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ABSTRACT The outliers remove, the classification of effective measurements, and the weighted optimiza-

tionmethod of the correspondingmeasurement are themain factors that affect the positioning accuracy based

on range-based multi-target tracking in wireless sensor networks. In this paper, we develop an improved

weighted least-square algorithm based on an enhanced non-naive Bayesian classifier (ENNBC) method.

According to the ENNBCmethod, the outliers in the measurement data are removed effectively, dataset den-

sity peaks are found quickly, and remaining effective measurements are accurately classified. The ENNBC

method improves the traditional direct classification method and took the dependence among continuous

density attributes into account. Four common indexes of classifiers are used to evaluate the performance of

the nine methods, i.e., the normal naive Bayesian, flexible naive Bayesian (FNB), the homologous model of

FNB (FNBROT ), support vector machine, k-means, fuzzy c-means (FCM), possibilistic c-means, possibilistic

FCM, and our proposed ENNBC. The evaluation results show that ENNBC has the best performance based

on the four indexes. Meanwhile, the multi-target tracking experimental results show that the proposed

algorithm can reduce the root-mean-squared error of the position compared with the extended Kalman filter.

In addition, the proposed algorithm has better robustness against large localization and tracking errors.

INDEX TERMS Range-based multi-target tracking, wireless sensor networks, weighted least-square, naive

Bayesian, localization root mean squared error.

I. INTRODUCTION

Wireless sensor network (WSN) have been applied in many

domains, such as smart home, intelligent transportation, and

intelligent computing technology and so on [1]. The multi-

target localization and tracking [2] are the important research

contents of WSN [3]–[8]. Although the advantages of WSN

(such as low cost, easy deployment and long-termwork) bring

new prospective for positioning applications, the character-

istics of sensor nodes with susceptible to interference, poor

reliability, random distribution, and communication distance

[9]–[12] also present great challenges to localization inWSN.

Usually, most of the tracking algorithms based on WSN can

be grouped into two categories: range-free localization (easily

implemented and suitable for large-scale deployment) and

range-based localization (higher accuracy) [13]. This paper

focuses on the research of range-based multi-target track-

ing technology. For the closely spaced multi-target tracking,

the accuracy of the localization [14] is significantly affected

by the processing algorithm of measurement data. Therefore,

it is of great significance to research the processing algorithm

of measurement data to improve the accuracy of the localiza-

tion [15]–[17].

In recent years, the research interest of range-based multi-

target localization and tracking has turned to the tracking

problem of closely spaced targets. The processing algorithms

of the classical measurement data for target tracking, such

as Kalman filter (KF) [18], track association algorithm based

on fuzzy comprehensive function [19], classical least-squares

(CLS) algorithm [20], and Bayesian algorithm [21] etc, have

no ability to identify the attributes of every measured data.
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The optimal estimate values are calculated by the predictive

values and the observation values based on most of the classi-

cal tracking algorithms in the process of range-based closely

spaced multi-target localization and tracking [22], which are

not accurate and is interfered by the measurement data of

closely spaced targets. In the actual case, a large amount of

measurement data is received from the sensor network, but

it is not clear whether the measurement data belongs to a

specific target, and measurement data of all targets is mixed

with noise. The main work of this paper is to identify and

classify measurement data by improving existing classifica-

tion algorithms. The improved classification algorithm can

distinguish the measurement data to the corresponding target

for data fusion, and the noise can be filtered out. Therefore,

the accuracy of the range-based closely spaced target tracking

can be improved by the classification algorithm [23].

Some new clustering algorithms have been further devel-

oped in recent years, such as object tracking and credal clas-

sification with kinematic data in a multi-target context [24],

non-naive Bayesian classifiers for classification problems

with continuous attributes [25], resident location-recognition

algorithm using a Bayesian classifier in the PIR sensor-

based indoor location-aware system [26], a novel adaptive

possibilistic clustering algorithm [27], a novel measurement

data classification algorithm based on SVM for tracking

closely spaced targets [28], real-time superpixel segmenta-

tion by DBSCAN clustering algorithm [29], measurement

data classification optimization based on a novel evolu-

tionary kernel clustering algorithm for multi-target track-

ing [13], a big data clustering algorithm for mitigating the

risk of customer churn [30], a cloud-friendly RFID trajec-

tory clustering algorithm in uncertain environments [31],

a collaborative fuzzy clustering algorithm in distributed net-

work environments [32], the differences between Bayesian

classifiers and mutual-information classifiers [33], knowl-

edge fusion for probabilistic generative classifiers with data

mining applications [34], clustering by fast search and

find of density peaks [35], k-means clustering with outlier

removal [36], maximum margin Bayesian network classi-

fiers [37]. In addition, the classification results of measure-

ment data can be improved based on the weight analysis of

classification process. References [38]–[40] show that better

classification results can be obtained by using weighted data.

In this paper, a measurement data fusion method

is designed to improve the distance-based close-range

multi-target tracking performance in WSNs. A new ENNBC

algorithm is proposed, which improves the traditional direct

classificationmethod and introduces the dependence between

continuous density attributes into wireless sensor networks.

First of all, a large number of outliers are removed from the

measurement dataset and the density peak of every target

measurement data is found quickly. Secondly, the ENNBC

algorithm is applied to accurately classify remaining effective

measurements. Thirdly, the weight values of each effective

measurement are optimized by probability factors, and the

optimal data centers of each target are calculated by weighted

TABLE 1. Main mathematical symbols.

least-squares. Finally, the estimated location of every target

at current time is obtained according to weighted least-square

algorithm. Table 1 indexes the main mathematical symbols

used in the description of the document.

The structure of the paper is as follows. In Section II,

the formulation of tracking problem, the method for position

determination, CLS, and NBC are discussed in a Cartesian

coordinate. In Section III, the novel outliers remove method,

the ENNBC and weight value optimization of WLF are

explained. In Section IV, we describe the hardware experi-

mental platform ofWSN and two Scenes. SectionV describes

the simulation results of the experiment in theWSN hardware

platform. Section VI summarizes this paper.

II. PRELIMINARIES

Themeasurement data of the multi-target is collected through

nodes in WSN, and is analyzed by several related methods.

In this section, the problem formulation, the method for

position determination, and CLS are discussed in a Cartesian

coordinate. The section is divided into three parts: prob-

lem formulation, position determination method, and CLS

analysis.

A. PROBLEM FORMULATION

The state variable is an effective method to describe the

dynamic system [41]. With this method, the relationship
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FIGURE 1. The geometric relationship between the target and sensor
nodes.

between the input data and output data of the system can be

discussed in time domain by the state transition model and

output observation model. The output is a function of the

state, which is usually disturbed by the random observation

error [42]. When multiple targets enter the observation area,

the sensor nodes begin to collect a large amount of measure-

ment data, and a dataset is formed at eachmoment. The range-

basedmulti-target tracking system is considered to be defined

by geometry relationship between multiple moving targets

and nodes. The black points (TP) in Fig. 1 are true position

of the moving target j; Due to each target is homogenous,

the subscript j is removed. k and k − 1 are the corresponding

time of the moving target. When the moving target moves to

the MP position, n sensor nodes observe it, and receive the

measured data at this time. At this time, position (xsi, ysi) of

the i-th sensor node, the direction angle θi, and the measured

distance ρi are obtained. Themeasured position of themoving

target from i-th sensor node target is as follows:
[

xi
yi

]

=
[

xsi + ρi · sin θi
ysi + ρi · cos θi

]

(1)

A new observation dataset Zk for the target will be obtained

at time k . However, the uncertainty of maneuvering target

movement from time k − 1 to k should be considered. For

the sensor node i, the expression of multi-target localization

and tracking is as follows:

xk = f (xk−1)+vk−1

zi,k = gi(xk ) + wi,k (2)

where xk ∈ R
n is the n-dimensional state vectors of the multi-

target localization and tracking system at time k , f (·) is an
unknown and possibly function of the states. zi,k ∈ R

m is

the m-dimensional measurement vectors of the sensor node

i at time k . Rn and R
m are the n and m-dimensional real

space, respectively. gi(·) is a known and possibly function

of the m-dimensional measurement vectors of the sensor

i, vk and wi,k are independent of each other with added

zero meaning Gaussian measurement noise [43]. Because

each sensor is homogenous, the subscript i is removed.

z̃k =
[

z1,k , z2,k , · · · , zn,k
]

denote the measurement dataset

of the target at time k [13]. The mission of target track-

ing in WSNs is to reduce the minimum-mean-squared-error

(MMSE) estimator based on measurement dataset of each

target, the expression is as follows:

MMSE(xk ) =
∑

xi,k∈Rn
P
(

xi,k |zk
)

x̂k

=
∑

xi,k∈Rn
P
(

xi,k |zk
)

E
(

xk
∣

∣zk , xi,k
)

(3)

whereE is the expectation operator;E
(

xk |zk , xi,k
)

is the state

estimate of the tracking system according to the measurement

dataset of the target.

B. POSITION DETERMINATION ANALYSIS

For multi-target tracking, the mathematical model is estab-

lished at first according to our range-based sensor network.

The model includes the predicted and measured positions

of the target, and the sensor position. Then the deviation

between the predicted position and the measured value is

calculated at time k , the position of the sensor i and the

measurement position of the target, as shown in Fig. 2.

FIGURE 2. The geometric relationship between the prediction position,
measured position, and nodes i .

The predicted position of the target is (xk , yk ) at time k ,

and the coordinate of the sensor Si is (xsi, ysi). The measure-

ment position of the sensor Si is (xki, yki) from the target, and

the following equations are obtained:

{

1xki = xk − xki = ri
′ sin(θi′) − ri sin(θi)

1yki = yk − yki = ri
′ cos(θi′) − ri cos(θi)

(4)

where (ri, θi) represents the measured value of the sensor Si
in the polar coordinate; (ri

′, θi
′) represents the distance and

angle between the sensor and the predicted position of the

target in the polar coordinate. The equations for measurement

and measurement error are as follows:
{

ri = ri
′ − 1ri

θi = θi
′ − 1θi

(5)

VOLUME 7, 2019 13903



X. He et al.: Measurement Data Fusion Based on Optimized Weighted Least-Squares Algorithm for Multi-Target Tracking

where (1ri, 1θi) represents the error of the predictive value

of the sensor Si. According to the geometric relationship of

Fig. 2, the equation is obtained as follows:

{

1xki = (xk − xsi) − ri sin θi

1yki = (yk − ysi) − ri cos θi
(6)

using (6), the corresponding1xki and1yki of the ns measure-

ment data of the sensors were calculated at time k . The matrix

of the 1xki and 1yki is defined as follows:

�k = (υkx , υky)
T

= (εk1, εk2, · · · εkns )

=
[

1xk1 1xk2 · · · 1xkns
1yk1 1yk2 · · · 1ykns

]

(7)

using (7) the distance 1rki = ‖εki‖2 is calculated. Then,

using (4) and (5), the following equation is calculated:

{

1xki = (ri + 1ri) sin(θi + 1θi) − ri sin θi

1yki = (ri + 1ri) cos(θi + 1θi) − ri cos θi
(8)

first, 1xki is calculated according to the above equation:

1xki = ri sin θi cos1θi + ri cos θi sin1θi

+1ri sin θi cos1θi+1ri cos θi sin1θi−ri sin θi

(9)

in the actual target position detection, the error is less than the

measurement,1ri ≪ ri and1θi ≪ θi. The value of1θi tends

to be zero, and cos1θi ≈ 1, sin1θi ≈ 1θi. Therefore,

equation (9) can be simplified as:

1xki ≈ ri1θi cos θi + 1ri sin θi + 1ri1θi cos θi (10)

because the high-order item has little effect on the results,

equation (10) is further simplified as:

1xki ≈ ri1θi cos θi + 1ri sin θi (11)

similarly, 1yki is calculated as:

1yki ≈ −ri1θi sin θi + 1ri cos θi (12)

using (11) and (12), the following equation is calculated:







1xki sin θi + 1yki cos θi = 1ri

1xki
cos θi

ri
− 1yki

sin θi

ri
= 1θi

(13)

Note that (13) depends on the direction angle θi and the

distance ri of the node relative to the measurement.

C. CLS ANALYSIS

In order to perform it more conveniently, we use matrix

algebra for analysis, so that (13) can be simplified as:

Hδ = ξ (14)

where,

H =





















sin θ1 cos θ1
cos θ1

r1
− sin θ1

r1
...

...

sin θmk cos θmk
cos θmk

rmk
− sin θmk

rmk





















, δ =
[

1xk
1yk

]

,

ξ =















1ρ1
1θ1
...

1ρmk
1θmk















(14a)

and














1θi ≈ sin1θ = xsi cos θi − ysi sin θi
√

(xk − xsi)
2 + (yk − ysi)

2

1ri =
√

(xk − xsi)
2 + (yk − ysi)

2 − ri

(14b)

in typical practical situations, (14) [44] are overly defined,

so that a CLS solution was calculated from:

8δ = d (15)

where,

8 = H
T
H

=













mk
∑

i

(sin2θi +
cos2θi

r2i
)

mk
∑

i

(1 − 1

r2i
) sin θi cos θi

mk
∑

i

(1 − 1

r2i
) sin θi cos θi

mk
∑

i

(cos2θi +
sin2θi

r2i
)













(15a)

and

d = HT ξ =













mk
∑

i

(1ri sin θi +
1θi cos θi

ri
)

mk
∑

i

(1ri cos θi −
1θi sin θi

ri
)













(15b)

the solution of linearmatrix (15) can be expressed in the form:

δ = (HTH )−1(HT ξ ) = 8−1d (16)

the vector ξ provides a correction estimate to modify the

initial estimate of the two variables 1x and 1y. therefore,

better estimates are:
[

xk|k
yk|k

]

=
[

xk|k−1

yk|k−1

]

+
[

1xk
1yk

]

(17)

Equation (16) [44] is applied iteratively until the increments

are sufficiently small. Note that these corrections are not the

errors in the target predictive location, which are dependent

on the measurement errors, but are increments in the iterative

process. As the solution converges, these increments will

approach zero in most situations, although the algorithm may

not converge with large measurement errors.
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D. NBC ANALYSIS

This part will give a brief review of NBC. Suppose that the

decision attribute varies from {ν1, ν2, ..., νc}, which implies

that all effective measurement data x is categorized into c

classes. The NBC is used to judge the membership degree of

effective measurement data x belongs to νi class (the target

i). According to the prior probability and class-conditional

probability of the remaining effective measurement data,

Bayesian classifier calculates the posterior probability and

determines the value of decision attribute for the remaining

effective measurement data. The BC discriminates the class

of effective measurement data x as following:

ν (x) = argmax
νi,i=1,2,··· ,c

{P (νi|x̃)}

= argmax
νi,i=1,2,··· ,c

{

P (νi)P (x̃|νi)
P (x)

}

= argmax
νi,i=1,2,··· ,c

{P (νi)P (x̃|νi)} (18)

where c is the number of classes and P(νi) is the prior

probability of the i-th class, which can be estimated by

the frequency of the effective measurement data of the i-th

class, i.e., P(νi) = ni
/

N in which N is the number of the

remaining effective measurement data and ni is the number

of the effective measurement data in the i-th class. P (x|νi) is
the class-conditional probability. The main purpose of naive

BC is to estimate P (x|νi) according to the training effective

measurement data in the i-th class. The class-conditional

probability is as follows:

P (x|νi) = P (x1, x2, · · · , xm|νi) =
m
∏

j=1

P
(

xj|νi
)

(19)

Each effective measurement data is defined by m condi-

tion attributes, which are devoted to describe the specific

characteristics of a measurement data. m condition attributes

may contain information such as coordinates, distance from

the predicted position, acceleration, density of measurement

data, and sensor accuracy, and so on. Humans are taken as

targets in this paper, and some conditional attributes can be set

based on the related attributes of human normal walking. The

velocity and acceleration of the target conform to the range of

the walking for ordinary human. If the velocity or accelera-

tion exceeds the threshold (the maximum velocity or acceler-

ation of walking for ordinary human), P (x |νi ) = 0. Hence,

using (19), the following decision rule of naive BC is obtained

for determining the decision attribute value of the effective

measurement data x.

ν (x) = arg max
νi,i=1,2,··· ,c







ni

N

m
∏

j=1

P
(

xj|νi
)







(20)

From (20), we can see that the calculation of P (x|νi) is

the key to establish the association between the measure-

ment data x and the class νi by naive BC. According to the

density estimation strategy, three methodologies NNB [45],

FNB [46], and FNBROT [47] are popular ways to estimate the

component P (x|νi) for x.

1) NNB

Denote the elements in the i-th class as x(i). NNB [45]

assumes that the x(i) obey a single Gaussian distribution.

Then, P (x|νi) can be calculated from:

P(xj|νi) = 1
√
2πσ

(i)
j

exp






−

(

xj − µ
(i)
j

)2

2
(

σ
(i)
j

)2






(21)

where µ
(i)
j =

∑ni
l=1 x

(i)
l

ni
and

(

σ
(i)
j

)2
=

∑ni
l=1

[

x
(i)
l −µ

(i)
j

]2

nl
are the

mean value and variance of all elements in x(i), respectively.

2) FNB

In many applications, to tackle the case of non-Gaussian

distribution, John and Langley [46] proposed the FNB which

estimates P (x|νi) through the following equation:

P(xj|νi) = 1

nih
(i)
j

∑ni

l=1

[

K

(

xj − x
(i)
l

h
(i)
j

)]

(22)

where h
(i)
j is the bandwidth and K (·) is the kernel function.

In FNB, h
(i)
j = 1√

ni
and K (x) = 1√

2π
exp

(

− x2

2

)

. The exper-

imental study shows that the classification performance of

FNB mainly depends on the selection of the bandwidth h
(i)
j .

3) FNBROT

For evaluating the impact of different bandwidth parame-

ter selection methods on the classification performance, Liu

et al. [47] used the thumb rule to replace the traditional

bandwidth parameter in FNB h
(i)
j = 1√

ni
with the following as:

h
(i)
j =

(

4

3ni

)
1
5

σ
(i)
j (23)

The kind of BC are called FNBROT . In addition to the rule of

thumb mentioned earlier, we can also obtain other parameter

selection methods from [48].

III. ANALYSIS OF IMPROVED WEIGHTED

LEAST-SQUARES ALGORITHM

The measurements in WSNs are integrated to acquire more

accurate position of the target. The novel outliers remove

method, the ENNBC analysis [21] andWLF [49], [50] can be

used to improve the performance of tracking system. In this

section, the WLS is enhanced according to the ENNBC and

novel outliers remove Method.

A. NOVEL OUTLIERS REMOVE AND DATASET DENSITY

PEAKS FAST SEARCH METHOD

According to measurement dataset X = {x1 , · · · , xi, · · · ,

xN } (1 ≤ i ≤ N ) from WSN, as shown in Fig. 3(a). ε neigh-

borhood of xi is expressed as the following equation:

Nε(xi) =
{

xi, xj ∈ X : d(xj, xi) ≤ ε
}

(24)
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FIGURE 3. The measurement data from WSN: (a) Measurement data.
(b) The 3D photograph of the location and density ρ of the measurement
data.

the local density ρt (i) of measurement data xi is expressed as

the following equation:

ρt (xi) =
∑

j

λ(d(xi, xj) − ε) (25)

where λ(x) = 1 if x < 0 and λ(x) = 0 otherwise. Basically,

ρk (xi) is the number of measurement data that is closer than

ε to measurement data xi [35], as shown in Fig. 3(b). The

algorithm is sensitive only to the relative magnitude of ρk (xi)

in different data, implying that, for large data sets, the results

of the analysis are robust with respect to the choice of ε.When

ρk (xi) ≤ ε1, xi is the outlier, and mk remaining effective

measurement data is obtained, as shown in Fig. 4.

After the outliers is removed, since it is not known how

many targets are included in the remaining measurements,

the following calculations are needed to determine the num-

ber of classes (one class corresponds to one target)and the

corresponding density peak. The method is based on the

assumption that each class center is at a relatively large dis-

tance from any data with a higher local density, and they are

surrounded by neighbors with lower local density. For every

measurement data xi, the local density ρk (xi) and the distance

ηk (i) from higher density data are calculated. Both these

quantities depend only on the distances d(xi, xj) between

measurement data, which are assumed to satisfy the triangular

FIGURE 4. The remaining effective measurement data: (a) Remaining
effective measurement data. (b) The 3D photograph of the location and
density ρ of the remaining effective measurement data.

inequality. ηk (i) is calculated based on the minimum distance

between the data xi and any other measurement data with

higher density, or the maximum distance between the data

xi and any other measurement data with lower density in ε2
neighborhood of xi, the expression is as follows:

ηk (i)=



















min
j:ρj>ρi

(d(xi, xj)),

if ∃ xj, and ρk (xj)>ρt (xi), d(xi, xj) < ε2

max
j:ρj<ρi

(d(xi, xj)), otherwise

(26)

for the data xi, there is higher density in ε2 neighborhood

of xi, we define ηk (i) = maxj(d(xi, xj)), where xj has the

highest density. Note that ηk (i) is much larger than the typical

nearest neighbor distance only for data with maximum local

density. In addition, the same class in measurement dataset

may contain two or more peak density data. So it can be

based on λ(d(xi, xj)− ε3) to determine whether a two density

peak data belongs to the same class. If λ(d(xi, xj) − ε3) = 1,

the density peak data xi and xj are in same class. If there

are multiple density peak data belonging to the same class,

the class center is equal to the average value of these data.

After the previous calculation, themeasurement data Fig. 3(b)

contains four classes, and the density peak position of each

cluster is shown as the blue triangle in Fig. 4 The local
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density value of each measurement data is calculated based

on the position coordinate, and the density peak position of

each class is also calculated. If the local density value of

the measurement data is higher than the threshold, the data

is considered to be effective measurement. Otherwise, it is

outlier. Next, the effective measurement data with the highest

local density value in a certain neighborhood around itself

is searched, and considered to be the effective measurement

data with the peak density value (be used to associate with

known targets). However, the degree of association between

each effective measurement data and the class needs further

analysis (see following ENNBC algorithm analysis).

B. ENNBC ANALYSIS OF NEARBY TARGET

MEASUREMENTS

In the above, the number of targets, effective measurement

dataset X̃ after outliers remove, and density peaks were

obtained. However, the relationship between the remaining

effective measurement data x̃ and each target is unknown.

After the analysis in Section III-A, the performance of the

handling methodology is enhanced. Therefore, the method

is redefined as ENNBC. Three methodologies NNB, FNB,

and FNBROT have the following two limitations: a) they

are based on the assumption that all condition attributes are

independent given the decision attribute, which is obviously

not always valid in many practical applications. b) in the

process of estimating the marginal probability density func-

tion of each attribute, ENNBC assumes that each attribute

follows a Gaussian distribution problem; FNB/FNBROT is

suitable for the non-Gaussian distribution problem, while it

has not an appropriate method of the parameter selection.

The limitations seriously affect the accuracy of the proba-

bility density function estimation. In order to improve the

classification performance based on removing or relaxing

Algorithm 1 Outliers Remove

Require: dataset Xk =
{

x1,k , · · · , xi,k , · · · , xn,k
}

(1 ≤ i ≤
n).

Ensure: X̃k =
{

x̃1,k , · · · , x̃i,k , · · · , x̃mk ,k
}

(1 ≤ i ≤ mk ),

and centers Ck of classes.

1: repeat

2: the local density ρt (i) of data xi,k was calculated by (25);

3: until the local densities of all measurements were calcu-

lated

4: repeat

5: using ρt (i) ≤ ε1 determining outliers;

6: until all outliers were found

7: repeat

8: the density peak was calculated by (26);

9: until all density peaks were calculated

10: return: results dataset X̃k =
{

x̃1,k , · · · , x̃i,k , · · · , x̃mk ,k
}

after outliers remove,

and density peaks Ck of clusters in the dataset;

the above two limitations, the ENNBC method in which the

restraint of independence among the attributes is removed and

the joint probability density function estimation replaces the

marginal probability density function estimations. ENNBC

determines the class of the new effective measurement data x̃

as follows [25]:

ν (x̃) = arg max
νi,i=1,2,··· ,c

{ni

N
P (x̃|νi)

}

= arg max
νi,i=1,2,··· ,c

{

1

Nhmi

∑ni

l=1

[

K

(

x1 − x
(i)
l1

hi
,

x2 − x
(i)
l2

hi
, · · · ,

xm − x
(i)
lm

hi

)]}

(27)

where K (·) is a multivariate kernel function and hi is a cru-

cial parameter called bandwidth. The multivariate Gaussian

kernel is K (x̃) = 1
(√

2π
)m exp

(

− x̃x̃T

2

)

, where x̃T is the

transpose of vector x̃. In addition, it is well acknowledged

that the estimation performance of Parzen window method

strongly relies on the selection of bandwidth hi, and the

detailed analysis for the optimal selection of hi is given in [25,

Sec. III-B]. Specifically, for a set of effective measurement

data belonging to the i-th class, the optimal bandwidth hi(1 ≤
i ≤ c) can be simplified as:

hi =







4m

ni
∣

∣

∑

i

∣

∣

− 1
2

(

2tr
(

∑−1
i

∑−1
i

)

+tr2
(

∑−1
i

))







1
m+4

(28)

where
∑

i = diag

{

(

σ
(i)
1

)2
,

(

σ
(i)
2

)2
, · · · ,

(

σ
(i)
m

)2
}

, and

variance
(

σ
(i)
j

)2
, (1 ≤ j ≤ m) has been given in (21).

Next, we analyze the time complexities of the abovemen-

tioned four BC algorithms,i.e., NNB, FNB, FNBROT , and

ENNBC. N denotes the number of training measurement

data,M denotes the number of testing measurement data, and

m denotes the number of condition attributes of the target.

Since NNB needs to calculate the means and variances for the

d condition attributes, the training time complexity of NNB is

T (Nm) and the classification time complexity is T (Mm). FNB

uses the superposition of N probability density functions of

the Gaussian distribution to fit the true probability density

function; thus, the training and classification time complexi-

ties of FNB are T (Nm) and T (MNm), respectively. FNBROT
used the rule of thumb to get some increase in the training

time, however the training and classification time complexi-

ties remain T (Nm) and T (MNm), respectively [25]. Similar

to FNBROT , the ENNBC also needs the additional time to

remove outliers T (R) and compute the optimal bandwidth in

the training time. However, the elements in the dataset are

greatly reduced after remove outliers, and the classification

time complexity for the determination of the required param-

eter will decrease rather than increase. Therefore, the training
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and classification time complexities of ENNBC are T (R),

≤ T (Nm), and ≤ T (MNm) as well.

According to the ENNBC algorithm, the effective mea-

surement data is associated with each class and assigned to

the class with the greatest degree of association. However,

the association between the classes and targets is unknown.

The establishing method is to calculate the degree of asso-

ciation between known targets and the classes according to

the Euclidean distance between the predicted positions and

the effective measurement data with peak density (the pre-

dicted positions of targets can be calculated based on existing

algorithms). After the measurement class is connected with

the target, the optimal estimation of each target’s at the cur-

rent time is analyzed based on the following weighted least-

squares algorithm.

C. WEIGHT OPTIMIZATION FOR THE WEIGHTED

LEAST-SQUARES ALGORITHM

The measurement matrix H and the dependent variable ξ in

(16) are processed by some filtering algorithms. However,

the model parameters may contain negative factors in the

solution for δ by using (16), and the calculated result will be

affected. These negative factors may be related to measure-

ment noise or any other irrelevant factor. After the analysis of

previous novel outliers remove and BC algorithms, the larger

noise has been removed and effective measurements have

been properly classified. After that, we need to use weighted

Least-Squares algorithm to further analyze the effective mea-

surement data for each target. According to previous BC

algorithm, different weights are set for each effective mea-

surement data, and the weight vector is ŵk ∈ R
n×1.

P(i) =
{

ν (x̃1) , ν (x̃2) , · · · , ν
(

x̃ni
)}

(29)

using (29), the expected value of ν(x̃) in i-th class is calculated

from:

E

[

ν(x̃(i))
]

= µi (30)

after the expected value of each class was calculated by using

(30), the weight parameters of each effective measurement

data are calculated by the bias parameter τ . The specific

equation is as follows:

w
(i)
j = e

τ (ν
(

x̃
(i)
j

)

−µi))
(31)

the weight parameters are normalized:

ŵ
(i)
j =

w
(i)
j

∑ni
l=1 w

(i)
l

(32)

using (32), the weight vector ŵ
(i)
j is calculated. Therefore,

the diagonal weight matrix 3 is given by:

3= diag
{

ŵ
(i)
1 , ŵ

(i)
1 , ŵ

(i)
2 , ŵ

(i)
2 , · · · , ŵ(i)

ni
, ŵ(i)

ni

}

(33)

a in (15), (16), and (32), the data matrix H is corrected by the

diagonal weight matrix 3. The corrected equation is given as

follows:

Ĥ = 3H (34)

the corresponding vector ξ is corrected by the diagonal

weight matrix 3, and the corrected vector is as follows:

ξ̂ =
[

1r1 · ŵ(i)
1 , 1θ1 · ŵ(i)

1 , · · · , 1rni · ŵ(i)
ni

, 1θniŵ
(i)
ni

]T
(35)

the solution vector of the improved Bayesian enhanced least-

squares algorithm can be obtained from:

δ̂ =
[

(3H )T3H
]−1 [

(3H )T ξ̂
]

= (ĤT Ĥ )−1(ĤT ξ̂ ) = 8̂
−1
d̂ (36)

where 8̂ see equation (36a), as shown at the bottom of the

next page, and

d̂= ĤT ξ̂ =









∑ni

j=1

(

ŵ
(i)
j

)2
·
(

1rj sin θj +
1θj · cos θj

rj

)

∑ni

j=1

(

ŵ
(i)
j

)2
·
(

1rj cos θj +
1θj · sin θj

rj

)









(36b)

using (36), the classical least-squares algorithm is corrected.

First of all, in the analysis of novel outliers remove algorithm,

the larger noise has been removed and the number of tar-

gets in the measurement of each cycle is obtained. Second,

the remaining effective measurement data is accurately clas-

sified based on the BC algorithm, and the weighting param-

eter is calculated based on the probability of each effective

measurement in i-th class. Finally, the measurement data of

each cycle is fused according to the improved weighted least-

squares algorithm. The details are presented in Algorithm 2.

Algorithm 2 Optimized Weighted Least-Squares Scheme

Require: Dataset X̃k =
{

x̃1,k , · · · , x̃i,k , · · · , x̃nk ,k
}

(1 ≤ i ≤
nk ), and centers θ t of clusters.

Ensure: Optimal location (xk|k , yk|k ) of the target.
1: repeat

2: using ENNBC calculating ν (x̃i) of effective measure-

ment data x̃i;

3: until ν (x̃) of every effective measurement data is calcu-

lated

4: using (29) calculating Pk ;

5: using (30) calculating E
[

ν
(

x̃(i)
)]

;

6: repeat

7: using (31) calculating w
(i)
j of effective measurement data

x̃j;

8: until w
(i)
j of every effective measurement data is calcu-

lated

9: Normalized w
(i)
j ⇒ ŵ

(i)
j ;

10: Establish diagonal matrix ŵ
(i)
j ⇒ 3;

11: using (35) calculating ξ̂ ;

12: using (36) calculating δ̂;

13: return: Optimal location (xk|k , yk|k ) of the target.
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FIGURE 5. The hardware experiment platform: (a) Sensor node. (b) Indoor scene 1. (c) Outdoor scene 2.

IV. HARDWARE EXPERIMENTAL

PLATFORM AND SCENES

A. HARDWARE EXPERIMENTAL PLATFORM OF WSN

In order to verify the performance of the proposed algorithm,

we designed a hardware experimental platform based on

WSN. The experimental platform is remote and open tool for

evaluating and comparing location and tracking algorithms.

Each sensor node in the experimental platform contains

ESP8266 WIFI from Espressif Systems as the communica-

tion module, the infrared ranging module for measured dis-

tance between the sensor and the target, and angle control for

measured direction, as shown in Fig. 5(a). The whole experi-

ment takes the human bodies as moving multi-target, and the

indoor and outdoor scenes with interference are considered.

In two scenes, we consider more than four sensor nodes

to avoid blind areas caused by mutual occlusion between

targets. More targets in both scenarios require more sensor

nodes to eliminate blind zones. A total of 14 sensor nodes

were deployed around the monitoring area in two scenes,

as shown in Figs. 5(b) and 5(c). A series of experiments were

carried out on the hardware experimental platform, and the

performance of the proposed algorithm was evaluated. In the

time test, each sampling period of all sensor nodes in WSN

is less than 250 × 10−3s. In the infrared ranging module

and angle module, the relevant data acquisition takes about

200 × 10−3s, the AD transforming and measurement data

collection of sink node required about 30 × 10−3s. When

the target enters the measurement area of the sensor node,

the activation mechanism required about 10 × 10−3s.

B. EXPERIMENTAL SCENES

We first need to calibrate the position of each sensor node

in two different scenarios, and plan an accurate measurement

path to know the exact location of all moving targets at any

time. The exact positions of these targets are used as real

positions to verify the performance of the algorithms. In the

experiment of the targets location and tracking, one or more

targets move along metered path in the monitoring area at

a normal speed of roughly 2m/s, as shown in Fig. 5. The

details of the indoor scene and the outdoor scene are as

follows:

1) INDOOR SCENE 1

The experimental environment of the indoor scene is located

in the room, as shown in Fig. 5(b) and Fig. 6(a). In this

scene, we put some interference (a table and obstacles)

inside the sensing area, 14 sensor nodes are located around

a 5m× 8m rectangle monitoring region. The position coordi-

nates of the sensor nodes are SN1(0,0), SN2(2,0), SN3(4,0),

SN4(6,0), SN5(8,0), SN6(8,1.667), SN7(8,3.333), SN8(8,5),

SN9(6,5), SN10(4,5), SN11(2,5), SN12(0,5), SN11(0,3.333),

and SN12(0,1.667) in meters, respectively. The height of

every node is 1.15m.

2) OUTDOR SCENE 2

The experimental environment of the outdoor scene is located

in open ground, as shown in Fig. 5(c) and Fig. 6(b).

In this scene, three people walk around inside the sens-

ing area, 14 sensor nodes are located around a 8m ×
8m square monitoring region. The position coordinates

of the sensor nodes are SN1(0,0), SN2(2,0), SN3(4,0),

SN4(6,0), SN5(8,0), SN6(8,2.667), SN7(8,5.333), SN8(8,8),

SN9(6,8), SN10(4,8), SN11(2,8), SN12(0,8), SN11(0,5.333),

and SN12(0,2.667) in meters, respectively. The height of

every node is the same as above.

8̂ = ĤT Ĥ =













∑ni

j=1

(

ŵ
(i)
j

)2
·
(

sin2θj +
cos2θj

r2j

)

∑ni

j=1
(1 − 1

r2j
) ·
(

ŵ
(i)
j

)2
· sin θj cos θj

∑ni

j=1
(1 − 1

r2j
) ·
(

ŵ
(i)
j

)2
· sin θj cos θj

∑ni

j=1

(

ŵ
(i)
j

)2
·
(

cos2θj +
sin2θj

r2j

)













(36a)
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FIGURE 6. The sketches for two scenes: (a) The sketches for indoor scene
1. (b) The sketches for outdoor scene 2.

V. PARAMETER DETERMINATION AND EXPERIMENT

RESULTS

In this section, the proposed classification algorithm [51] is

compared with the NNB, FNB, FNBROT , SVM, k-means,

FCM, [52]–[54], PCM, and PFCM [55] on training datasets

with respect to the four indexes, i.e., classification rate (CR)

index, Dunn (D) index, CalinskiHarabasz (CH) index, and

Silhouette (S) index. Then, the experimental results for single

target and multi-target show that the proposed classification

method can improve the performance of the range-based

target tracking when it is used to classify measurement data.

Meanwhile, the proposed classification method has better

robustness against large localization and tracking errors.

A. CLASSIFICATION PERFORMANCE EVALUATION

The indoor scene 1 contains single target and interference

(a table and obstacles) in Fig 5(b), and target as close as

possible to intermediate interference. The sink node of sensor

network receives the sample of 186 measurement points in

one cycle and 1314 noise points with uniform distribution

are increased. All these data points are set to training data and

distributed in a two-dimensional coordinate system, as shown

in Fig. 7(a). Obviously, we cannot judge the number of targets

in simple ways. By analyzing the proposed classification

algorithm, all data points are divided into noise and effective

measurement of two targets due to the measurement error of

sensor node and size of the human body, and the center c1
and c2 of two classes were obtained, as shown in Fig 8. In this

experiment, we first consider the novel outliers remove and

dataset density peaks fast search method. In Fig 8, effective

measurement data and initial centers Ck of two classes are

obtained, and the noise is brown points. Four neighborhood

parameters ε, ε1, ε2, and ε3 are 0.21m, 15, 0.32m, and

0.39m, respectively.When the target localization and tracking

system are certain, the optimal neighborhood parameters ε,

ε1, ε2, and ε3 of ENNBC can be applied to all remaining

cycle. Next, we used the proposed classification algorithm

to analyze the measurement data in Fig. 7(a). The number

of classes equal to 2, and the initial centers of two classes

are c1 = [4.0928, 2.3015] and c2 = [4.5281, 2.8640],

respectively. The classes ν1 and ν2 contain 16 and 58 effective

FIGURE 7. All measurement data in one cycle and decision graph of the
Scene 1 in two-dimensions: (a) Distribution of 186 measurement points
and 1314 noise points in one cycle. (b) Decision graph of the proposed
classification algorithm based on all data points in (a).

measurement data points, respectively. In ENNBC algorithm,

data points with densities greater than the threshold are con-

sidered to be reliable measurement data points, which may

result in low density data points being classified as noise.

For each class, we look for the measurement data points with

the highest density in their boundary regions. The data point

whose density is greater than the density of all data points

in its boundary region is considered to be the peak density

(robust delegation) of this class. In addition, the ENNBC

algorithm also consider the variance (σ (i))
2
of each condition

attribute of the measurement data. Thus, the classification

is more accurate. Fig. 7(b) shows decision method of the

proposed classification algorithm based on all data points

in Fig. 7(a). Through this experiment, the ENNBC algorithm

can successfully deal with data classification problems of

adjacent classes of different densities.

Next, the measurement dataset x̃ =
{

x̃(1), x̃(2)
}

of

two classes, dataset x̃(i) =
{

x
(i)
1 , · · · , x

(i)
j , · · · , x

(i)
ni

}

(i =
1, 2), (1 ≤ j ≤ ni) of i-th class(ni is number of measure-

ment data in i-th class), and the initial centers Ck of two

classes are obtained according to above experiment. Then,

we consider using the weighted Least-Squares algorithm to

calculate the final data fusion centers. Finally, the data fusion

centers of two classes are c1 = [4.1814, 2.3320] and c2 =
[4.6162, 2.7846], respectively, as shown in Fig. 8.

Similarly, the Scene 2 contains three targets closely

in Fig. 5(c), and three targets are as close as possible to each

other. The sink node of sensor network received the sample

of 211 measurement points in one cycle and 2089 noise

points with uniform distribution are increased. All these data

points are distributed in a two-dimensional coordinate sys-

tem, as shown in Fig. 9(a). Obviously, we also can’t judge

the number of targets in simple ways. After analysis of the

proposed classification algorithm, all data points are divided

into noise and effective measurement of three targets, and

the center c1 = [5.2185, 5.0680], c2 = [4.6713, 4.3100],

and c3 = [5.5543, 5.5058] of three classes were obtained,

as shown in Fig. 10. The classes ν1, ν2, and ν3 contain 67,

50, and 49 effective measurement data points, respectively.

Fig. 9(b) shows decision method of the proposed classifi-

cation algorithm based on all data points in Fig. 9(a). The

measurement dataset x̃ =
{

x̃(1), x̃(2), x̃(3)
}

of three classes,
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FIGURE 8. Final results of proposed classification algorithm for the data
in Fig. 7(a).

dataset x̃(i) =
{

x
(i)
1 , · · · , x

(i)
j , · · · , x

(i)
ni

}

(i = 1, 2, 3), (1 ≤
j ≤ ni) of i-th class, and the initial centers Ck of three classes

are obtained according to this experiment. Then, we also use

the weighted Least-Squares algorithm to calculate the final

data fusion centers. Finally, the data fusion centers of three

classes are c1 = [5.2853, 5.1409], c2 = [4.7325, 4.3932],

and c3 = [5.5730, 5.5494], respectively, as shown in Fig. 10.

In the following, the performance of the proposed clas-

sification method is compared with that of the NNB, FNB,

FNBROT , SVM, k-means, FCM, PCM, and PFCM algorithms

on training datasets. we use the four indexes, i.e., D index,

CH index, S index, and CR index, to compare a class with

the real data label information. These four indexes can be

described as:

1) D INDEX

D (ν)=min































min

min
x
(l)
i ∈νl ,x

(l)
j ∈νl

d
(

x
(l)
i , x

(l)
j

)

max







max
x
(l)
i ∈νl ,x

(l)
j ∈νl

d
(

x
(l)
i , x

(l)
j

)





































(37)

where x
(l)
i is i-th effective measurement data point in l-

th class. D index was recommended for recognition com-

pact and well separated classes. After simple analysis

(refequ:dmyy), it can be concluded that the greater D is,

the better classification performance is [13].

2) CH INDEX

CH (ν) =
1
c−1

∑c
i nid

2 (ci, c0)

1
N−c

∑c
i=1

∑ni

j=1,x
(i)
j ∈νi

d2
(

x
(i)
j , ci

) (38)

FIGURE 9. All measurement data in one cycle and decision graph of the
Scene 2 in two-dimensions: (a) Distribution of 211 measurement points
in one cycle and we increased 2089 noise points in one cycle. (b) Decision
graph of the proposed classification algorithm based on all data
points in (a).

FIGURE 10. Final results of proposed classification algorithm for the
2300 data points in Fig. 9(a).

where c0 is the center of the dataset and nc is the number

of all data. CH index is calculated for the ratio of separation

and affinity degree. Therefore, it can be concluded that the

greater CH is, the closer between data in same class and more

scattered between classes [13].

3) S INDEX

S (ν)

= 1

c

∑c

i=1







1

ni

∑ni

j=1,x
(i)
j ∈νi

b
(

x
(i)
j

)

− a
(

x
(i)
j

)

max
[

b
(

x
(i)
j

)

, a
(

x
(i)
j

)]







(39)

where,

a
(

x
(i)
j

)

= 1

ni − 1

∑ni

l=1,x
(i)
j ,x

(i)
l ∈νi,x

(i)
j 6=x(i)

l

d
(

x
(i)
j , x

(i)
l

)

(40)

b
(

x
(i)
j

)

= min
l,l 6=i

{

1

nl

∑

x
(i)
j ∈νi,x

(l)
k ∈νl

d
(

x
(i)
j , x

(l)
k

)

}

(41)
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S index is used to measure the classification performance by

calculating the distance between two elements from different

classes and the distance between two elements in the same

class. Similar to the above, the greater the value of S is,

the better the classification performance of the algorithm is.

4) CR

CR measures the percentage of the points that have been

correctly labeled by each algorithm. The CR is determined

first by transforming the fuzzy partition matrix into a Boolean

partition matrix and by selecting the cluster with the max-

imum membership value for each pattern. Class labels are

assigned to each class based on the class that dominates that

class. the greater the value of CR is, the better the classifi-

cation performance of the algorithm is. For these algorithms,

the CR is often used as an important index to evaluate the

performance [56].

The performance of the NNB, FNB, FNBROT , SVM, k-

means, FCM, PCM, PFCM, and ENNBC is showed in Table 2

based on the Scene 1, respectively. As is well-known, when

the NNB, FNB, FNBROT , k-means, and FCM are initialized

with an exact number of classes. They are unable to resolve

underlying classification structures, which is caused by the

noise in the dataset and the great difference of variances

between adjacent classes. Finally, Table 2 shows that the

ENNBC algorithm has the best performance based on D, CH,

S, and CR four indexes, calculating more accurately the real

centers of the classes, and it requires the least iterations for

convergence. It is worth noting that the operation time of

ENNBC algorithm is less than that of the FNB, FNBROT ,

SVM, and PFCM, which can satisfy the real-time require-

ment of target tracking. This is due to the ENNBC algorithm

runs novel outliers remove and dataset density peaks fast

search method first, a large number of outliers in dataset

have been removed which greatly reduces iterations of the

algorithm, and the initial centerCk of the class is very close to

the real value. In addition, the performance of the NNB, FNB,

FNBROT , SVM, k-means, FCM, PCM, PFCM, and ENNBC

is showed in Table 3 based on the Scene 2, respectively.

Similarly, the ENNBC algorithm has the best performance

based on these four indexes, calculating more accurately the

real centers of the classes, and it can also satisfy real-time

requirement of multi-target tracking.

TABLE 2. Performance of classification algorithms in the scene 1.

TABLE 3. Performance of classification algorithms in the scene 2.

B. TRACKING PERFORMANCE EVALUATION

FOR SINGLE TARGET

We first design a scenario like this: a moving target enters

the monitoring area of the sensor network. the target is close

to the disturbance and walks around it in the indoor Scene 1.

Fig. 11 shows the target tracking results of two different algo-

rithms in the indoor Scene 1. The real moving trajectory on

the ground is marked as dotted line, and the trajectories of the

algorithms calculation are marked as solid line, red and blue

lines correspond to proposed algorithm and EKF algorithm,

respectively. The EKF algorithm in this section used for 2-D

maneuvering target tracking is based on the EKF-CMAC

algorithm in [44]. In the previous section, we discussed that

interferents are also measured, but they are immovable in

each period, so the final fusion position of the interference

in each period is basically the same, and we defined it as an

immovable target, which is not considered in this analysis.

In Fig. 11, the calculated trajectories by two algorithms are

compared (the standard error of the sensor node localization

is about 20cm). The tracking results show that the accuracy

of estimated trajectory based on the proposed algorithm in

the paper are better than those based on EKF algorithm.

Fig. 12 shows the position error (PE) between the estimated

location and the real ground location of the target at each

FIGURE 11. The tracking results of single target based on EKF and
proposed algorithm in Scene 1.
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FIGURE 12. Comparison of two different algorithms for the PE.

TABLE 4. Comparison of proposed algorithm and EKF algorithm for RMSE.

FIGURE 13. CDFs of tracking PE.

TABLE 5. Comparison of RMSE for proposed algorithm and EKF based on
three targets.

cycle according to the proposed algorithm and EKF. The

PE based on proposed algorithm is smaller for comparing

tracking results. The root-mean-square errors (RMSEs) of

proposed algorithm and EKF are shown in Table 4, and the

RMSE of the target location has been reduced by no less

than 24 percent. Fig. 13 shows the cumulative distribution

functions (CDFs) of proposed algorithm and EKF for the

tracking PE in indoor scene 1. We can easily observe that

the tracking PE of the proposed algorithm is less than EKF

algorithm. After calculation and analysis, 94 percent of the

PE based on proposed algorithm are less than 12.28cm in all

cycle, while 94 percent of the PE based on EKF are less than

22.49cm, a 45.4 percent improvement.

C. TRACKING PERFORMANCE EVALUATION FOR

MULTI-TARGET TRACKING

Similarly, we first design a scenario like this: Three nearby

moving targets enter simultaneously monitoring area of the

sensor network in the outdoor Scene 2. The tracking results

of three moving targets based on two different algorithms are

FIGURE 14. The tracking results of three targets in outdoor scene 2 based
on two algorithms: (a) Proposed algorithm. (b) EKF.

shown in Fig. 14. The real moving trajectories on the ground

are marked as dotted lines, and the trajectories of the algo-

rithms calculation are marked as solid lines. Different targets

correspond to different colors. In Fig. 14, the calculated tra-

jectories by two algorithms are compared (the standard error

of the sensor node localization is about 20cm). The same as

the previous part, the tracking results show that the accuracy

of estimated trajectories based on the proposed algorithm

in the paper are better than those based on EKF algorithm.

Fig. 15 shows the PE between the estimated location and the

real ground location of three moving targets at each cycle

according to the proposed algorithm and EKF. The PE based

on proposed algorithm is smaller for comparing tracking

results. Comparison of RMSE for proposed algorithm and

EKF based on three moving targets is shown in Table 5. The

RMSE of the target location has been reduced by no less than

24 percent. Fig. 16 shows the CDFs of proposed algorithm

and EKF for the tracking PE in the outdoor scene 2. We can

also easily observe that the tracking PE of the proposed
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FIGURE 15. Comparison of the PE for three targets based on two
algorithms: (a) The PE of target 1. (b) The PE of target 2. (c) The PE of
target 3.

FIGURE 16. CDFs of tracking PE.

FIGURE 17. Comparison of the RMSE for two algorithms based on
50 trajectories.

algorithm is less than EKF algorithm. In addition, we calcu-

late the RMSEs of two algorithms based on 50 trajectories for

better illustrate the performance of the proposed algorithm,

as shown in Fig. 17. In conclusion, the proposed algorithm

improves accuracy of range-based multi-target tracking in

compared with EKF algorithm.

VI. CONCLUSION

The main works of the paper are concluded as follows:

1) the measurement data density estimation is successfully

applied to effective measurement data identification and clas-

sification, which effectively improves the traditional direct

classification method and takes the dependence among con-

tinuous density attributes into account; 2) The weight values

of each effective measurement data are optimized by using

the density and probability information calculated in the

previous steps, and the optimized weights are applied to the

weighted least-squares algorithm; and 3) The detailed exper-

imental results show that the proposed algorithm based on

four indicators has the best classification performance, which

can calculate the real centers of the classes more accurately

and meet the real-time requirements of multi-target track-

ing. Meanwhile, the single target and multi-target tracking

experiments show the provided enhancement of the tracking

performance when proposed algorithm is used measurement

data classification. The RMSE based on proposed algorithm

has been reduced by no less than 24 percent in compared with

EKF. Our future research content is to introduce image fac-

tors into existing multi-target localization and tracking, and

improve and optimize the corresponding image recognition

algorithms.
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