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Measurement-Device-Independent 
Twin-Field Quantum Key 
Distribution
Hua-Lei Yin1,2 & Yao Fu2

The ultimate aim of quantum key distribution (QKD) is improving the transmission distance and key 

generation speed. Unfortunately, it is believed to be limited by the secret-key capacity of quantum 
channel without quantum repeater. Recently, a novel twin-field QKD (TF-QKD) is proposed to break 
through the limit, where the key rate is proportional to the square-root of channel transmittance. 
Here, by using the vacuum and one-photon state as a qubit, we show that the TF-QKD can be regarded 
as a measurement-device-independent QKD (MDI-QKD) with single-photon Bell state measurement. 

Therefore, the MDI property of TF-QKD can be understood clearly. Importantly, the universal security 
proof theories can be directly used for TF-QKD, such as BB84 encoding, six-state encoding and 
reference-frame-independent scheme. Furthermore, we propose a feasible experimental scheme for 
the proof-of-principle experimental demonstration.

�roughout history, the battle between encryption and decryption never ends. Currently, relying on computa-
tional complexity, the widely used public-key cryptosystem becomes vulnerable to quantum computing attacks. 
The one-time pad is the only provably secure cryptosystem according to information theory known today. 
�ereinto, an important issue exists that the common secret key is at least as long as the message itself and can be 
used only once. Quantum key distribution (QKD) constitutes the only way to solve the real time key distribution 
problem1. QKD allows two distant parties to establish a string of secret keys with information-theoretic secu-
rity2,3. One can ensure legitimate parties to exchange messages with perfect con�dentiality by combining QKD 
with one-time pad.

�e longest transmission distance of QKD has been implemented over 421 km with ultralow-loss optical �ber4 
and 1200 km satellite-to-ground5. Improving the transmission distance and key rate are the most important tasks 
of QKD research. However, this task has been proven impossible beyond a certain limit without quantum repeat-
ers6,7. �e secret-key capacity of quantum channel can be used to bound the extractable maximum secret key6,7. 
Generally, the secret-key capacity can be regarded as a linear key rate Pirandola-Laurenza-Ottaviani-Banchi 
(PLOB) bound7 η=− −R log (1 )PLOB 2

, where η is the transmittance. To overcome the rate-distance limit of QKD, 
quantum repeaters are usually believed as a strong candidate8,9. However, the long-time quantum memory and 
high-�delity entanglement distillation are far from feasible. Despite the recent advance10 relaxing the requirement, 
the actual implementation is also di�cult to realize, for example, quantum non-demolition (QND) measurement. 
Although the trusted relay-based QKD has been deployed over 2000 km11, its security is compromised.

Recently, a novel protocol called twin-field QKD (TF-QKD)12 has been proposed to overcome the 
rate-distance limit. �e secret key rate of TF-QKD has been scaled with the square-root of the transmittance, 

η~R O( ). In the TF-QKD, a pair of optical �elds are generated respectively at locations of two remote parties 
and then sent to the untrusted center to implement single-photon detection. Compared with 
measurement-device-independent QKD (MDI-QKD)13, TF-QKD retains the properties of being immune to all 
detector attack, multiplexing of expensive single-photon detectors and natural star network architecture. In the 
original paper of TF-QKD12, the communication parties, Alice and Bob, prepare the phase-randomized coherent 
state with phase encoding in X and Y basis. To acquire the correction of raw keys, they should announce the ran-
dom phase of each pulse. �e key rate of unconditional security proof is still missing in the original paper12. 
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Various di�erent important works have been shown to give the key rate formulas with information-theoretic 
security14–19.

Here, we prove that TF-QKD can be seen as a special type of MDI-QKD. �ereinto, a qubit is physically imple-
mented by a two-dimensional subspace with vacuum and one-photon state. One can consider that the untrusted 
center performs the single-photon Bell state measurement (BSM) while Alice and Bob prepare quantum state in 
the complementary bases. Since the vacuum state is immune to the loss, it can always have a detection (detector 
without click means a successful detection), thus the probability of coincident detection is exactly equal to that 
of single detection. �erefore, the TF-QKD inherits all positive features of MDI-QKD and increases the key rate 
a lot to break through the linear key rate bound. �e unconditional security proof technologies with entangle-
ment puri�cation20,21, information theory analysis22, entropy uncertainty relation23 can be directly applied in the 
TF-QKD. �e bit of Z basis is independent of the phase misalignment. Naturally, there is no need to publish ran-
dom phase of Z basis and the state can be seen as a mixture of photon number states. �erefore, the distilled secret 
key of Z basis in the TF-QKD can exploit the tagging-method of Gottesman-Lo-Lütkenhaus-Preskill (GLLP) 
analysis24. Combining the decoy-state method25–27, we could acquire the tight key rate formula of TF-QKD with 
BB84 encoding1, six-state encoding28 and reference-frame-independent (RFI)29 scheme.

Results
MDI-QKD with single-photon BSM. Here, let us �rst introduce an entanglement-based MDI-QKD with 
single-photon BSM protocol, as shown in Fig. 1(a). Let {|0〉, |1〉} represent Z basis, where 0 and 1 are the vacuum 
and the one-photon state, respectively. Accordingly, the eigenvectors of X basis and Y basis are 
± = ±( 0 1 )/ 2  and ± = ±i i( 0 1 )/ 2 . Considering that one photon inputs a lossless symmetric 
beam splitter, the output state is a single-photon entangled state, ψ = ++ ( 0 1 1 0 )/ 2 . Alice and Bob 
prepare a series of entangled states ψ = ++ ( 0 1 1 0 )/ 2

Aa A a A a  and ψ = ++ ( 0 1 1 0 )/ 2
Bb B b B b , 

respectively, where A (B) and a (b) are a pair of �eld modes. A�erwards, they hold the qubit of a and b modes and 
send the quantum states of A and B modes to the untrusted third party, Charlie, who performs the BSM to iden-
tify the two single-photon Bell states ψ = ++ ( 0 1 1 0 )/ 2

AB A B A B  and ψ = −− ( 0 1 1 0 )/ 2AB A B A B . 
�erefore, a coincidence detection with L click and R no click indicates a projection into the Bell state ψ+

AB
. A 

coincidence detection with R click and L no click, implies a projection into the Bell state ψ− AB. Note that the 

Figure 1. Scheme to overcome the PLOB bound of QKD. (a) Setup for entanglement-based MDI-QKD with 
single-photon BSM. Alice and Bob prepare single-photon Bell state, while Charlie implements entanglement 
swapping. M represents the measurement operation, such as Z, X and Y basis. Alice and Bob implement the M 
measurement operation a�er Charlie performs the single-photon BSM. (b) Prepare-and-measure MDI-QKD 
with single-photon BSM. Alice and Bob directly prepare the qubit with superpositions of the vacuum and 
one-photon states. Alice and Bob implement the M measurement operation before Charlie performs the single-
photon BSM. (c) E�ective TF-QKD with single-photon and laser sources. �e photons from single-photon 
source and laser source are indistinguishable in every degree of freedom. �e phase-reference of long-distance 
should be stabilized to implement laser interference. �e single-photon source is used to implement Z basis 
encoding, while the laser source is used to implement the phase encoding, such as X and Y basis.
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identi�cation of any one Bell state is enough to prove the security. When Charlie performs a successful BSM, the 
qubit that the legitimate users hold becomes a single-photon Bell state, the process of which can be regarded as an 
entanglement swapping, as experimentally demonstrated30. Alice and Bob can utilize quantum memory to store 
their qubit a and b modes. A�er Charlie announces the events through public channels whether he has obtained 
a Bell state and which Bell state he has identi�ed, Alice and Bob will measure qubit a and b modes, respectively. 
�ey publish the basis information through an authenticated classical channel. Bob will apply a bit �ip when they 
choose Z (X or Y) basis and Charlie receives a Bell state ψ±

AB
 ψ−( )AB . �ey use the data of Z basis to form the 

raw key, while the data of other bases are all used to estimate the leaked information. Alice and Bob can acquire 
the secure key through the error correction and privacy ampli�cation.

We can equivalently convert our entanglement-based protocol in Fig. 1(a) to the prepare-and-measure proto-
col as shown in Fig. 1(b) by the Shor-Preskill’s arguments21. Let Alice and Bob measure the modes a and b before 
they send the qubit of A and B modes to Charlie, meaning Alice and Bob directly prepare the quantum state A 
mode and B mode. Other steps are all same to the entanglement-based protocol, including the BSM, basis com-
parison, bit �ip, error correction and privacy ampli�cation. Herea�er, we use the TF state to represent the joint 
quantum state of Alice’s A mode and Bob’s B mode. In the case of ideal detector (photon-number-resolving and 
without dark count) and lossless channel, the MDI-QKD with single-photon BSM protocol is similar with the 
two-photon BSM protocol. However, the single-photon BSM exploits the vacuum state identi�cation, namely, 
detector without click, the case of TF state with |1A〉|1B〉 will create error Bell state detection under the case of 
lossy channel, which will cause the unbalanced bit value and high bit error rate.

To solve this issue, Alice and Bob need to decrease the probability of qubit |1〉 preparation and increase the 
probability of qubit |0〉 preparation. Therefore, Alice (Bob) should exploit the entangled state 
ψ = − +t t1 0 1 1 0t  to replace the maximally entangled state ψ = ++ ( 0 1 1 0 )/ 2  in the 
entanglement-based protocol with Fig. 1(a), where t is the transmittance of partial BS. Note that the 
non-maximally entangled state is also used to prove the security in the TF-QKD18. Taking into account the 
threshold detector and lossy channel, the joint quantum state of Alice’s a mode and Bob’s b mode a�er Charlie’s 
BSM with ψ±

AB
 under the case without eavesdropper’s disturbance can be written as (see Methods for detail)

ρ ψ ψ= + +± ± ±q

q

q

q

q

q
11 11 00 00 ,

(1)
ab ab ab ab

0 1 2

where q = q0 + q1 + q2, q0, q1 and q2 are the probabilities of Charlie’s successful BSM given that the photon num-
bers of TF state are zero, one and two. Consider a virtual step, if Alice and Bob jointly perform QND measure-
ment on TF state to implement photon-number-resolving before they send TF state to Charlie, the joint quantum 
state of Alice’s a mode and Bob’s b mode is ψ±

ab
 given that the TF state with one-photon and Charlie’s BSM with 

ψ±
AB

, which reduces to the the case of ideal detector and lossless channel.
Similarly, we can have a equivalent prepare-and-measure protocol corresponding to the entanglement-based 

protocol with entangled state ψ = − +t t1 0 1 1 0t . Alice (Bob) prepares the qubit |+z〉 = |0〉 and 
|−z〉 = |1〉 with probability 1 − t and t as Z basis logic bit 0 and 1, respectively. Alice (Bob) prepares the qubit 
+ = − +x t t1 0 1  and − = − −x t t1 0 1  with equal probability as X basis logic bit 0 and 1, 
respectively. Alice (Bob) prepares the qubit + = − +y t i t1 0 1  and − = − −y t i t1 0 1  with 
equal probability as Y basis logic bit 0 and 1, respectively. Obviously, the quantum state can be seen as a mixture 
of photon number states for TF state in the Z basis. For the TF state with one-photon in the Z basis, one of Alice 
and Bob needs to prepare |0〉 as logic bit 0 and the other prepare |1〉 as logic bit 1. However, the quantum state is 
coherent superposition of photon number states for TF state in the X (Y) basis. Here, if we assume Alice and Bob 
knowing the quantum bit error rate (QBER) of TF state with one-photon in the X basis, for example, Alice and 
Bob can perform joint QND measurement on TF state to implement photon-number-resolving in the X basis, one 
can use the case of TF state with one-photon to extract secure key in the BB84 encoding, which can be given by 
(see Methods for detail)

= − −R q H e qH E[1 ( )] ( ), (2)XX
b

ZZBB84 1
1

where EZZ = (q0 + q2)/q is the QBER of Z basis, =− − − −H x x x x x( ) log ( ) (1 ) log (1 )
2 2

 is the binary Shannon 
entropy and eXX

b1  is the QBER in X basis for TF state with one-photon. We can have optimal secure key rate in Eq. (2)  
with the transmittance of partial BS t ≈ 8% given that QBER =e 3%XX

b1 , dark count rate of threshold detector 
pd = 10−6, e�ciency of threshold detector ηd = 40% and the �ber distance between Alice and Bob L ≥ 100 km. 
Note that the entanglement-based protocol in Fig. 1(a) and prepare-and-measure protocol in Fig. 1(b) are the 
virtual protocols, which are not used to perform experiment but prove the security in theory.

TF-QKD with phase-encoding coherent state. Manipulating the quantum state with superpositions of the 
vacuum and one-photon states and, in particular, requiring control about the relative phase between the vacuum and 

one-photon state is quite problematic31. However, we consider the coherent state α = ∑µ
µ−

=
∞

θ

e nn

e

n

/2
0

( )

!

i n

, where 

the relative phase θ between the di�erent Fock states in the superposition is re�ected physically in the phase of the 
classical electric �eld. Herea�er, the phase-encoding basis means to implement phase modulation of coherent state, 
such as X and Y basis. In order to achieve Alice and Bob knowing the QBER of TF state with one-photon in the 
phase-encoding basis without the requirement of QND measurement, one can use the post-selected phase-matching 
method for phase-randomized coherent state12,15. By using the post-selected phase-matching method, the phases of 
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Alice’s and Bob’s coherent state can be seen as equal and randomized, which means that they can use decoy-state 
method to estimate the yield and QBER of TF state with one-photon in the phase-encoding basis (see Methods).

E�cient TF-QKD. Here, we propose an e�cient TF-QKD that the single-photon source used for Z basis and 
laser source used for phase-encoding basis in Fig. 1(c). �e qubit prepared in Z basis can be implemented by 
turning on and o� (such as optical switch) the single-photon source, while the qubit of phase encoding basis 
should exploit the phase-randomized coherent state combined with phase modulation. However, the perfect 
single-photon source is still a challenge under the current technology. �erefore, we propose a practical TF-QKD 
by exploiting phase-randomized coherent state to replace single-photon source used for Z basis encoding.

Practical TF-QKD. In the following, let us explain our practical TF-QKD in detail as shown in Fig. 2(a). (i) Alice 
and Bob use the stabilized narrow line-width continuous-wave laser and amplitude modulator to prepare the 
global phase stabilized optical pulses. Alice’s and Bob’s random phases θA ∈ [0, 2π) and θB ∈ [0, 2π) are realized by 
using phase modulators. For Z basis encoding, the phase-randomized coherent state with intensities 0 and µ as 
logic bits 0 and 1 with probabilities 1 − t and t by using amplitude modulator. For X (Y) basis encoding, they use the 
phase and amplitude modulator to randomly implement 0 (π/2) and π (−π/2) phase modulation as logic bits 0 and 
1 with intensities {ν/2, ω/2, 0}. (ii) �en they send quantum states to Charlie for single-photon BSM through the 
insecure quantum channel. Charlie publishes the successful events of single-photon BSM. (iii) Alice and Bob will 
announce the basis information through the authenticated classical channel. �e intensity and random phase 
information kA,B of phase-encoding basis should be disclosed, while those of Z basis are con�dential to Charlie, 

where they have θ ∈ ∆A B k, A B,
, ∆ = 



π π + ),k

k

M

k

M

2 2 ( 1)

A B

A B A B

,

, ,  and kA,B ∈ {0, 1, …, M − 1}. (iv) Alice and Bob use the data 

of Z basis as the raw key, while the data of phase-encoding basis are announced to estimate the amount of leaked 
information. (v) �ey exploit the classical error correction and privacy ampli�cation to extract the secure key rate.

A�er Charlie announces the measurement results, he cannot change the yield and QBER due to information 
causality32. The decoy-state method of estimating the yield and QBER of TF state with n-photon in 
phase-encoding basis is also true even for the post-selected phase-matching method, which has also been used in 
phase-matching QKD15. �e GLLP analysis24 can be used for the data of Z basis, since the random phases infor-
mation of Alice’s and Bob’s coherent states are all con�dential to Charlie. Bob will always �it his bit in Z basis. Due 
to the density matrix of TF state with one-photon ρ ρ= = +( 01 01 10 10 )ZZ XX

AB ABTF
1

TF
1 1

2
, we can use the 

yield of TF state with one-photon =Y YZZ XX
TF
1

TF
1  in the asymptotic limit. Note that, we can also directly estimate the 

yield Y ZZ
TF
1  by using the data of phase-encoding basis given that one of Alice and Bob sends intensity 0.

For the BB84 encoding1, Alice and Bob only keep the data of |kB − kA| = 0 and M/2 when they both choose X 
basis by the post-selected phase-matching method. If |kB − kA| = 0 (|kB − kA| = M/2), Bob will �it his bit when 
Charlie receives a Bell state ψ− AB ψ+( )AB

. �e secure key rate of practical TF-QKD can be given by

Figure 2. �e practical TF-QKD setup. (a) practical TF-QKD with independent lasers. �e phase modulator 
(PM) can realize phase encoding and random phase modulation at one time. CW-Laser: continuous-wave laser, 
AM: amplitude modulator, VOA, variable optical attenuator, BPF: band pass �lter, PC: polarization controller, 
BS: beam splitter, RNG: random number generator. (b) Phase self-aligned TF-QKD with single laser. �e 
Faraday mirror (FM) or the polarization beam splitter (PBS) and the π/2 Faraday rotator (FR) are exploited to 
realize the transformation between horizontal and vertical polarizations. Alice and Bob could choose to prepare 
the qubit in Z basis by using Charlie’s laser or their own pulse lasers. �e security will be enhanced if they use 
their own laser. Some polarization-maintaining �ber are required to keep the polarization in the systems of 
Alice, Bob and Charlie. P-Laser: pulse laser, OS: optical switch, PD, photoelectric detector, Cir: circulator.
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µ= − − −µ
−

−R t t e Y H e Q fH E2 (1 ) [1 ( )] ( ), (3)
ZZ

XX
b

ZZ ZZTF BB84 TF
1 1

where QZZ is the gain in Z basis acquired directly from the experiment, f = 1.15 is the error correction coe�cient.
For the RFI scheme29,33, one can allow Alice and Bob to have di�erent phase references which can be changed 

slowly (details can be found in Methods). �erefore, they can collect the data of |kB − kA| = k, k ∈ {0, 1, …, M − 1} 
to form a set Dk, where the probability of |kB − kA| = k is 

M

1 . For each set Dk, they calculate the value 

= − + − + − + −C e e e e(1 2 ) (1 2 ) (1 2 ) (1 2 )k XXk
b

XYk
b

YXk
b

YYk
b1 1 2 1 2 1 2 1 2, where eXXk XYk YXk YYk

b
( , , )

1  is the QBER of TF 

state with one-photon in set Dk given that Alice and Bob choose X − X(X − Y, Y − X, Y − Y) basis. �e secure key 
rate of practical TF-QKD with RFI scheme can be given by

µ= − − −µ
−

−R t t e Y I C Q fH E2 (1 ) [1 ( )] ( ), (4)
ZZ

E ZZ ZZTF RIF TF
1 1

where = − +µ+ +( ) ( )I C e H e H( ) (1 )E ZZ
b

ZZ
b v1 1 1

2

1 1

2
 describes eavesdropper Eve’s information, thereinto, 

= − −v C e u e/2 (1 ) /ZZ
b

ZZ
b1 1 2 2 1 , = −u C emin[ /2 /(1 ), 1]ZZ

b1 1  and = ∑ =
−C C

M k
M

k
1 1

0
1 1. Compared with the BB84 

encoding, all data of RFI scheme can be exploited to estimate parameter C1, which can be used to slow down the 
�nite size e�ect. Alice and Bob can change M to acquire the maximum key rate without impacts on e�ciency. �e 

QBER of Z basis for TF state with one-photon ≡e 0ZZ
b1  leads to = +I C H C( ) ((1 /2 )/2)E

1 1 .
�e secure key rate of practical TF-QKD using BB84 encoding changes with the dark count rate as shown in 

Fig. 3. We use the practical parameters to simulate the secure key rate in Fig. 3, where the e�ciency of detector 
is ηd = 40%, the loss coe�cient of the channel is 0.2 dB/km and the optical error rate of system is eopt = 1%. �e 
optical error rate is usually large due to the long-distance single-photon-type interference. We compare the secure 
key rates of practical TF-QKD using BB84 encoding and RFI scheme with the di�erent optical error rate as shown 
in Fig. 4. To show the advantage of TF-QKD, the e�ciency and dark count rate of detector are assumed to be 
ηd = 90% and pd = 10−9 in Fig. 4, respectively. In the simulation, both schemes can surpass the PLOB bound and 
tolerate the big optical error rate eopt. �e key rate of TF-QKD with BB84 encoding will signi�cantly decline with 
eopt rising, while the RFI scheme is robust. However, the long-distance phase-stabilization (it could not be a per-
fect match but is required to vary slowly) also exists since the relative phase changes too fast in the long-distance 
�ber or free-space channel.

�e experimental demonstration of TF-QKD with independent lasers in Fig. 2(a) is a big challenge, although 
the MDI-QKD with two-photon BSM has been implemented over 404 km optical �ber34 by using asymmetric 
four-intensity decoy-state method35. Compared with the two-photon BSM, greater technological challenges exist 
in the TF-QKD with single-photon BSM. �e frequency di�erence of two independent lasers is required more 
rigorously12. �e phase-locking technique may be used to compensate the frequency di�erence. Importantly, 
the long-distance phase-stabilization technique is required to implement single-photon interference with phase 
matching. �e RFI scheme can allow the phase mismatching. However, the relative phase change is still required 
to vary slowly. To rapidly implement the proof-of-principle TF-QKD experiment, we present a phase self-aligned 
TF-QKD with single laser interference as shown in Fig. 2(b). �e horizontal polarization optical pulse gen-
erated by Charlie is divided into two pulses by the polarization-maintaining beam splitter. By exploiting the 
π/2 rotation e�ect of Faraday mirror, the two pulses interfere a�er they go through the same path. �ough the 
phase self-aligned scheme would be a�ected by the loss and noise, the frequency di�erence and long-distance 
phase-stabilization problems are both solved36. An extra security analysis with untrusted source37 should be used 
to defeat the attack from systems of Alice and Bob.

Figure 3. �e key rate of practical TF-QKD with BB84 encoding in the asymptotic limit. For each transmission 
loss, we optimize the parameters µ and t with eopt = 1%, ν = 0.1, ω = 0.02 and M = 16. For the PLOB bound, we 
use η=− −R log (1 )PLOB 2 PLOB

, ηPLOB = ηd × 10−0.02L. �e secure key rate of TF-QKD with BB84 encoding can 
surpass the PLOB bound under the case of detector with ηd = 40%, pd = 10−7, the performance of detector has 
been realized much more34.
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Discussion
In summary, we have proved that the TF-QKD can be regarded as a MDI-QKD with single-photon BSM. By 
introducing the Z basis encoding, the secret key extraction can exploit the tagging method of GLLP analysis and 
the decoy-state method. Compared with BB84 encoding, the RFI scheme has the advantages of increasing the 
data of parameter estimation and reducing the e�ect of phase dri�. We should point out that the extra Y basis 
preparation in RFI scheme does not add additional operation due to the active phase randomization require-
ment, which is di�erent from the traditional QKD. We propose a feasible experimental scheme to implement the 
proof-of-principle experimental demonstration. Note that, the security of this proof-of-principle experiment in 
Fig. 2b is not guaranteed with our current analysis, which requires a further security evaluation due to introduc-
ing untrusted source. �rough simulation, we show that the secure key rate of practical TF-QKD can surpass the 
PLOB bound. �e universally composable security with �nite-key analysis needs to be considered in the future. 
Our proposal suggests an important avenue for practical high-speed and long-distance QKD without detector 
vulnerabilities. During the preparation of this paper and posting it on the arXiv, we became aware of some impor-
tant works14–19 of TF-QKD.

Methods
MDI-QKD with single-photon BSM. For the case of entanglement-based protocol with the entangled 
state ψ = − +t t1 0 1 1 0t , the joint quantum state of Alice and Bob can be given by

ϕ ψ ψ= ⊗

= − + − + + .

+ +

t t t t(1 ) 0011 (1 ) ( 0110 1001 ) 1100 (5)

ABab Aa Bb

ABab ABab ABab ABab

For the threshold detector and lossy channel, the TF state |00〉AB, |01〉AB, |10〉AB and |11〉AB will all have 
single-photon Bell state clicks. Due to the single-photon BSM of Charlie, the photon number of TF state will 
collapse to three events, namely vacuum, one-photon and two-photon. �e corresponding probability can be 
expressed as

η η

η η

= − −

= − − − + − − − −

= − − + − − − −

q t p p

q t t p p p p

q t p p p p

2(1 ) (1 ),

2 (1 ){ (1 )(1 ) (1 )[1 (1 )(1 )]},

{ (1 )(1 ) (1 )[1 (1 )(1 ) ]}, (6)

d d

d d d d

d d d d

0
2

1

2
2 2 2

where the expression of q2 is acquired by the Hong-Ou-Mandel interference of two-photon. �e parameter 
η η= × − .10

d
L0 02 /2 is the transmittance between Alice (Bob) and Charlie.

Figure 4. �e key rates of practical TF-QKD with BB84 encoding and RFI scheme in the asymptotic limit. 
For each transmission loss, we optimize the parameters µ and t with ηd = 90%, pd = 10−9, ν = 0.1, ω = 0.02 and 
M = 16. �e secure key rate of practical TF-QKD with RFI scheme do not change obviously with optical error 
rate eopt. �e secure key rate of practical TF-QKD with BB84 encoding can also beat the PLOB bound even the 
optical error rate up to eopt = 20%.
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For the case of prepare-and-measure protocol corresponding to entanglement-based protocol with the entan-
gled state ψ = − +t t1 0 1 1 0t , the density matrix of TF state in the Z basis is

ρ = − + + − +t t t t(1 ) ( 01 01 10 10 ) (1 ) 00 00 11 11 , (7)TF
ZZ

AB AB AB AB
2 2

which means a mixture of photon number states for TF state in the Z basis. �e TF state of Z basis is the product 
state of Alice’s and Bob’s quantum state. �e density matrix of TF state with one-photon in the Z basis is

ρ = +
1

2
( 01 01 10 10 ),

(8)
ZZ

AB ABTF
1

which needs one of Alice and Bob prepares |0〉 as logic bit 0 and the other prepares |1〉 as logic bit 1.
�e density matrix of TF state in the X basis can be written as

ρ = + + + + + + − + −

+ − + − + + − − − − .

x x x x x x x x

x x x x x x x x

1

4
[ , , , ,

, , , , ] (9)

XX
AB AB

AB AB

TF

�ereinto, we have

± + = − + − ± ±

± − = − − −  

x x t t t t

x x t t t t

, (1 ) 00 (1 ) ( 01 10 ) 11 ,

, (1 ) 00 (1 ) ( 01 10 ) 11 , (10)

AB AB AB AB AB

AB AB AB AB AB

which means a coherent superposition of photon number state for TF state in the X basis. If Alice and Bob jointly 
perform QND measurement on TF state to implement photon-number-resolving, we have

ρ ρ

± +  → ±

± −  →

= + =



‐

‐

x x

x x

,
1

2
( 01 10 ),

,
1

2
( 01 10 ),

1

2
( 01 01 10 10 ) ,

(11)

AB AB AB

AB AB AB

XX
AB AB

Z

one photon

QND measurement

one photon

QND measurement

TF
1

TF
1

where ρ ZZ
TF
1  (ρ XX

TF
1 ) is the density matrix of TF state with one-photon in the Z (X) basis. We have =Y YZZ XX

TF
1

TF
1  in 

the asymptotic limit due to ρ ρ=ZZ XX
TF
1

TF
1 , where Y ZZ

TF
1  (Y XX

TF
1 ) is the yield given that Alice and Bob choose Z (X) 

basis and TF state contains one-photon. Alice and Bob can know the locations of the TF state with one-photon by 
using the QND measurement, they could discard all other states and apply error correction and privacy ampli�-
cation only to the TF state with one-photon. In this case with BB84 encoding, they can achieve a key rate of20,21

= − − .R q H e H e[1 ( ) ( )]) (12)ZZ
b

XX
b

BB84 1
1 1

For the TF state with one-photon in the Z basis, we have ≡e 0ZZ
b1  since we only have the case of Alice’s logic bit 

0 (1) and Bob’s logic bit 1 (0) corresponding to quantum state |01〉 (|10〉).
However, if we assume that Alice and Bob can know the QBER of TF state with one-photon in the X basis, one 

can acquire the secure key in the Z basis without Alice and Bob knowing the locations (QND measurement) of 
the TF state with one-photon by using the GLLP analysis24. �e secure key rate can be given by

= − −R q H e qH E[1 ( )] ( ), (13)XX
b

ZZBB84 1
1

where the parameter q1 should be calculated by using the decoy-state method, for example, we choose three value 
of t in the Z basis.

TF-QKD with phase-encoding coherent state. In order to make Alice and Bob know the QBER of TF 
state with one-photon in the X basis without the requirement of QND measurement, we need to consider the case 
of phase-randomized coherent state

∫

∑ ∑ ∑

ρ
π

α α α α θ

µ

= ⊗

=
+ −

⊗ + −

π
δ δ

µ
δ

−

=

∞

=

∞

=

+ − +

e e d

e
e

n m k n m k
n k m n m k

1

2

! ! !( )!
,

(14)

A
i

B

i

n m k

n m i k n n m

A B

0

2

2

0 0 0

( )

where the global phases of Alice’s coherent state α µ= θeA
i

A
 and Bob’s α µ=δ θ δ+e ei

B

i

B

( )  should be 
randomized and have a �xed phase di�erence δ. �erefore, we have

α α  → + .δ δ−

‐

‐
e e

1

2
( 01 10 )

(15)
A

i

B AB
i

AB
one photon

phase randomized

For the X basis encoding, we have
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α α

α α

ρ

± +  → ±

± −  →

= +



‐

‐

‐

‐

1

2
( 01 10 ),

1

2
( 01 10 ),

1

2
( 01 01 10 10 ),

(16)

A B AB AB

A B AB AB

XX
AB AB

one photon

phase randomized

one photon

phase randomized

TF
1

where the global phases of Alice’s and Bob’s coherent state should be equal and randomized. It can be realized 
by using post-selected phase-matching method for phase-randomized coherent state introduced in the original 
TF-QKD12 and phase-matching QKD15. If we consider the photon number space of TF state given that the global 
phases of Alice’s coherent state and Bob’s are randomized and have a �xed phase di�erence, the density matrix 
can be given by

∑ρ
µ

= µ−

=

∞
e

n
n n

(2 )

!
,

(17)n

n

TF
2

0

which is similar with the phase encoding phase-randomized coherent state in the traditional decoy-state QKD26,27. 
�erefore, the decoy state method can be used for estimating the yield and QBER of TF state with one-photon.

For phase-randomized coherent state used for Z basis encoding, we have

∑ ∑

∑ ∑

ρ
µ µ

µ µ

= − +




















+ −

















+

















.

µ µ

µ µ

=

∞
−

=

∞
−

=

∞
−

=

∞
−

t t e
n

n n e
m

m m

t t e
n

n n e
n

n n

(1 ) 00 00
! !

(1 ) 0 0
! !

0 0
(18)

ZZ
AB

n

n

A
m

m

B

A
n

n

B
n

n

A B

TF
2 2

0 0

0 0

We need |0〉 as logic bit 0 and |1〉 as logic bit 1, therefore the e�cient TF state with one-photon in Z basis only 
results from the case of logic bit 0A1B and 1A0B with the probability 2t(1 − t)µe−µ. For simulation, we consider the 
case without Charlie’s disturbance. In the Z basis of practical TF-QKD, by going through the quantum channel 
and beam splitter, we have (1 − t)2 probability of quantum state

⟶0 0 0 0 , (19)A B L R

BS

t(1 − t) probability of quantum state

µ
µ η µ η

−θ θ θ⟶e e e0
2 2

,

(20)
A

i

B

i

L

i

R

BS
B B B

t(1 − t) probability of quantum state

µ
µ η µ ηθ θ θ⟶e e e0

2 2
,

(21)

i

A B
i

L

i

R

BS
A A A

and t2 probability of quantum state

µ µ
µ η µ η µ η µ η

+ − .θ θ θ θ θ θ⟶e e e e e e
2 2 2 2 (22)

i

A

i

B

i i

L

i i

R

BS
A B A B A B

Here, we have θA ∈ [0, 2π) and θB ∈ [0, 2π), L and R represent the le� detector and right detector of Charlie, 
respectively. �e gain QZZ and QBER EZZ of practical TF-QKD can be given by

µ η

= − − + −





− −






−

+ − − −

µ
η

µ
η

µ η µ η

− −

− −

Q p p t p e p e t t

p e I p e t

2 (1 )(1 ) 4(1 ) 1 (1 ) (1 )

2(1 ) [ ( ) (1 ) ] , (23)

ZZ d d d d

d d

2
2 2

0
2

and

µ η= − − + − − − .µ η µ η− −E Q p p t p e I p e t2 (1 )(1 ) 2(1 ) [ ( ) (1 ) ] (24)ZZ ZZ d d d d
2

0
2

For phase-encoding basis of practical TF-QKD, by going through the quantum channel and beam splitter, we 
have 1/4 probability of quantum state
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λ χ

λ η χ η

λ η χ η

+

⊗ −

θ π π θ π π

θ π π θ π π

θ π π θ π π

+ + + +

+ + + +

+ + + +

⟶

e e

e e

e e

2 2

2 2
,

(25)

i g h

A

i g h

B

i g h i g h

L

i g h i g h

R

(
2

) (
2

)

BS (
2

) (
2

)

(
2

) (
2

)

A A A B B B

A A A B B B

A A A B B B

where hA, hB ∈ {0, 1} represent basis X and Y, gA, gB ∈ {0, 1} represent logic bit 0 and 1 given that the intensities of 
Alice’s and Bob’s are λ and χ, respectively, λ, χ ∈ {ν/2, ω/2, 0}. Here, we de�ne θ θ λ χQh h,

, , ,

A B

A B  and θ θ λ χEh h,
, , ,

A B

A B  are the gain 

and QBER that Alice and Bob choose basis hA and hB when they send the global phase θA and θB optical pulses 
with intensities λ and χ, respectively. Here,

= − + − −θ θ λ χ
λ χ

η λχη λχη λ χ η−
+

− − +Q p e e e p e(1 ) [ ] 2(1 ) , (26)h h d
x x

d,
, , ,

2
cos cos 2 ( )

A B

A B

and

= − − −θ θ λ χ θ θ λ χ
λ χ

λχ η λ χ η−



+
+



 − +E Q p e p e(1 ) (1 ) , (27)h h h h d

x

d,
, , ,

,
, , , 2

cos 2 ( )

A B

A B

A B

A B

where θ θ= − + −π
x h h( )B A B A2

, θ θ λ λ −Eh h
x

,
, , , 1 cos

2A B

A B  when we assume η → 0 and pd → 0.

Obviously, we can directly estimate the yield Y ZZ
TF
1  by using the data of phase-encoding basis given that one of 

Alice and Bob sends intensity 0. We de�ne λ χ as the intensity set when Alice and Bob send intensity λ and χ 

phase-randomized coherent state. �erefore, 
ν

Q2 , 
ν

Q2  and Q0 are the gain when Alice and Bob send intensities set 

 ν ν{ }0 , 0
2 2

,  ω ω{ }0 , 0
2 2

 and {0 0}, which can be written as

∫ ∫ ∫ ∫π
θ θ

π
θ θ=





+




= − − −

= − − −

= − .

ν π π θ θ ν π π θ θ ν

ν η ν η

ω ω η ω η

− −

− −

Q Q d d Q d d

p e p e

Q p e p e

Q p p

1

2

1

4

1

4

2(1 ) [1 (1 ) ],

2(1 ) [1 (1 ) ],

2 (1 ) (28)

h h A B h h A B

d d

d d

d d

2
2 0

2

0

2

,

, ,0,
2

2 0

2

0

2

,

, ,
2

,0

4 4

2 4 4

0

A B

A B

A B

A B

�e Y ZZ
TF
0  and Y ZZ

TF
1  are the yields of TF state with vacuum and one-photon in the Z basis, respectively, which 

can be given by (ν > ω > 0)26,27

= = = −Y Y Q p p2 (1 ), (29)
ZZ

d dTF
0

0
0

and

ν

νω ω

ω

ν

ν ω

ν
≥ =

−






− −
− 



.

ω ω ν ν
Y Y e Q e Q Q

2

(30)

ZZ ZZL
TF
1

TF
1

2
2 2

2

2
2 2

2 2

2
0

We assume that the optical error rate eopt of X basis exists due to the single-photon interference. For simplicity, we 
assume that the optical error rate is introduced by the phase misalignment12. Here, a �xed phase di�erence between 
Alice’s and Bob’s global phase is δ0 = arccos(1 − 2eopt). By using the post-selected phase-matching method in practi-
cal TF-QKD with BB84 encoding, νQXX ωQ( )XX  and νEXX ωE( )XX  are gain and QBER given that Alice chooses X basis with 
intensity ν

2
 ω( )2

 and Bob chooses X basis with intensity ν
2

 ω( )2
 in the case of |kB − kA| = 0 and M

2
. �ey can be given by

∫ ∫ ∫ ∫π
θ θ

π
θ θ= =ν

δ

δ π π
θ θ ν ν ω

δ

δ π π
θ θ ω ω+ +

Q
M

Q d d Q
M

Q d d
4

,
4

,
(31)

XX
M M

A B XX
M M

A B

2

2

2

0

2

0,0

, ,
2

,
2

2

2

2

0

2

0,0

, ,
2

,
2A B A B

0

0

0

0

and

∫ ∫

∫ ∫

π
θ θ

π
θ θ

=

= .

ν ν

δ

δ π π
θ θ ν ν θ θ ν ν

ω ω

δ

δ π π
θ θ ω ω θ θ ω ω

+

+

E Q
M

E Q d d

Q Q
M

E Q d d

4
,

4 (32)

XX XX
M M

A B

XX XX
M M

A B

2

2

2

0

2

0,0

, ,
2

,
2

0,0

, ,
2

,
2

2

2

2

0

2

0,0

, ,
2

,
2

0,0

, ,
2

,
2

A B A B

A B A B

0

0

0

0

Due to the random phase shi�ing, there is still an intrinsic QBER because the random phases are not perfectly 
matched. If eopt = 0.03, we have δ0 = 0.35 and .ν ~E 3 6%XX . By using the decoy-state mentod26,27, the yield Y XX

TF
1  and 

QBER eXX
b1  can be given by
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ν

νω ω

ω

ν

ν ω

ν

ω

≥ =
−






− −
− 




≤ =
−

ω ω ν ν

ω ω ω

Y Y e Q e Q Q

e e
e E Q e Q

Y

,

,
(33)

XX XXL
XX XX

XX
b

XX
b U XX XX

b

XXL

TF
1

TF
1

2

2

2

2 2

2
0

1 1
0 0

TF
1

where =eb0 1

2
 is the QBER of TF state with vacuum in phase-encoding basis.

For six-state encoding28, the probability that both bit �ip and phase shi� occurs can be given by38

= + − .a e e e( )/2 (34)ZZ
b

XX
b

YY
b1 1 1

To simplify, we assume that those cases of qubit preparation with relative phase modulation are symmetrical 
since the random phase is unknown before Charlie performs single-photon BSM. �erefore, we abtain =a e /2ZZ

b1 . 
Interestingly, the QBER ≡e 0ZZ

b1 , which means that the key rate of practical TF-QKD with six-state encoding has 
no advantage compared with BB84 encoding.

For the RFI scheme29, the Z basis is always well de�ned, which is ZA = ZB = Z for Alice and Bob. �e other two 
bases may vary with the slow phase shi�ing β, the relation can be given by XB = cosβXA + sinβYA, YB = cosβYA−
sinβYB and β = βB − βA, where ZA and ZB, XA and XB, YA and YB are the location reference frames for Z, X and Y 
basis of Alice and Bob, respectively. βA (βB) is the deviation between the practical and standard reference frame 
for Alice (Bob). �erefore, the eigenstates of XA (XB) and YA (YB) can be written as ± = ± βe( 0 1 )/ 2A

i A  
± = ± βe( ( 0 1 )/ 2 )B

i B ) and ± = ± βi ie( 0 1 )/ 2A
i A  ± = ± βi ie( ( 0 1 )/ 2 )B

i B . Note that βA and 
βB are the phases of intrinsic degree of freedom between 0 and 1 and can vary slowly in the virtual protocol with 
RFI theory. �e key rate of single-photon with RFI theory is given by29

= − − .R H e I C1 ( ) ( ) (35)b ERFI

Here, = − +µ+ +( ) ( )I C e H e H( ) (1 )E b b
v1

2

1

2
 quantifies the information of Eve’s knowledge, parameters 

= − −v C e u e/2 (1 ) /b b
2 2  and = −u C emin [ /2 /(1 ), 1]b . We have = +I C H C( ) ((1 /2 )/2)E  if the QBER 

eb = 0. �e value C can be de�ned as

= 〈 〉 + 〈 〉 + 〈 〉 + 〈 〉

= − + − + − + −

C X X X Y Y X Y Y

E E E E(1 2 ) (1 2 ) (1 2 ) (1 2 ) , (36)

A B A B A B A B

XX XY YX YY

2 2 2 2

2 2 2 2

which is independent of phase dri�ing βA (βB) and can just be used to bound Eve’s information. However, the 
phase dri�ing will add the QBER of X basis, which will decrease the key rate of BB84 encoding. �ereinto, EXX(YY, 

XY, YX) is the QBER given that Alice and Bob choose X − X(Y − Y, X − Y, Y − X) basis, which can be written as

β

β β

= = −

= + = − .

E E

E E

1

2
(1 cos ),

1

2
(1 sin ),

1

2
(1 sin )

(37)

XX YY

XY YX

One can acquire the maximum value C = 2 in the ideal case and IE(C = 2) = 0 if the phase di�erence β is �xed. For 
phase change from β to β + ∆β, ∆β ∈ [0, 2π] (uniformity variation), we have

β
β β β β β β

β

β
=
∆

+ ∆ − + + ∆ − =
− ∆
∆

.C
2

( )
{[ sin( ) sin ] [ cos( ) cos ] }

4(1 cos )

( ) (38)
2

2 2
2

We can see that C is only related to phase change ∆β and is not related to phase di�erence β in theory. �e value 
C will decrease with ∆β increasing.

In the practical TF-QKD with RFI scheme, we de�ne that νQXXk and νEXXk are gain and QBER when Alice 
chooses X basis with intensity ν

2
 and Bob chooses X basis with intensity ν

2
 in the case of set Dk by using the 

post-selected phase-matching method. �erefore, the gain νQXXk, νQXYk, νQYXk and νQYYk of set Dk are
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�e QBER νEXXk, νEXYk, νEYXk and νEYYk of set Dk can be written as
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By using the decoy-state method, the lower and upper bounds of yield Y XXk
TF
1 , Y XYk

TF
1 , Y YXk

TF
1  and Y YYk
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For the practical TF-QKD with RFI scheme, we need to calculate the minimum value of Ck
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the parameters eXYk
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