuning (Sec. III F).

κ0 2π · 440 MHz Fit to resonant transmission versus κ (Sec. III F).

T (4.1, 4.6) K Reading from two independent cryostat thermistors (Sec.
IV).

Ωm 2π · 4.32 MHz Fit to thermomechanical noise peak.

Γm 2π · (5.6, 5.7) Hz Mechanical ringdown, uncertainty due to temperature
dependence in range T = (4.1, 4.6) K.

nth kBT/~Ωm (2.0, 2.2) · 104 Inferred from {Ωm, T}. Uncertainty taken from T .

g0 2π · (19, 21) kHz Two independent calibration methods (Sec. IIID)

C0 4g20/κΓm (0.28, 0.35) (Fig. 2) Inferred from {g0, κ,Γm}. Uncertainty taken from
{g0,Γm}.

Pin variable (−3,+3)% Power meter at cryostat fiber output, corrected for fiber
throughput loss. Uncertainty due to unkown origin of
loss.

nc
4Pin

hc/λ
κ−κ0

κ
1

1+γ2/κ2 variable (−3,+3)% Inferred from {Pin, λ, κ, κ0, γ}. Uncertainty taken from
Pin.

ntot
Sx(Ω)−Simp

x

2S
zp
x

(Ω−Ωm)2

(Γm/2)2
variable (−6,+6)% (Fig. 2)
(2.2, 2.7) · 104 (Fig. 3)

Assume ntot ≫ nimp. Fit to off-resonant tail (|Ω −
Ωm| ≫ Γm) of thermomechanical noise peak. Bootstrap
to ntot ≈ nth for small Pin. In Fig. 2, uncertainty is
taken from nth. In Fig. 3, additional uncertainty arises
from discrepancy between two separate measurements of
extraneous back-action heating (Sec. IV).

nimp Simp
x /2Szp

x variable (−7,+7)% (Fig. 2) Same as above. Uncertainty taken from {nth,Γm}.
neff

Sy(Ωeff )+Simp
x

2S
zp
x

· Γeff variable (−12,+12)% (Fig. 3) Fit to in-loop thermomechanical noise peak under the
approximation Γeff ≫ Γm. Bootstrap to neff = ntot ·
Γm/Γeff for small Simp

x /Sy(Ωeff). Uncertainty taken from
{ntot,Γm}.

neff,fb
Simp
y

2S
zp
y

· Γeff variable (−12,+12)% (Fig. 3) Same as above.

TABLE I. Experimental values and their systematic uncertainties for Figs. 2-3 of the main text.

was made prior to the cooling experiment shown in Fig. 3. In the latter case, we observed approximately 0.4 K of
measurement back-action heating for the P+

in ≈ 5.5 µW sensor power used. This is a factor of ∼2 smaller than shown
in Fig. 2. The discrepancy is partly attributable to the use of a larger optical linewidth, κ ≈ 2π · 1.85 GHz, in the
feedback experiment. As a conservative estimate, we assume a back-action heating of (0.4, 1) K for figure 3.

An estimate for the systematic uncertainty in Γm is made by taking the extreme values 2π · (5.6, 5.8) Hz in the
range T = (4.1, 4.6) K in Fig. 6. We note that in Fig. 2 of the main text, extraneous back-action leads to a rise in
effective bath temperature by as much as ∼ 12 K, corresponding to Γm ≈ 2π · 6.6 Hz. As we do not have a model
for the influence of such localized heating on Γm, we have chosen to omit this possible source of uncertainty from the
treatment in the main text.
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