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Simultaneous quantum and classical communication integrates both continuous variable quantum key distri-

bution and classical coherent optical communication by using the same communication infrastructure. Given

its compelling benefits, we proposed a protocol relying on both two-way classical communication and on

measurement-device-independent quantum key distribution, in which the superposition modulation based coher-

ent states depend on the information bits of both the secret key and on the classical communication ciphertext,

which are measured by an untrusted relay node. The proposed scheme strikes a beneficial balance between its

level of security and its grade of practicability. Explicitly, on the one hand, the secret key obtained is secure

against all attacks on the detectors, and it is eminently suitable for bidirectional classical communication in the

metropolitan network as a benefit of its relay-based configuration. Our results show a convincing bit error rate

vs. secret key rate trade-off for transmission over dozens of kilometers in the quantum channel, hence striking

an excellent integrity (bit error rate) vs. security trade-off.

I. INTRODUCTION

Quantum key distribution (QKD) [1] and quantum secure

direct communication [2–4] are popular secure information

transmission schemes for the future hybrid quantum-classical

network environment [5], regardless of the capability of the

eavesdropper who is restricted by the laws of quantum me-

chanics. Specifically, QKD takes charge of distributing the

cryptographic keys, thus it is integrated into classical com-

munication for ciphertext transmission after one-time pad en-

cryption. By contrast, quantum secure direct communication

transmits messages directly over the quantum channel, while

the associated classical communication is invoked for eaves-

dropping detection.

The implementation of discrete variable based quantum

communication [6], relying for example on the BB84 protocol

[1], calls for some high-cost devices, such as single-photon

source and single-photon detector, which increases the chal-

lenge of constructing the quantum layer in a communication

network [7]. To mitigate this challenge, continuous variable

(CV) schemes have been designed [8, 9]. The quadrature

components of the optical field may be modulated for con-

veying the secret key, which are then detected by a homodyne

or heterodyne detector. As a benefit, a high secret key rate can

be achieved by off-the-shelf optical hardware. As for the at-

tainable grade of security, it has been proved theoretically that

the Gaussian-modulated CV QKD relying on coherent states

is secure both against collective attacks [10, 11] as well as co-

herent attacks [12], even in the context of finite-size analysis

[13, 14] or composable security [15]. The transmission dis-

tance record of experimental CV-QKD was improved to 150

km [16], and soon afterwards the field test was extended to a

network in [17]. Satellite-based CV quantum communication

is also attracting substantial research attention [18, 19].

Recently, a simultaneous quantum and classical commu-

nication (SQCC) scheme was proposed in [20], where both

the bits of classical communication and the cryptographic key

are mapped to the same coherent state and then detected by

the receiver. The SQCC protocol amalgamated both the clas-

sical coherent optical communication and QKD schemes in

the same communication infrastructure for different purposes.

For achieving long-distance transmission in the face of hos-

tile phase noise, a true local oscillator was used by the SQCC

protocol in [21]. The classical carrier phase estimation algo-

rithm was proved to be capable of recovering the phase and

to extract the data [22]. If an optical amplifier is incorporated

in the plug-and-play SQCC configuration, the secret key rate

can be further improved [23].

However, the proof of security was provided for CV QKD

under some idealized simplifying assumptions, which are

however hard to satisfy by using practical devices. The gap

between the ideal devices and the imperfect ones could lead to

security loopholes. The side-channel attacks targeting the de-

tector, such as saturation attacks [24, 25] and blinding attacks

[26] are the most popular eavesdropping strategies targeting

imperfect detectors. Some known attacks have been investi-

gated and eliminated, as shown in [27]. However, it is quite

a challenge to characterize all loopholes caused by imperfect

devices. In order to tackle this challenge, the measurement-

device-independent (MDI) QKD philosophy was proposed in

the discrete variable domain [28, 29], which was then also

soon extended to its CV counterpart [30–33]. Let us con-

sider a pair of legitimate users, Alice and Bob, who are not

connected to each other directly but through a relay Charlie

who controls the detectors. The relay is typically assumed

to be untrusted, because it can be accessed by the eavesdrop-

per Eve. Alice and Bob prepare the quantum states and send

them to Charlie for measurement. Then the correlated data

(i.e. the secret key) between Alice and Bob will be estab-

lished according to the measurement results after reconcilia-

tion. No third-parties can obtain the secret information, even

though the measurement results are published, thus all side-
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channel attacks targeted at the detectors are eliminated. This

form of communication works well for striking a balance be-

tween the grade of security [34, 35] and practicability, and it

is particularly suitable for long-distance transmission [36] and

for multiuser communication across a star topology network

[37, 38].

Against this background, we proposed a protocol for simul-

taneous two-way classical communication and measurement-

device-independent quantum key distribution, where the com-

munication performance is characterized by practical system

parameters. The end-users can exchange independent mes-

sages at the same time whilst relying on classical communi-

cation, which is more beneficial than the one-way SQCC pro-

tocol [20], since most practical communication links are bidi-

rectional. The secret key is distributed, whilst being immune

to all detection-related security loopholes. Furthermore, this

configuration can also be readily embedded into classical base

station aided multi-user networks.

The paper is structured as follows. In Sec. II, we introduce

the details of the protocol conceived. In Sec. III, we provide

our associated bit error rate and secret key rate analysis in the

face of a specific noise model. In Sec. IV, we provide sim-

ulation results under a range of practical system parameters

and discuss the associated performance trends. Finally, the

conclusions and outlook are presented in Sec. V.

II. DETAILS OF THE PROTOCOL

We have a choice of numerous simultaneous two-way clas-

sical communication and CV MDI QKD protocols, which can

be categorized according to the specific modulation methods

used both in classical communication and in CV MDI QKD.

For example, we may opt for phase-shift keying [39] or for

quadrature amplitude modulation [40] in classical communi-

cation, and either for Gaussian or for non-Gaussian modu-

lation in CV QKD [41]. Taking the associated implementa-

tion into consideration, we adopt quadrature phase-shift key-

ing modulated classical communication in conjunction with

Gaussian-modulated coherent-state based QKD for our proto-

col. The feasibility of other modulation schemes will also be

discussed.

A. Protocol description

The prepare-and-measure description of the new protocol

shown in Fig. 1 (a) is described as follows.

Step 1. State preparation: Alice and Bob prepare the coher-

ent states formulated as

|αeiπ
4
(2n⋆+1) + [x⋆(k) + ip⋆(k)]〉, (1)

where ⋆ represents either A or B, while α is the amplitude

of the quadrature phase-shift keying signal. More specifi-

cally, nA, nB ∈ {0, 1, 2, 3} is mapped to the classical bits

{00, 01, 10, 11}, while {xA(k), pA(k), xB(k), pB(k)} is the

quadrature set representing the cryptographic keys. Explic-

itly, two layers of bits are mapped to the same coherent state,

where n⋆ is encoded by either Alice or Bob to convey the

classical ciphertext bits and they choose the data pair from

two independent Gaussian-distributions, usually for {xA, pA}
associated with N ∼ N (0, VA) and {xB , pB} with N ∼
N (0, VB), by modulating their coherent states for distribut-

ing the secret key bits. Then, they send their coherent states

to Charlie, respectively.

Step 2. Measurement: The coherent states arriving from

Alice and Bob will be combined by the balanced beam splitter

of Fig. 1 (a) for the CV Bell detection [30] at Charlie’s station.

The measurement results {XC , PC} of Charlie will then be

published via a classical authenticated channel, which can be

written as

XC =
XA −XB√

2
, PC =

PA + PB√
2

, (2)

where XA, PA, XB and PB are the quadrature components of

the coherent states of Alice or Bob |X⋆ + iP⋆〉, which can be

rewritten in the simple form of Eq. (1).

Step 3. Decoding: Alice and Bob deduce the classical in-

formation transmitted by each other according to the specific

quadrant of the measurement results and their own n⋆ value.

Then the Gaussian data associated with the secret key will be

obtained by removing the displacement of classical commu-

nication.

Step 4. Parameter estimation and data processing: Alice

and Bob complete the parameter estimation related to both

the channel transmissions and the excess noises. Finally, error

correction and privacy amplification are employed for gener-

ating the final secret key, as in the Gaussian-modulated coher-

ent state based CV MDI QKD of [42].

In a detailed realization, there needs time synchronization

of the two states. However, for the proposed protocol, we can

ignore this for simplicity. Here, we have followed the notation

of Ref. [30], where we have
[

X̂, P̂
]

= 2i (i.e., ~=2). Then

the vacuum noise becomes 1.

B. Characteristics of the protocol

On the one hand, this protocol has the ability to distribute

the secret key using the Gaussian-modulated coherent states,

as in [30–32]. On the other hand, a pair of communicating

parties can transmit information to each other at the same time

with the aid of a relay. In Fig. 2, there are different colors for

each row and column. Alice or Bob can infer the bits sent by

the other side under the premise that they know their own bits.

For example, if Alice sends "10" and the measurement results

are those shown in red, then she will know that Bob has sent

"11", and vice versa for Bob. Eve aims for inferring both the

common secret key sequence as it will be discussed later in

Sec. III B and the classical bit sequence Alice transmits to

Bob as well as that of Bob transmitted to Alice.

Observe that the classical bits of the individual users do not

become readily available for an illegal third party in the pro-

cess of two-way classical communication despite the fact that

all measurement results are published. The reasons for this are
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Figure 1. (Color online) (a) Prepare-and-measure scheme of simultaneous two-way classical communication and CV MDI QKD. QPSK:

quadrature phase-shift keying, GMCS: Gaussian modulated coherent state, BS: beam splitter, HomX, HomP: homodyne detector. (b) A star

topology network based on our simultaneous two-way classical communication and CV MDI QKD: the two-way classical communication

(CC) link and the QKD link can be achieved between any pair of users across this network.
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Figure 2. (Color online) Encoding the bits of two users in terms of

the CV Bell-measurement results in the two-way classical commu-

nication considered. Alice (Bob) could be either User1 or User2.

For the sake of simplicity, the measurement results {XC , PC} have

omitted the term of Gaussian data
{

1

2
(xA − xB) ,

1

2
(pA + pB)

}

as

well as the factor
√

2

2
in front of α. The different measurement re-

sults are labeled with different colors, which can also be seen using

the same color in Fig. 1. The diamonds, squares, and triangles mark

three different scenarios according to Eve’s inference process.

three-fold, (�), (�) and (N), depending on Eve’s specific in-

ference process. (�) Firstly, the transmission of different bits

may lead to the same measurement results, depending on the

information of the other party. Eve would have to guess the

specific transmission combinations correctly. In the example

Table I. The examples of Eve’s specific inference process, which se-

lected from three different scenarios.

Measurement results

Inferring process

Stage 1

Transmitted

combination?

Stage 2

Specific bits

of each user?

.5
� (0, α)

{00,00} Alice
00

GGGGGGBF GGGGGG

00
Bob

{01,01} Alice
01

GGGGGGBF GGGGGG

01
Bob

.9

� (−α, 0)

.5
{10,00}

Alice
10

GGGGGGBF GGGGGG

00
Bob

Alice
00

GGGGGGBF GGGGGG

10
Bob

.5
{01,11}

Alice
01

GGGGGGBF GGGGGG

11
Bob

Alice
11

GGGGGGBF GGGGGG

01
Bob

.5
N (α, α)

.5
{00,01}

Alice
00

GGGGGGBF GGGGGG

01
Bob

Alice
01

GGGGGGBF GGGGGG

00
Bob

of Table I, the observation (0, α)-dark-blue may have resulted

by the transmission combinations {00, 00} or {01, 01}. (�)

Secondly, similarly to (�), the same measurement results may

accrue from different transmission combinations. However,

in contrast to (�), Eve would have to guess not only the spe-
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cific transmission combinations correctly, but also the particu-

lar transmitted bits of the individual users. There are two (−α,

0)-dark-green labels in Fig. 2. Hence, Eve has the probabil-

ity of 50% to guess the transmission combination correctly. If

Eve guesses that the transmission combination is "{10,00}",

as shown in Table I, she has to further guess whether Al-

ice has transmitted “10” or “00” to Bob. (N) Thirdly, some

unique and unambiguous measurement results also exist in

Fig. 2. Hence, although Eve can unambiguously infer the

transmission combinations when these measurement results

are revealed, she still has to guess the specific transmitted bits

of the individual users. The corresponding transmission com-

bination of the observation (α, α)-yellow must be {00, 01},

but the specific transmitted bits of Alice could be "00" or "01",

as seen in the example of Table I.

We would like to mention that the above statement of "the

particular transmitted bits of the individual users" is important

during the process when Eve wants to infer the transmitted bit

sequence in the second and third scenarios related to Fig. 2.

For example, if the pair of consecutive measurement results

are yellow-red, the possible transmitted bits of Alice may be

“0010”, “0110”, “0011”, and “0111”, provided that Bob’s cor-

responding bits are “0111”, “0011”, “0110’, and “0010”, re-

spectively.

Furthermore, the security of two-way classical communi-

cation is unequivocally guaranteed by the one-time pad en-

cryption that has been proved to be information-theoretically

secure [43]. Explicitly, the transmitted ciphertext bits of the

individual users are not readily available for Eve and the em-

ployment of one-time pad encryption guarantees the security

of the associated two-way classical communication. This ben-

eficial characteristic is also retained for eight-level phase-shift

keying, but not for binary phase-shift keying [44], which can

be readily deduced from Eq. (2) using the relevant coherent

encoded states [20].

III. PERFORMANCE ANALYSIS

In this section, both the bit error rate and the secret key rate

are derived for analyzing the performance of our proposed

protocol based on the following noise sources: (1) the vac-

uum noise with variance of 1; (2) the electronic noise of the

detector having a variance of νel; (3) the Gaussian modulation

used by Alice and Bob in the CV MDI QKD have a variance of

VMA and VMB , respectively; (4) the excess noise εt⋆ imposed

by the two quantum channels is expressed by εt⋆ = εp + ε0⋆,

where εp =
α2σφ

N0
[20] is the excess noise caused by phase in-

stability under the condition of α2 > (VMA+1)N0 (in which

σφ is the phase-noise variance and N0 = 1
4 quantifies the shot-

noise-variance), and ε0 is the excess noise independent of the

amplitude α; (5) the interference between the classical com-

munication signal and quantum communication signal. All

the noise sources are characterized by their power in terms of

shot-noise units [45].

A. Bit error rate of two-way classical communication

The bit error rate of two-way classical communication us-

ing quadrature phase-shift keying signalling is given by [39]

ec =
1

2
erfc

(
√

CSNR

2

)

, (3)

where erfc(∗) stands for the complementary error function,

while CSNR is the signal-noise-ratio of the carrier in two-way

classical communication, which can be evaluated by using the

ratio of the carrier power and the noise power at Charlie’s

node, when the CV Bell-measurement is carried out using ho-

modyne detectors. Hence, we may rewrite Eq. (3) as

ec =
1

2
erfc





√

TAηhomα2 + TBηhomα2

4NtN0



 , (4)

where TA and TB are the channel transmittance in the Alice-

to-Charlie and Bob-to-Charlie links, respectively. Further-

more, ηhom is the detection efficiency of homodyne detectors,

while Nt denotes the overall noise variance at Charlie’s node,

and the factor 1
4 under the sqrt function is introduced by the

factor 1
2 due to the balanced beam splitter and the other factor

1
2 is owing to Eq. (3). According to the noise sources men-

tioned above, the overall noise variance is given by

Nt = 2 (1 + νel) + TAηhomVMA + TBηhomVMB

+ TAηhomεtA + TBηhomεtB , (5)

where εtA and εtB are the excess noise imposed by the Alice-

to-Charlie and Bob-to-Charlie quantum channel, respectively.

Since the optical homodyne phase-shift keying communica-

tion system has achieved a bit error rate of 10−9 [46] in exper-

imental implementation, with this goal in mind, the specific

modulated signal amplitude α of two-way classical commu-

nication can be expressed as:

α = ω

√

2 (1 + νel) + TAηhomVMA + TBηhomVMB + TAηhomε0A + TBηhomε0B

TAηhom + TBηhom − ω2TAηhom
σφ

N0
− ω2TBηhom

σφ

N0

, (6)

where ε0A and ε0B denotes the excess noise independent of

α and imposed by the Alice-to-Charlie and Bob-to-Charlie

quantum channel, and ω = erfc−1(2ec) = erfc−1(2× 10−9)

in which erfc−1(∗) is the inverse complementary error func-

tion.
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B. Secret key rate of CV MDI QKD

The equivalent entanglement-based model of the prepare-

and-measure protocol is commonly adopted to analyze the se-

curity of CV QKD [47]. As seen in Fig. 3, the equivalent

entanglement-based version of our proposed protocol com-

prises the following steps: The two-mode squeezed states are

prepared by Alice and Bob independently and they send one

of the modes to Charlie for CV Bell-measurement. The mea-

surement results will be announced both to Alice and Bob.

Then Bob applies a displacement operation with the gain of g
on his retained mode according to the data announced, while

the mode of Alice remains unchanged. Finally, Alice and Bob

use the heterodyne detector to measure their own mode for

establishing the secret key. If we assume furthermore that the

two-mode squeezed states prepared by Bob and the displace-

ment operation are untrusted, the entanglement-based version

of the proposed protocol is converted into a common one-way

CV QKD model. Thus, the secret key rate deduced from the

common one-way CV QKD qualifies the lower bound key rate

of CV MDI QKD.

QM

Bob

Het

Charlie

HomPHomX

DisTMSB

Alice

TMSA

Het

Eve

BS

TA TBA1 A2 B2 B1B1

E1 E2...

Figure 3. (Color online) The equivalent entanglement-based scheme

of simultaneous two-way classical communication and MDI QKD.

TMSA and TMSB represent the two-mode squeezed state prepared

by Alice and Bob, respectively. BS: beam splitter, Dis: displacement

operation, QM: quantum memory, Het: heterodyne detector, HomX

and HomP: homodyne detector.

In this work, we mainly consider the secret key rate that

is guaranteed to remain secure against arbitrary collective at-

tacks, where Eve interacts individually with each mode sent

from Alice and Bob by using her ancillary states, and she

stores these ancillary states in the quantum memory to infer

the secret key by performing an optimal collective measure-

ment on the ensemble of stored ancilla at any later time. De-

pending on Eve’s specific strategy concerning the two quan-

tum channels, the collective attacks encountered in CV MDI

QKD can be divided into two types : (1) one-mode attack,

where Eve performs entangling cloner on the two quantum

channels independently. She interacts with Alice’s and Bob’s

modes with her half of each EPR pair, respectively, as detailed

in [32]; (2) two-mode attack, in which Eve applies a correlated

two-mode coherent Gaussian attack by injecting the quantum

correlations {E1,E2} in both the quantum channels [30], as

shown in Fig. 3. Further related discussions are provided in

Refs. [48, 49] on the same subject under different attacks.

The correlation between the two quantum channels is weak,

hence the two-mode attack has effectively degenerated into

the one-mode attack. The related composable security anal-

ysis [35] shows that these two types of attacks are equivalent

in the extremely asymmetric case, where Bob is very close

to Charlie, as discussed later in Sec. IV B. Furthermore, the

higher the geographic symmetry in the three communication

parties’ position, namely when Eve is closer to the mid-point

between Alice and Bob, the stronger the impact of the two-

mode attack on the secret key rate becomes. This reduces the

key rate, but it will not influence the security analysis under

the one-mode attack. In view of the above, we may adopt the

one-mode attack for our security analysis, as seen in numerous

theoretical contributions on CV QKD [31, 32, 49]. However,

the two-mode attack was shown to be the optimal attack in

[30], which hence results in the minimum secret key rate [50].

Hence, our secret key rate will be derived under the premise

of two-mode attack.

In the two-mode attack, the optimal correlated attack has

been proven to be "negative EPR attack", and the covariance

matrix of the injected pair of correlated modes E1 and E2 is

given by [50]

γE1E2
=





VE1
I2 −

√

V 2
E − 1σz

−
√

V 2
E − 1σz VE1

I2



 , (7)

where I2 = diag(1, 1), σz = diag(1,−1), and the variances

are assumed to be VE1
= VE2

= VE for the sake of achieving

maximum correlation between two modes.

Assuming that the attenuation of both quantum channels is

l=0.2 dB/km, then the channel transmittance can be expressed

as TA = 10−
lLAC

10 and TB = 10−
lLBC

10 . The equivalent ex-

cess noise in the one-way model is given by

ε = 1 +χA +
1

TA

[TB (χB − 1)− CE ]

+
TB

TA

(

√

2

TB

√

VB − 1

g2
−
√

VB + 1

)2

, (8)

where

χA =
1

TA

− 1 + εtA +
α2

N0
ec (9)

and

χB =
1

TB

− 1 + εtB +
α2

N0
ec (10)

represent the channel-added noise referred to the channel in-

puts, while CE is the noise contribution induced by the corre-

lation of Eve’s two modes. Furthermore, CE can be deduced

from the quadrature components of Eve’s two modes, namely,

CE =
2

TA

√

(1− TA)(1− TB) 〈E1XE2X 〉 (11)

or

CE = − 2

TA

√

(1− TA)(1− TB) 〈E1P E2P 〉 , (12)



6

where 〈E1XE2X 〉 = −〈E1P E2P 〉 = −
√

V 2
E − 1 =

−
√

(1 + TA

1−TA
εtA)2 − 1 [35, 48]. The excess-noise imposed

by the classical communication is quantified by the last terms

in Eq. (9) and Eq. (10), respectively. As it may be observed

from Eq. (11) and Eq. (12), the correlation of Eve’s two

modes will disappear when LBC ≈ 0 (TB ≈ 1), which is the

reason why the two-mode attack is degenerated to a one-mode

attack in the extremely asymmetric case. If the displacement

gain defined in [31] is set to g =
√

2
TB

√

VB−1
VB+1 , the equivalent

excess noise can be further minimized, yielding

ε′ =
2

TA

+ εtA +
α2

N0
ec +

TB

TA

(

εtB − 2 +
α2

N0
ec

)

− CE

TA

.

(13)

Consequently, the total channel-added noise in the one-way

model, which consists of the equivalent excess noise and the

detection induced noise can be expressed as:

χt =
1

T
− 1 + ε′ +

2χhom

TA

, (14)

where T = g2TA

2 [31] is the total quantum channel transmit-

tance between Alice and Bob, while χhom = 1−ηhom

ηhom

+ νel

ηhom

is the detection noise. Both the electronic noise variance νel
and detection efficiency ηhom have been assumed to be inac-

cessible to Eve.

The secret key rate K of the CV MDI QKD is given by

K = βIAB − χBE , (15)

where β is the reconciliation efficiency, IAB is the Shannonian

mutual information, and the Holevo bound χBE is the maxi-

mum accessible information of Eve. The calculation of IAB

and χBE can be found in the Appendix, thus the secret key

rate K is written as

K = β log2

[

T (VMA + 1 + χt) + 1

T (1 + χt) + 1

]

− G

(

λ1 − 1

2

)

−G

(

λ2 − 1

2

)

+G

(

λ3 − 1

2

)

,(16)

where λ1, λ2, and λ3 are the symplectic eigenvalues of the

specific covariance matrices of the Appendix. Furthermore,

we have G(∗) = (∗ + 1) log2(∗ + 1) − (∗) log2(∗). The

secret key remains secure in the face of the collective attacks,

provided that K in Eq. (16) remains positive.

IV. PERFORMANCE RESULTS AND DISCUSSIONS

In this section, we will characterize the performance of

our protocol in two different application scenarios. In the

first scenario, Charlie is placed right in the middle of two le-

gitimate parties (LAC = LBC). This so-called symmetric

scheme is suitable for a star topology, where two users are

nearly equidistant to a public server. The second scenario is

an asymmetric one, where Charlie is closer to one of the le-

gitimate parties (LAC 6= LBC), which may find employment

in metropolitan point-to-point communications. It has been

shown that the asymmetric CV MDI QKD scenario has supe-

rior performance over the symmetric one, when employing the

same parameters, especially when Charlie is extremely close

to Bob [30–33]. The following simulations characterize these

two cases. The key parameters that affect both the bit error

rate and the secret key rate are the amplitude of the classical

communication, the variance of the two parties’ modulated

signal (VMA = VMB), the channel transmittance, the recon-

ciliation efficiency β, the excess noise derived from the noise

model, as well as the imperfect homodyne detection factor,

such as the detector efficiency ηhom and the electronic noise

variance νel.

A. Performance in the symmetric scenario

The interaction between classical communication and

quantum communication in the proposed protocol has been

investigated in Sec. III. The bit error rate of classical commu-

nication is degraded by the total channel-added noise, while

the modulation variance of CV MDI QKD also affects the bit

error rate. Our goal is to achieve two-way classical commu-

nication at a low bit error rate of 10−9 and simultaneously

maintain a positive secret key rate. The amplitude required

for attaining a bit error rate of 10−9 over a certain transmis-

sion distance has been formulated in Eq. (6), which depends

on the modulation variance, that in turn fundamentally affects

the secret key rate of CV MDI QKD. Therefore, we plot the

secret key rate and amplitude of classical communication as a

function of the modulation variance at different distances for

the sake of finding the optimal modulation variance, which is

presented in Fig. 4.

Observe in Fig. 4 that the optional range of near-optimal

modulation variance becomes narrow and the secret key rate

is significantly reduced upon increasing the transmission dis-

tance. The secret key rate tends to reach its peak, when the

modulation variance is about 35. Accordingly, the concomi-

tant amplitude value of the optimal modulation variance that

meets the required bit error rate target is about 26, as shown

in the inset graph of Fig. 4. Additionally, the amplitude α
is increased, when the modulation variance is increased, but

the curves are almost overlapped for different transmission

distances. The reason for amplitude α to be the same re-

gardless of the distance is justified by Eq. (6), because the

channel transmittances appear in both of in the numerator and

the denominator of Eq. (6). The pair of optimal parameters

VMA = 35 and α = 26 are selected for the performance char-

acterization of the symmetric case.

Figure 5 shows the simulation results characterizing the

proposed protocol, while the Pirandola-Laurenza-Ottaviani-

Banchi (PLOB) bound [51] of the secret key rates of direct

transmission over lossy bosonic channels and the secret key

rates of the original Gaussian CV MDI QKD [31] are also

considered for comparison. In the symmetric case, the secret

key rate of the proposed SQCC scheme decreases as the trans-

mission distance increases, where the maximum transmission

distance is about 3.84 km. It can be seen that the secret key
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Figure 4. (Color online) Secret key rate (main graph) and ampli-

tude of the classical signal (inset) as a function of VMA under the

condition of a bit error rate lower than 10−9 in the symmetric case,

where LAC = LBC . The curves with markers represent the data

over different transmission distances. The remaining parameters are

set as follows: reconciliation efficiency β = 0.98, phase-noise vari-

ance σφ = 10−6, electronic noise νel = 0.01, detector efficiency

ηhom = 0.98, and the excess noise independent of the classical sig-

nal amplitude of two channels ε0A = ε0B = 0.002.

Figure 5. (Color online). Secret key rate and bit error rate perfor-

mance of the proposed protocol in the symmetric case. The blue dot-

ted curve and green dash-dotted curve denote the secret key rate and

bit error rate of this work, respectively. For comparison, the secret

key rate of the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound

[51] and of the original Gaussian modulated CV MDI QKD [31] are

computed based on the same parameters, which are represented by

the black solid curve and red dashed curve, respectively. In the sim-

ulations, the modulation variance is VMA = 35 and the classical sig-

nal amplitude is α = 26, which are optimal. The remaining system

parameters are fixed as follows: reconciliation efficiency β = 0.98,

phase-noise variance σφ = 10−6, electronic noise νel = 0.01, de-

tector efficiency ηhom = 0.98, and ε0A = ε0B = 0.002.

rate of the proposed SQCC scheme and that of the original

CV MDI QKD protocol are almost identical for distances be-

low 1.5 km. However, the gap between them becomes larger

when the transmission distance approaches the maximum dis-

tance of 3.84 km, where the original protocol operates closer

to the PLOB bound. Additionally, the maximum transmission

distance of the proposed protocol is slightly shorter than that

of the original protocol. As seen in Fig. 5, there is only a

small degradation of about 0.48 km in terms of the maximum

distance at K = 10−4 bit/pulse between the proposed proto-

col and the original CV MDI QKD protocol. However, the

proposed protocol is capable of supporting simultaneous two-

way classical communication and CV MDI QKD at a modest

performance erosion. The bit error rate increases slowly as the

distance increases, but it is always below our target of bit error

rate 10−9, which means that the optimal parameters VMA and

α have played an active role in appropriately configuring the

proposed protocol.

B. Performance in the extremely asymmetric scheme

In this subsection, the performance is analyzed when the

proposed protocol is utilized in the extremely asymmetric sce-

nario, where Charlie is very close to Bob (LBC ≈ 0). We

will discuss some similar simulation results to those of the

symmetric scheme, and focus our attention on the comparison

between these two cases.

Figure 6. (Color online). Secret key rate (main graph) and amplitude

of the classical signal (inset) as a function of VMA under the condi-

tion of a bit error rate lower than 10−9 in the extremely asymmetric

scheme, where LBC ≈ 0. The curves with markers are the results

simulated under different transmission distances. The remaining pa-

rameters are fixed the same as Fig. 4.

The main graph in Fig. 6 shows the secret key rate as a

function of Alice’s modulation variance. Analogously, we can

obtain the optimal modulation variance VMA, which is about

20 and the concomitant classical signal amplitude also has to
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be 20 according to the inset. The difference is that the suitable

modulation variance range is wider in the extremely asymmet-

ric scenario than that of the symmetric scheme, when their

transmission distances are identical, as shown in Fig. 7. Thus

the extremely asymmetric scheme is more stable and flexible

due to its larger optional distance range of near-optimal mod-

ulation variance. Moreover, the secret key rate is also higher

than that of the symmetric case. These two characteristics ex-

plain the superiority of the extremely asymmetric scheme over

the symmetric scheme. Furthermore, the optimal modulation

variance and classical signal amplitude are about 35 and 26,

respectively. In Fig. 7, these two optimal parameters match

well in two different scenarios. The reason why we opted for

VMA = 20 and α = 20 as the optimal parameters in the ex-

tremely asymmetric case is that these are the optimal values

for long-distance communication, while the change of secret

key rate at a short distance is relatively smooth in a certain

range of modulation variance, as seen in Fig. 7.

Figure 7. (Color online) Comparision of secret key rate (main graph)

and classical signal amplitude (inset) as a function of modulation

variance between the extremely asymmetric (LAC=3.6 km, LBC ≈
0) and symmetric scheme (LAC = LBC =1.8 km). The remaining

parameters are as same as in Fig. 4.

Again, the proposed protocol supports classical commu-

nication and CV MDI QKD running simultaneously in the

same communication infrastructure at the cost of a slightly

reduced transmission-distance compared to the original CV

MDI QKD scheme. When relying on imperfect reconciliation

and detection, a distance of 21 km is feasible for SQCC in

the extremely asymmetric scheme (LBC ≈ 0), as shown in

Fig. 8. It is a practically acceptable distance for communi-

cations in metropolitan areas. Observe that the bit error rate

of classical communication seen in both Fig. 5 and Fig. 8

have not changed much, which means that the bit error rate

is only sensitive to long-distance transmission, but it is sta-

ble under the optimal parameters settings. This insensitivity

to the distance can also be concluded from the insets, since

the α versus VMA curves are indistinguishable for different

transmission distances.

Figure 8. (Color online). Secret key rate and bit error rate in the

extremely asymmetric scheme, where LBC ≈ 0. The blue dotted

curve and green dash-dotted curve denote the secret key rate and bit

error rate of this work, respectively. Pirandola-Laurenza-Ottaviani-

Banchi (PLOB) bound [51] (black solid curve) and original Gaussian

modulated CV MDI QKD [31] (red dashed curve) are plotted with

the same parameters for the comparison. The curves are obtained

using the optimal modulation variance VMA = 20 (its concomitant

classical signal amplitude α = 20) and the remaining parameters

which are as same as those have mentioned in Fig. 5.

It is also worth mentioning that we have also tried to intro-

duce discrete modulation [52] that proved to be suitable for

long-distance CV MDI QKD into our SQCC protocol. How-

ever, we have found that no practical secret key rate can be re-

alized for the extremely asymmetric scenario by using a four-

state modulation scheme [53] in conjunction with the optimal

modulation variance and the associated amplitude, when the

remaining system parameters are the same as those used in

this treatise, unless almost perfect detectors (ηhom = 0.99,

νel = 0.001) and perfect reconciliation β = 1 are employed.

This trend is probably caused by the lower variance of the

quantum communication signal. However, a discrete modula-

tion scheme associated with 256-modes was found to be ca-

pable of obtaining the same secret key rate as Gaussian mod-

ulation in [54]. Therefore, the feasibility of employing the

so-called hierarchical modulation technique of [55] (a basic

constellation for discrete-modulation CV MDI QKD) to ex-

tend the transmission distance of our SQCC protocol should

be further investigated.

Note that the secret key rate above is obtained in the asymp-

totic regime, namely under the idealized simplifying condi-

tions of having an infinite number of signals exchanged by

a pair of legitimate users. More explicitly, this would corre-

spond to the assumption that the quantum channel is perfectly

known. Naturally, the number of exchanged signals cannot

be unlimited in practice, which implies that the length of the

secret key is finite. To elaborate a little further, when con-

sidering our security analysis in the practical finite-key length

scenario [13, 23, 56, 57], then a part of the exchanged sig-
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nals has to be used for parameter estimation, rather than for

secret key generation, since the characteristics of the quantum

channel are actually not known. They have to be estimated. In

reality, both the secret key rate and the maximum transmission

distance of our proposed protocol will be reduced by different

amounts associated with different block sizes.

V. CONCLUSIONS AND OUTLOOK

We proposed a protocol for simultaneously supporting both

two-way classical communication and measurement-device-

independent quantum key distribution, where a pair of termi-

nals are not directly connected to each other via a quantum

channel, but through an untrusted relay. They transmit their

information carriers to the untrusted relay for measurement.

Despite the fact that all measurement results are published,

the specific transmitted ciphertext is not directly available to

an illegal third party in the bidirectional classical coherent op-

tical communication. As a further benefit, the secret key bits

can be simultaneously distributed under guaranteed security

of withstanding all attacks of the detectors. This enables both

communication modalities to operate concurrently based on

the same communication infrastructure, which can be conve-

niently applied in a star topology network. To evaluate the

performance of our proposed protocol, the secret key rate at-

tainable in the face of collective attacks is calculated for both

the symmetric and the extremely asymmetric case, while en-

suring that the classical communication has a low bit error

rate of 10−9. Our simulation results show that even when

considering various noise sources and imperfect implementa-

tion parameters, the proposed SQCC scheme only sacrifices

a little bit of transmission distance, despite integrating CV

MDI QKD protocol with bidirectional classical coherent opti-

cal communication.

Simultaneous transmission and detection of classical and

quantum signals has been demonstrated to be feasible over a

25 km optical fiber section by using superposition modula-

tion [58], showing an excellent prospect for the point-to-point

SQCC protocol [20]. As for the future experimental imple-

mentation of the proposed SQCC protocol, the high-speed ho-

modyne detectors have to be developed [59, 60] (at the time

of writing 1 GHz available), if the detection rate close to the

repetition rate of classical communication systems (generally

∼ 100 GHz), these two kinds of communication would match

well and more efficient. Since both two-way coherent optical

classical communication and CV MDI QKD are suitable for

free-space communications [30], it promising to extend the

proposed SQCC protocol into free-space optical scenarios for

establishing station-based wireless multi-user networks. Then

the coherent states will be inevitably contaminated by the air

turbulence [61–63], which has to be further investigated. Our

hope is that this solution could offer a feasible scheme for se-

cure communication in hybrid quantum-classical networks.
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Appendix: Calculation of the secret key rate

Considering the channel properties in the entanglement-

based scheme, the modes ρA1B
′

1
after CV Bell-measurement

and displacement are uniquely and unambiguously deter-

mined by the covariance matrices γA1B
′

1
, which has the form

of

γA1B
′

1
=





V I2
√

T (V 2 − 1)σz
√

T (V 2 − 1)σz T (V + χt) I2





=





aI2 cσz

cσz bI2



 , (A.1)

where we have assumed that the variances obey V = VA =
VB = VMA + 1 = VMB + 1 without loss of generality. As-

suming that both the x and p quadrature components are used

for generating the secret key, the Shannonian mutual informa-

tion between Alice’s and Bob’s heterodyne measurements is

given by

IAB = 2× 1

2
log2

(

a+ 1

a+ 1− c2

b+1

)

= log2





VMA + 2

VMA + 2− T [(VMA+1)2−1]
T (VMA+1+χt)+1





= log2

[

T (VMA + 1 + χt) + 1

T (1 + χt) + 1

]

. (A.2)

The Holevo bound χBE can be obtained from [64] as fol-

lows:

χBE = S(ρE)−
∫

dx′

Bdp
′

Bp (x
′

B , p
′

B)S
(

ρ
x′

B ,p′

B

E

)

,

(A.3)

where p (x′

B , p
′

B) is the probability distribution of the mea-

surement results of Bob related to {x′

B , p
′

B}, ρ
x′

B ,p′

B

E is Eve’s

state conditioned on Bob’s measurement result, and S(ρ) is
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the von Neumann entropy of the quantum state ρ. For the

Gaussian state, we can write [65]

S(ρ) =
∑

i

G

(

λi − 1

2

)

, (A.4)

where λi is the generic symplectic eigenvalue of the covari-

ance matrices characterizing ρ. Based on the fact that Eve

is capable of purifying the whole system ρA1B
′

1
[30] and that

the projected results of heterodyne detection are given by pure

states, we have S (ρE) = S
(

ρA1B
′

1

)

and S
(

ρ
x′

B ,p′

B

E

)

=

S
(

ρ
x′

B ,p′

B

A1

)

. The Holevo bound becomes

χBE = S
(

ρA1B
′

1

)

− S
(

ρ
x′

B ,p′

B

A1

)

. (A.5)

The required symplectic eigenvalues of γA1B
′

1
are given by

[66]

λ2
1,2 =

1

2

(

∆±
√

∆2 − 4D2
)

, (A.6)

with

∆ = a2 + b2 − 2c2,

D = ab− c2. (A.7)

Correspondingly, we can obtain the covariance matrices of the

state ρ
x′

B ,p′

B

A1
as:

γ
x′

B ,p′

B

A1
= aI2 − cσz (bI2 + I2)

MP
cσz

=

(

a− c2

b+ 1

)

I2, (A.8)

where MP represents the Moore Penrose inverse of a matrix

[67], and its symplectic eigenvalue is given by

λ3 = a− c2

b+ 1
. (A.9)

Hence the Holevo bound can be written as

χBE = G

(

λ1 − 1

2

)

+G

(

λ2 − 1

2

)

−G

(

λ3 − 1

2

)

.

(A.10)

Finally, the secret key rate can be derived by combining Eq.

(15), Eq. (A.2), and Eq. (A.10).
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