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Many recent empirical investment studies have found that the in-
vestment of financially constrained firms responds strongly to cash
flow. Paralleling these findings is the disappointing performance of
the q theory of investment: even though marginal q should summarize
the effects of all factors relevant to the investment decision, cash flow
still matters. We examine whether this failure is due to error in mea-
suring marginal q. Using measurement error–consistent generalized
method of moments estimators, we find that most of the stylized facts
produced by investment-q cash flow regressions are artifacts of mea-
surement error. Cash flow does not matter, even for financially con-
strained firms, and despite its simple structure, q theory has good
explanatory power once purged of measurement error.

I. Introduction

The effect of external financial constraints on corporate investment has
been the subject of much research over the past decade. Underlying

We gratefully acknowledge helpful comments from Lars Hansen, two anonymous ref-
erees, Serena Agoro-Menyang, Brent Moulton, John Nasir, Huntley Schaller, and partic-
ipants of seminars given at the 1992 Econometric Society summer meetings, the University
of Pennsylvania, the University of Maryland, the Federal Reserve Bank of Philadelphia,
Rutgers University, and the University of Kentucky. This paper was circulated previously
under the title “Measurement-Error Consistent Estimates of the Relationship between
Investment and Q.”



1028 journal of political economy

this line of inquiry is the premise that informational imperfections in
equity and credit markets lead to a divergence between the costs of
external and internal funds or, at the extreme, to rationing of external
finance. Any difficulties the firm faces in obtaining outside financing
then affect its real investment decisions. Recent interest in this topic
started with Fazzari, Hubbard, and Petersen (1988), who showed em-
pirically that for groups of firms perceived a priori to face financing
constraints, investment responds strongly to movements in internal
funds, even after one controls for investment opportunities. Hubbard
(1998) cites numerous studies that have confirmed these results. This
literature is the most prominent example of the empirical failure of the
neoclassical intertemporal optimization model of investment.

Most tests of the neoclassical model and most empirical studies of
the interaction of finance and investment are based on what is com-
monly referred to as the q theory of investment. Despite its repeated
failure to explain both cross-section and time-series data, its popularity
persists because of its intuitive appeal, simplicity, and sound theoretical
underpinnings. Its popularity persists also because of conjectures that
its empirical failure is spurious, a consequence of measurement error
in q. In recent years, however, a number of studies that explicitly address
measurement error have reaffirmed the earlier findings, particularly that
of a significant role for internal funds (see, e.g., Blundell et al. 1992;
Gilchrist and Himmelberg 1995). In the present paper we employ a
very different approach to the measurement error problem and come
to very different conclusions.

To understand the measurement error problem, it is crucial to think
carefully about q theory. The intuition behind this theory can be found
in Keynes (1936): “there is no sense in building up a new enterprise at
a cost greater than that at which a similar existing enterprise can be
purchased; whilst there is an inducement to spend on a new project
what may seem an extravagant sum, if it can be floated off the stock
exchange at an immediate profit” (p. 151). Grunfeld (1960) argued
similarly that a firm should invest when it expects investment to be
profitable and that an efficient asset market’s valuation of the firm
captures this expectation. He supported this reasoning by finding that
firm market value is an important determinant of investment in a sample
of U.S. firms. Tobin (1969) built on this work by using a straightforward
arbitrage argument: the firm will invest if Tobin’s q, the ratio of the
market valuation of a firm’s capital stock to its replacement value, ex-
ceeds one. Modern q theory is based on the first-order conditions in
Lucas and Prescott (1971) and Mussa (1977) that require the marginal
adjustment and purchase costs of investing to be equal to the shadow
value of capital. Termed marginal q, this shadow value is the firm man-
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ager’s expectation of the marginal contribution of new capital goods to
future profit.

Testing this first-order condition typically relies on drawing a con-
nection between the formal optimization model and the intuitive ar-
guments of Keynes, Grunfeld, and Tobin. For most researchers, the first
step in making this connection is to assume quadratic investment ad-
justment costs, which gives a first-order condition that can be rearranged
as a linear regression in which the rate of investment is the dependent
variable and marginal q is the sole regressor. The next step is to find
an observable counterpart to marginal q. Building on results in Lucas
and Prescott (1971), Hayashi (1982) simplified this task by showing that
constant returns to scale and perfect competition imply the equality of
marginal q with average q, which is the ratio of the manager’s valuation
of the firm’s existing capital stock to its replacement cost. If financial
markets are efficient, then their valuation of the capital stock equals
the manager’s, and consequently, average q should equal the ratio of
this market valuation to the replacement value, that is, Tobin’s q. In
principle, Tobin’s q is observable, though in practice its measurement
presents numerous difficulties.

The resulting empirical models have been disappointing along several
dimensions.1 The R2’s are very low, suggesting that marginal q has little
explanatory power. Further, many authors argue (incorrectly, as we show
below) that the fitted models imply highly implausible capital stock
adjustment costs and speeds. Finally, the theoretical prediction that mar-
ginal q should summarize the effects of all factors relevant to the in-
vestment decision almost never holds: output, sales, and, as emphasized
above, measures of internal funds typically have statistically significant
coefficient estimates and appreciable explanatory power if they are in-
troduced as additional regressors. In particular, estimates of the coef-
ficient on cash flow (the most common measure of internal funds) are
typically larger and more significant for firms deemed to be financially
constrained than for firms that are not.

These results have a variety of interpretations. If measured Tobin’s q
is a perfect proxy for marginal q and the econometric assumptions are
correct, then, roughly speaking, q theory is “wrong.” In other words, a
manager’s profit expectations do not play an important role in explain-
ing investment, but internal funds apparently do. Alternatively, if q the-
ory is “correct” and measured Tobin’s q is a perfect proxy, then some
of the econometric assumptions are wrong. For example, Hayashi and
Inoue (1991) consider endogeneity of marginal q, and Abel and Eberly

1 See Ciccolo (1975), Summers (1981), Abel and Blanchard (1986), and Blanchard,
Rhee, and Summers (1993) for studies using aggregate data. Recent micro studies include
Fazzari et al. (1988), Schaller (1990), Blundell et al. (1992), and Gilchrist and Himmelberg
(1995).
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(1996) and Barnett and Sakellaris (1998) consider nonlinear regression.
A third possibility is that q theory and the econometric assumptions are
correct, but measured Tobin’s q is a poor proxy for marginal q.

Mismeasurement of marginal q can generate all the pathologies af-
flicting empirical q models. In the classical errors-in-variables model, for
example, the ordinary least squares (OLS) R2 is a downward-biased
estimate of the true model’s coefficient of determination, and the OLS
coefficient estimate for the mismeasured regressor is biased toward zero.
Irrelevant variables may appear significant since coefficient estimates
for perfectly measured regressors can be biased away from zero. This
bias can differ greatly between two subsamples, even if the rate of mea-
surement error is the same in both. The spurious-significance problem
is exacerbated by the fact that homoskedastic measurement error can
generate conditionally heteroskedastic data, thus inappropriately shrink-
ing OLS standard errors. Finally, the conditional expectation of the
independent variable given the proxy is generally nonlinear, which may
lead to premature abandonment of linear functional forms.2

Other explanations for the failure of investment-q regressions, such
as finance constraints, fixed costs, learning, or simultaneity bias, are
appealing but, unlike the measurement error hypothesis, cannot indi-
vidually explain all of q theory’s empirical shortcomings. It therefore is
natural to try an explicit errors-in-variables remedy. Papers doing so
include Abel and Blanchard (1986), Hoshi and Kashyap (1990), Blun-
dell et al. (1992), Cummins, Hassett, and Hubbard (1994), Gilchrist
and Himmelberg (1995), and Cummins, Hassett, and Oliner (1998).
For the most part, these papers find significant coefficients on measures
of internal funds. Notably, Gilchrist and Himmelberg find, like Fazzari
et al., that for most ways of dividing their sample into financially con-
strained and unconstrained firms, the constrained firms’ investment is
more sensitive to cash flow.

We use a very different method. Following Geary (1942), we construct
consistent estimators that use the information contained in the third-
and higher-order moments of the joint distribution of the observed
regression variables. By using generalized method of moments (GMM)
(Hansen 1982) to exploit the information afforded by an excess of
moment equations over parameters, we increase estimator precision and
obtain the GMM J-test of overidentifying restrictions as a tool for de-
tecting departures from the assumptions required for estimator
consistency.

The results from applying OLS and GMM estimators to our data on
U.S. manufacturing firms both cast doubt on the Fazzari et al. (FHP)
hypothesis: that the investment of liquidity-constrained firms responds

2 See Gleser (1992) for a discussion of this last point.
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strongly to cash flow. As expected, the OLS regression of investment on
measured Tobin’s q gives an unsatisfyingly low R2 and a significantly
positive estimate for the coefficient on cash flow. However, the estimated
cash flow coefficient is much greater for firms classified as uncon-
strained, the reverse of what is predicted by the FHP hypothesis. This
reverse pattern has been observed before in the literature and, like the
expected pattern, can be explained in terms of measurement error.

In contrast, our GMM estimates of the cash flow coefficient are small
and statistically insignificant for subsamples of a priori liquidity-con-
strained firms as well as subsamples of unconstrained firms. Further-
more, the GMM estimates of the population R2 for the regression of
investment on true marginal q are, on average, more than twice as large
as the OLS R2. Similarly, the GMM estimates of the coefficient on mar-
ginal q are much larger than our OLS estimates, though, as noted above,
we shall argue that these coefficients are not informative about adjust-
ment costs. Measurement error theory predicts these discrepancies, and,
in fact, we estimate that just over 40 percent of the variation in measured
Tobin’s q is due to true marginal q.

We organize the paper as follows. Section II reviews q theory, estab-
lishes criteria for its empirical evaluation, and describes likely sources
of error in measuring marginal q. Section III presents our estimators
and discusses their applicability to q theory. Section IV reports our es-
timates. Section V explains how a measurement error process that is
the same for both constrained and unconstrained firms can generate
spurious cash flow coefficient estimates that differ greatly between these
two groups. The construction of our data set and Monte Carlo simu-
lations of our estimators are described in Appendices A and B.

II. A Simple Investment Model

To provide a framework for discussing specification issues concerning
our empirical work, we present a standard dynamic investment model
in which capital is the only quasi-fixed factor and risk-neutral managers
choose investment each period to maximize the expected present value
of the stream of future profits. The value of firm i at time t is given by

j�

V p E � b [P(K , y )�it i,t�s i,t�j i,t�j( )[ sp1jp0

� w(I , K , n , h ) � I ] Q , (1)i,t�j i,t�j i,t�j i,t�j i,t�j itF ]
where E is the expectations operator; Qit is the information set of the
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manager of firm i at time t; bit is the firm’s discount factor at time t; Kit

is the beginning-of-period capital stock; Iit is investment; is theP(K , y )it it

profit function, and is the investment adjust-P 1 0; w(I , K , n , h )K it it it it

ment cost function, which is increasing in Iit, decreasing in Kit, and
convex in both arguments. The term hit is a vector of variables, such as
labor productivity, that might also affect adjustment costs, and yit and
nit are exogenous shocks to the profit and adjustment cost functions;
both are observed by the manager but unobserved by the econometri-
cian at time t. All variables are expressed in real terms, and the relative
price of capital is normalized to unity. Note that any variable factors of
production have already been maximized out of the problem.

The firm maximizes equation (1) subject to the following capital stock
accounting identity:

K p (1 � d )K � I , (2)i,t�1 i it it

where di is the assumed constant rate of capital depreciation for firm
i. Let xit be the sequence of Lagrange multipliers on the constraint (2).
The first-order condition for maximizing the value of the firm in equa-
tion (1) subject to (2) is

1 � w(I , K , n , h ) p x , (3)I it it it it it

where

j�

j�1x p E � b (1 � d ) [P (K , y )�it i,t�s i K i,t�j i,t�j( )[ sp1jp1

� w (I , K , n , h )] Q . (4)K i,t�j i,t�j i,t�j i,t�j itF ]
Equation (3) states that the marginal cost of investment equals its ex-
pected marginal benefit. The left side comprises the adjustment and
purchasing costs of capital goods, and the right side represents the
expected shadow value of capital, which, as shown in (4), is the expected
stream of future marginal benefits from using the capital. These benefits
include both the marginal additions to profit and reductions in instal-
lation costs. Since we normalize the price of capital goods to unity, xit

is the quantity “marginal q” referred to in the Introduction.
Most researchers to date have tested q theory via a linear regression

of the rate of investment on xit. This procedure requires a proxy for
the unobservable xit and a functional form for the installation cost func-
tion having a partial derivative with respect to Iit that is linear in

and nit. Below we consider at length the problem of obtaining aI /Kit it
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proxy. A class of functions that meets the functional form requirement
and is also linearly homogeneous in Iit and Kit is given by

2Iit
w(I , K , n , h ) p (a � a n )I � a � K f(n , h ). (5)it it it it 1 2 it it 3 it it itK it

Here, f is an integrable function, and are constants. We re-a , … , a1 3

strict to ensure concavity of the value function in the maximi-a 1 03

zation problem. The adjustment cost functions chosen either explicitly
or implicitly by all researchers who test q theory with linear regressions
are variants of (5). Differentiating (5) with respect to Iit and substituting
the result into (3) yields the familiar regression equation

y p a � bx � u , (6)it 0 it it

where and uit {y { I /K , a { �(1 � a )/2a , b { 1/2a ,it it it 0 1 3 3

�a n /2a .2 it 3

A. Model Evaluation Criteria

To evaluate this model, most authors regress yit on a proxy for xit, usually
a measure of Tobin’s q, and then do one or more of the following three
things: (i) examine the adjustment costs implied by estimates of b; (ii)
examine the explanatory power of xit, as measured by the R2 of the
fitted model; and (iii) test whether other variables enter significantly
into the fitted regression, since theory says that no variable other than
xit should appear in (6). Some authors split their samples into subsam-
ples consisting of a priori financially constrained and unconstrained
firms and then perform these evaluations, especially point iii, separately
on each subsample.

In the present paper we estimate financially constrained and uncon-
strained regimes by fitting the full sample to models that interact cash
flow with various financial constraint indicators. We perform measure-
ment error–consistent versions of points ii and iii. We ignore point i
because any attempt to relate b to adjustment costs contains two serious
pitfalls. First, equation (3) implies that a firm’s period t marginal ad-
justment costs are identically equal to and are therefore inde-x � 1it

pendent of b. Second, the regression equation (6) cannot be integrated
back to a unique adjustment cost function but to a whole class of func-
tions given by (5). Any attempt at evaluating a firm’s average adjustment
costs, requires a set of strong assumptions to choose a functionw/I ,it

from this class, and different arbitrary choices yield widely different
estimates of adjustment costs.3 Note that the constant of integration
should not be interpreted as a fixed cost since it does not necessarily

3 See Whited (1994) for further discussion and examples.
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“turn off” when investment is zero. It can, however, be interpreted as a
permanent component of the process of acquiring capital goods, such
as a purchasing department.

B. Sources of Measurement Error

We now show how attempts to use Tobin’s q to measure marginal q can
admit serious error. To organize our discussion we use four quantities.
The first is marginal q, defined previously as xit. The second is average
q, defined as where the numerator is given by (1); recall that VitV /K ,it it

is the manager’s subjective valuation of the capital stock. The third is
Tobin’s q, which is the financial market’s valuation of average q. Con-
ceptual and practical difficulties exist in measuring the components of
Tobin’s q; we therefore introduce a fourth quantity called measured q,
defined to be an estimate of Tobin’s q. Measured q is the regression
proxy for marginal q; average q and Tobin’s q are simply devices for
identifying and assessing possible sources of error in measuring marginal
q.

These sources can be placed in three useful categories, corresponding
to the possible inequalities between successive pairs of the four concepts
of q. First, marginal q may not equal average q, which will occur whenever
we have a violation of the assumption either of perfect competition or
of linearly homogeneous profit and adjustment cost functions. A second
source of measurement error is divergence of average q from Tobin’s
q. As discussed in Blanchard et al. (1993), stock market inefficiencies
may cause the manager’s valuation of capital to differ from the market
valuation. Finally, even if marginal q equals average q and financial
markets are efficient, numerous problems arise in estimating Tobin’s q.
Following many researchers in this area, we estimate Tobin’s q by eval-
uating the commonly used expression

D � S � Nit it it
x p . (7)it K it

Here Dit is the market value of debt, Sit is the market value of equity, Nit

is the replacement value of inventories, and Kit is redefined as the re-
placement value of the capital stock. Note that the numerator only
approximates the market value of the capital stock. The market values
of debt and equity equal the market value of the firm, so the market
value of the capital stock is correctly obtained by subtracting all other
assets backing the value of the firm: not just the replacement value of
inventories, but also the value of non–physical assets such as human
capital and goodwill. The latter assets typically are not subtracted be-
cause data limitations make them impossible to estimate. An additional
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source of error is that Dit, Nit, and Kit must be estimated from accounting
data that do not adequately capture the relevant economic concepts.
As is typical of the literature, we estimate these three variables using
recursive procedures; details can be found in Whited (1992). An alter-
native method of constructing Kit that addresses the problem of capital
aggregation is given by Hayashi and Inoue (1991).

From this discussion it is clear that the measurement errors are serially
correlated because market power persists over time, because deviations
of market expectations from fundamental value are subject to persistent
“fads,” and because the procedures used to approximate the compo-
nents of (7) directly induce serial correlation in its measurement error.
These procedures use a previous period’s estimate of a variable to cal-
culate the current period’s estimate, implying that the order of serial
correlation will be at least as great as the number of time-series obser-
vations. This type of correlation violates the assumptions required by
the measurement error remedies used in some of the papers cited in
the Introduction. As shown below, however, our own estimators permit
virtually arbitrary dependence.

III. Data and Estimators

Our data set consists of 737 manufacturing firms from the Compustat
database covering the years 1992–95. Our sample selection procedure
is described in Appendix A, and the construction of our regression
variables is described in the appendix to Whited (1992). Initially we
treat this panel as four separate (but not independent) cross sections.
We specify an errors-in-variables model, assume that it holds for each
cross section, and then compute consistent estimates of each cross sec-
tion’s parameters using the estimators we describe below. Assuming that
the parameters of interest are constant over time, we next pool their
cross-section estimates using a minimum distance estimator, also de-
scribed below.

A. Cross-Section Assumptions

For convenience we drop the subscript t and rewrite equation (6) more
generally as

y p z a � x b � u . (8)i i i i

For application to a split sample consisting only of a priori financially
constrained (or unconstrained) firms, zi is a row vector containing

and For application to a full sample, ziz p 1 z p (cash f low) /K .i0 i1 i i

further includes and where if firm i is finan-z p d z z p d , d p 1i2 i i1 i3 i i
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cially constrained and otherwise. We assume that ui is a meand p 0i

zero error independent of (zi, xi) and that xi is measured according to

x p g � x � e , (9)i 0 i i

where xi is measured q and ei is a mean zero error independent of (ui,
zi, xi). The intercept g0 allows for the nonzero means of some sources
of measurement error, such as the excess of measured q over Tobin’s q
caused by unobserved non–physical assets. Our remaining assumptions
are that (ui, ei, zi1, zi2, zi3, xi), are independently and iden-i p 1, … , n,
tically distributed (i.i.d.), that the residual from the projection of xi on
zi has a skewed distribution, and that The reason for the last twob ( 0.
assumptions and a demonstration that they are testable are given in
subsection B.

There are two well-known criticisms of equation (8) and its accom-
panying assumptions. First, the relationship between investment and
marginal q (i.e., between yi and xi) may be nonlinear. As pointed out
by Abel and Eberly (1996) and Barnett and Sakellaris (1998), this prob-
lem may occur when there are fixed costs of adjusting the capital stock.
These papers present supporting empirical evidence; recall, however,
that a linear measurement error model can generate nonlinear con-
ditional expectation functions in the data, implying that such evidence
is ambiguous.

The second well-known criticism is that ui may not be independent
of (zi, xi) because of the simultaneous-equations problem. The possible
dependence between ui and xi arises because the “regression” (6) un-
derlying (8) is a rearranged first-order condition. Recalling that ui is
inversely related to ni, note that nit does not appear in (4), the expression
giving xit. This absence is the result of our one-period time to build
assumption. To the extent that this assumption holds, therefore, nit can
be related to xit only indirectly. One indirect route is the effect of nit on

and thence on the future marginal revenue product of cap-K , j ≥ 1,i,t�j

ital. This route is blocked if we combine our linearly homogeneous
adjustment cost function with the additional assumptions of (i) perfect
competition and (ii) linearity of the profit function in The otherK .i,t�j

indirect route is temporal dependence between nit and f {i,t�j

This route can be blocked by a variety of as-(n , y , h ), j ≥ 1.i,t�j i,t�j i,t�j

sumption sets such as the following: (iiia) fit is independent of forfi,t�j

or (iiib) nit is independent of yit for all t, and the function f ap-j ≥ 1;
pearing in (5) is identically zero. Note that conditions i and ii, which
are necessary, also eliminate the divergence of marginal from average
q. Our estimates will be valuable, then, to the extent that measurement
error is large, but mostly because of the other sources discussed in
Section IIB.

The possible dependence between ui and the cash flow ratio, zi1, occurs
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if current investment typically becomes productive, cash flow–producing
capital within the period, a violation of our one-period time to build
assumption. Other possible elements of zi are dummy variables indi-
cating the presence of liquidity constraints and the interactions of these
dummies with zi1. One dummy identifies firms lacking a bond rating;
the other dummy identifies “small” firms. We argue below that firm size
and bond ratings are independent of ui.

We also see a noteworthy problem with our measurement error as-
sumptions: they ignore mismeasurement of the capital stock. If capital
is mismeasured, then, since it is the divisor in the investment rate yi,
the proxy xi, and the cash flow ratio zi1, these ratios are also mismeasured,
with conditionally heteroskedastic and mutually correlated measure-
ment errors.

It is clear that the criticized assumptions may not hold. However, only
assumption violations large enough to qualitatively distort inferences
are a problem. In Appendix B we present Monte Carlo simulations
showing that it is possible to detect such violations with the GMM J-test
of overidentifying restrictions.

B. Cross-Section Estimators

To simplify our computations we first “partial out” the perfectly mea-
sured variables in (8) and (9) and rewrite the resulting expressions in
terms of population residuals. This yields

y � z m p h b � u (10)i i y i i

and

x � z m p h � e , (11)i i x i i

where

′ �1 ′(m , m , m ) { [E(z z )] E[z (y , x , x )]y x x i i i i i i

and Given this is the textbook classical errors-h { x � z m . (m , m ),i i i x y x

in-variables model, since our assumptions imply that ui, ei, and hi are
mutually independent. Substituting

n �1 n

′ ′ˆ ˆ(m , m ) { z z z (y , x )� �( )y x i i i i i
ip1 ip1

into (10) and (11), we estimate b, and with the GMM2 2 2E(u ), E(e ), E(h )i i i

procedure described in the next paragraph. Estimates of the lth element
of a are obtained by substituting the GMM estimate of b and the lth
elements of and intoˆ ˆm my x
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a p m � m b, l ( 0. (12)l yl xl

Estimates of the population R2 for (8), are2r { 1 � [Var (u )/ Var (y )],i i

obtained by evaluating

′ 2 2( )m Var (z )m � E h by i y i
2r p (13)′ 2 2 2( ) ( )m Var (z )m � E h b � E uy i y i i

at the sample covariance matrix for z, and the GMM estimatesˆ ˆm , m ,y x

of b, and2 2E (h ) , E (u ) .i i

Our GMM estimators are based on equations expressing the moments
of and as functions of b and the moments of ui, ei, andy � z m x � z mi i y i i x

hi. There are three second-order moment equations:

2 2 2 2E[(y � z m ) ] p b E(h ) � E(u ), (14)i i y i i

2E[(y � z m )(x � z m )] p bE(h ), (15)i i y i i x i

and

2 2 2E[(x � z m ) ] p E(h ) � E(e ). (16)i i x i i

The left-hand-side quantities are consistently estimable, but there are
only three equations with which to estimate the four unknown param-
eters on the right-hand side. The third-order product moment equa-
tions, however, consist of two equations in two unknowns:

2 2 3E[(y � z m ) (x � z m )] p b E(h ) (17)i i y i i x i

and

2 3E[(y � z m )(x � z m ) ] p bE(h ). (18)i i y i i x i

Geary (1942) was the first to point out the possibility of solving these
two equations for b. Note that a solution exists if the identifying as-
sumptions and are true, and one can test the contrary3b ( 0 E(h ) ( 0i

hypothesis or or both by testing whether the sample3b p 0 E(h ) p 0i

counterparts to the left-hand sides of (17) and (18) are significantly
different from zero.

Given b, equations (14)–(16) and (18) can be solved for the remain-
ing right-hand-side quantities. We obtain an overidentified equation
system by combining (14)–(18) with the fourth-order product moment
equations, which introduce only one new quantity, :4E(h )i

3 3 4 2 2E[(y � z m ) (x � z m )] p b E(h ) � 3bE(h )E(u ), (19)i i y i i x i i i
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2 2 2 4 2 2E[(y � z m ) (x � z m ) ] p b [E(h ) � E(h )E(e )]i i y i i x i i i

2 2 2� E(u )[E(h ) � E(e )], (20)i i i

and
3 4 2 2E[(y � z m )(x � z m ) ] p b[E(h ) � 3E(h )E(e )]. (21)i i y i i x i i i

The resulting eight-equation system (14)–(21) contains the six un-
knowns We estimate this vector by2 2 2 3 4(b, E(u ), E(e ), E(h ), E(h ), E(h )).i i i i i

numerically minimizing a quadratic form in
n1⎛ ⎞2 2 2 2ˆ[(y � z m ) ] � [b E(h ) � E(u )]� i i y i in ip1

n _ ,1
3 4 2 2⎜ ⎟ˆ ˆ[(y � z m )(x � z m ) ] � b[E(h ) � 3E(h )E(e )]� i i y i i x i i in ip1⎝ ⎠

where the matrix of the quadratic form is chosen to minimize asymptotic
variance. This matrix differs from the standard optimal weighting matrix
by an adjustment that accounts for the substitution of forˆ ˆ(m , m )x y

see Erickson and Whited (1999) for details.(m , m );x y

Although the GMM estimator just described efficiently utilizes the
information contained in equations (14)–(21), nothing tells us that this
system is an optimal choice from the infinitely many moment equations
available. We therefore report the estimates obtained from a variety of
equation systems; as will be seen, the estimates are similar and support
the same inference. We use three specific systems: (14 )–(18), (14)–(21),
and a larger system that additionally includes the equations for the fifth-
order product moments and the third-order non–product moments. We
denote estimates from these nested systems as GMM3, GMM4, and
GMM5.4

Along with estimates of a1, a2, b, and r2, we shall also present estimates
of the population R2 for (9). This quantity2t { 1 � [Var (e )/ Var (y )],i i

is a useful index of measurement quality: the quality of the proxy variable
xi ranges from worthless at to perfect at We estimate t22 2t p 0 t p 1.
in a way exactly analogous to that for r2.

The asymptotic distributions for all the estimators of this section can
be found in Erickson and Whited (1999).

C. Identification and the Treatment of Fixed Effects

Transforming the observations for each firm into deviations from that
firm’s four-year averages or into first differences is a familiar preventive
remedy for bias arising when fixed effects are correlated with regressors.

4 Cragg (1997) gives an estimator that, apart from our adjustment to the weighting
matrix, is the GMM4 estimator.
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For our data, however, after either transformation we can find no evi-
dence that the resulting models satisfy our identifying assumptions

and the hypothesis that the left-hand sides of (17)3b ( 0 E(h ) ( 0 :i

and (18) are both equal to zero cannot be rejected at even the .1 level,
for any year and any split-sample or full-sample specification.5 In fact,
the great majority of the p-values for this test exceed .4. In contrast,
untransformed (levels) data give at least some evidence of identification
with split-sample models and strong evidence with the interaction term
models; see tables 1 and 2 below. We therefore use data in levels form.
Our defense against possible dependence of a fixed effect in ui (or ei)
on (zi, xi) is the J-test. The test will have power to the extent that the
dependence includes conditional heteroskedasticity (which is simulated
in App. B), conditional skewness, or conditional dependence on other
high-order moments.

D. Combining Cross-Section Estimates Using Minimum Distance Estimation

Let g denote any one of our parameters of interest: a1, a2, b, r2, or t2.
Suppose that are the four cross-section estimates of g givenˆ ˆg , … , g1 4

by any one of our estimators. An estimate that is asymptotically more
efficient than any of the individual cross-section estimates is the value
minimizing a quadratic form in where the matrixˆ ˆ(g � g, … , g � g),1 4

of the quadratic form is the inverse of the asymptotic covariance matrix
of the vector Newey and McFadden (1994) call this a clas-ˆ ˆ(g , … , g ).1 4

sical minimum distance estimator. A nice feature of this estimator is
that it does not require assuming that the measurement errors eit are
serially uncorrelated.6

For each parameter of interest we compute four minimum distance
estimates, corresponding to the four types of cross-section estimates:
OLS, GMM3, GMM4, and GMM5. To compute each minimum distance
estimator, we need to determine the covariances between the cross-
section estimates being pooled. Our estimate of each such covariance
is the covariance between the estimators’ respective influence functions
(see Erickson and Whited 1999).

5 The liquidity constraint criteria “firm size” and “bond rating” are defined in Sec. IV.
The Wald statistic used for these tests, based on the sample counterparts to the left-hand
sides of (17) and (18), is given in Erickson and Whited (1999). The intercept is deleted
from a, the vector zi is redefined to exclude and g0 is eliminated from (9) whenz p 1,i0

we fit models to transformed data.
6 We can also pool four estimates of the entire vector of parameters of interest, (a1, a2,

b, r2, t2), obtaining an asymptotic efficiency gain like that afforded by seemingly unrelated
regressions. However, this estimator performs unambiguously worse in Monte Carlo sim-
ulations than the estimators we use, probably because the 20 # 20 optimal minimum
distance weighting matrix is too large to estimate effectively with a sample of our size.
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E. Previous Approaches

It is useful to note how the measurement error remedies used by other
authors differ from our own. One alternative approach is to assume
that eit is serially uncorrelated, thereby justifying the estimators of Gril-
iches and Hausman (1986) or the use of lagged values of measured qit

as instruments. Studies doing so are those by Hoshi and Kashyap (1990),
Blundell et al. (1992), and Cummins, Hassett, and Hubbard (1994). As
noted, however, a substantial intertemporal error correlation is highly
likely. Another approach is that of Abel and Blanchard (1986), who
proxy marginal q by projecting the firm’s series of discounted marginal
profits onto observable variables in the firm manager’s information set.
Feasible versions of this proxy, however, use estimated discount rates
and profits, creating a measurement error that can be shown to have
deleterious properties similar to those in the classical errors-in-variables
model. For example, Gilchrist and Himmelberg (1995), who adapt this
approach to panel data, assume one discount rate for all firms and time
periods; insofar as the true discount rates are correlated with cash flow,
this procedure creates a measurement error that is correlated with the
proxy. Finally, a third alternative approach is that of Cummins, Hassett,
and Oliner (1998), who proxy marginal q by a discounted series of
financial analysts’ forecasts of earnings.

IV. Estimates and Tests from U.S. Firm-Level Manufacturing Data

Much of the recent empirical q literature has emphasized that groups
of firms classified as financially constrained behave differently than those
that are not. In particular, many studies have found that cash flow enters
significantly into investment-q regressions for groups of constrained
firms, a result that has been interpreted as implying that financial market
imperfections cause firm-level investment to respond to movements in
internal funds. In addressing this issue, we need to tackle two prelim-
inary matters. First, we need to find observable variables that serve to
separate our sample of firms into financially constrained and uncon-
strained groups. Second, we need to see whether our estimators can
perform well on these subsamples.

The investment literature has studied a number of indicators of po-
tential financial weakness. For example, Fazzari et al. (1988) use the
dividend payout ratio, arguing that dividends are a residual in the firm’s
real and financial decisions. Therefore, a firm that does not pay divi-
dends must face costly external finance; otherwise it would have issued
new shares or borrowed in order to pay dividends. Whited (1992) clas-
sifies firms according to whether they have bond ratings or not. The
intuition here is that a firm with a bond rating has undergone a great
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deal of public scrutiny and will be less likely to encounter the asymmetric
information problems that lead to financial constraints. Other authors
have chosen variables such as firm size, debt-to-assets ratios, interest
coverage ratios, age, and, as in Hoshi, Kashyap, and Scharfstein (1991),
membership in a Japanese keiretsu.

In choosing our measures of potential financial weakness, we first
discard those that are not relevant to the United States or those that
are not readily available, such as firm age. More important, we discard
those variables that are endogenously determined with the firm’s in-
vestment decision. For example, firms often issue debt precisely to fund
current and future investment, which means that either the current or
lagged debt-to-assets ratio may be correlated with the error in an
investment-q regression. Similarly, dividends are quite likely to be de-
termined simultaneously with investment since the manager must decide
whether the marginal dollar of cash flow is worth more to shareholders
invested inside the corporation or paid out as dividends.

Given these considerations, we have chosen firm size and the existence
of a bond rating as indicators of financial strength. The rationale for
using size is that small firms are more likely to be younger and therefore
less well known; thus they are more likely to face information asym-
metries. Since firm size is not a choice variable for the manager in the
short run and is unlikely to depend on investment over the short time
period covered by our panel, we can regard it as exogenous. Because
it is a continuous variable, we classify a firm as “small” if for all four
years of the sample it is in the lower third of each year’s distribution
of total assets and each year’s distribution of the capital stock. This
procedure divides our 737 firms into 217 constrained and 520 uncon-
strained firms. Alternate definitions requiring membership in the lower
half or quarter of one or both distributions produced qualitatively sim-
ilar results.

Turning to our other measure of financial health, we classify a firm
as unconstrained if it has a Standard & Poor’s bond rating in all four
years of the sample. This division gives 459 constrained firms and 278
unconstrained firms. We regard bond ratings as exogenous because
agencies that provide bond ratings tend to base their judgments more
on a consistent history of good financial and operating performance
than on current operating decisions.

Even when one supposes that firm size and bond rating are perfectly
exogenous, using either of these variables to sort firms into putatively
constrained/unconstrained groups is likely to misclassify some firms.
These misclassifications will not affect the size of tests of the null hy-
pothesis that cash flow does not affect investment for any firm. They
are likely, however, to reduce the power of such tests when the FHP
hypothesis is true.
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TABLE 1
p-Values from Identification Tests: Interaction Term Models

Interaction Term Model 1992 1993 1994 1995

Bond rating .005 .041 .013 .023
Firm size .003 .069 .023 .031
Bond rating and firm size .004 .068 .021 .030

Note.—The null hypothesis is or or both. The model is identified if the null hypothesis is false.3b p 0 E(h ) p 0i

A. The Models We Estimate

Even with data in levels, the subsamples determined by the firm size or
bond rating criteria provide limited evidence that our identifying as-
sumptions and hold: none of the unconstrained-firm3b ( 0 E(h ) ( 0i

subsamples, and only some of the constrained-firm subsamples, give .05
level rejections of the hypothesis that the left-hand sides of (17) and
(18) are both equal to zero. Monte Carlo results in Appendix table B3
suggest that the test is accurately sized and has good power for models
using the full sample but limited power for the smaller sample sizes
produced by splitting. We conclude that our split-sample models may
not be identified or else may not be reliably estimated by high-order
moments because of insufficient sample size.

Because of this identification ambiguity, we shall report estimates of
models for which there is strong evidence of identification. Specifically,
we use complete (not split) cross sections to estimate a model having
two additional regressors in zi: a 0-1 dummy variable equal to one if
firm i is liquidity constrained and an interaction of this dummy with
the cash flow ratio zi1. We consider two versions of this extended model,
distinguished by whether we use the size or bond rating criterion to
define the dummy. Table 1 shows that the size-defined interaction term
model gives the desired test rejections at the .05 level for three of the
four years, with the p-value of the exceptional year equal to .069. The
bond rating interaction term model provides rejections for all years,
having a maximum p-value of .041.

Split-sample estimation implies a model in which each parameter is
allowed to differ in value between the financially constrained and un-
constrained regimes. Our interaction term model is equivalent to con-
straining b and the other parameters estimated directly by high-order
moment GMM to be the same in both regimes, while leaving my, mx, and
Var(zi) unconstrained. We test this constraint by using the Wald statistic
given in Greene (1990, sec. 7.4) to see whether the difference between
the GMM estimates from the financially constrained and unconstrained
subsamples is significantly different from zero at the .05 level. For each
year the majority, or all, of the three tests (one each for the GMM3,
GMM4, and GMM5 estimators) fail to reject the constraint. These results



1044 journal of political economy

TABLE 2
Bond Rating Interaction Model: Estimates of b, the Coefficient on

Marginal q

OLS GMM3 GMM4 GMM5

1992 .014 .048 .026 .053
(.002) (.020) (.006) (.013)

1993 .013 .041 .041 .053
(.002) (.008) (.009) (.008)

1994 .014 .082 .048 .022
(.003) (.074) (.010) (.005)

1995 .018 .048 .036 .062
(.004) (.013) (.016) (.012)

Minimum distance .014 .045 .034 .033
(.002) (.006) (.005) (.005)

Note.—Standard errors are in parentheses under the parameter estimates. For OLS we use the heteroskedasticity-
consistent standard errors of White (1980).

are questionable in view of the ambiguous identification of the subsam-
ples, but we would be uncomfortable if the constraint were rejected.

B. Estimates of the Bond Rating Interaction Term Model

We shall report the minimum distance estimates described in Section
IIID for three different interaction term models. Space limitations pre-
vent us from also reporting, for every model, the annual cross-section
estimates that underlie the minimum distance estimates. Instead, we
shall report the annual estimates for one model. We choose the bond
rating interaction term model because it performs well on the identi-
fication tests and because we feel that the bond rating criterion is a
more direct indicator of liquidity constraints than the firm size criterion.

Table 2 presents both annual and minimum distance estimates of the
coefficient on marginal q for the bond rating interaction term model.
To illustrate the impact of measurement error on inference, we present,
alongside our GMM estimates, OLS estimates calculated under the as-
sumption of perfect measurement. The annual OLS estimates of the
coefficient on q are clustered tightly around the modal estimate of .014.
The minimum distance estimator that pools these estimates, henceforth
referred to as an OLS-MD estimate, is also .014. We note that these
values are quite similar to the estimates from the panel data studies
surveyed by Schaller (1990). By comparison, the GMM estimates for
each year are from 1.6 to 5.9 times larger than the OLS estimate from
the same year. The GMM3-MD, GMM4-MD, and GMM5-MD estimates
are from 2.4 to 3.2 times larger than the OLS-MD estimate. We present
these results primarily for comparison with those from other studies
since, for the reasons given earlier, the coefficient on q cannot be in-
terpreted in terms of adjustment costs. However, it can be interpreted
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TABLE 3
Bond Rating Interaction Model: Estimates of and Cash Flowa a � a :1 1 2

Responses of Financially Unconstrained and Constrained Firms

OLS GMM3 GMM4 GMM5

a1

1992 .378 �.082 .214 �.153
(.088) (.346) (.120) (.214)

1993 .369 �.005 �.008 �.168
(.067) (.156) (.168) (.171)

1994 .396 �.692 �.140 .273
(.101) (1.192) (.180) (.118)

1995 .465 .014 .197 �.207
(.106) (.218) (.249) (.223)

Minimum distance .392 �.041 .105 .100
(.061) (.123) (.098) (.093)

a1 � a2

1992 .131 �.061 .063 �.090
(.073) (.150) (.086) (.120)

1993 .062 �.060 �.061 �.113
(.031) (.060) (.063) (.072)

1994 .102 �.404 �.147 .045
(.051) (.587) (.098) (.064)

1995 .071 �.194 �.086 �.323
(.078) (.143) (.157) (.148)

Minimum distance .074 �.089 �.060 �.023
(.026) (.053) (.052) (.051)

Note.—Standard errors are in parentheses under the parameter estimates. For OLS we use the heteroskedasticity-
consistent standard errors of White (1980). The standard errors for the sum of the cash flow coefficients are obtained
via the delta method.

in terms of elasticities. Although we do not have a constant elasticity
functional form and cannot observe marginal q, we can nevertheless
conduct crude calculations using the median firm and our proxy for
marginal q. For 1992–95 the OLS elasticities are .20, .20, .23, and .25,
whereas the corresponding elasticities implied by the smallest GMM
estimate for each year are .37, .65, .36, and .50. Note that while the
response of investment to marginal q remains inelastic, it does increase
noticeably.

We now turn to the central issue of liquidity constraints and the
sensitivity of investment to cash flow. When comparing our results to
those in the existing literature, note that the cash flow coefficient in
our interaction term model gives the response for unconstrained firms,
whereas the response for constrained firms equals the sum of the cash
flow coefficient and the interaction term coefficient. Table 3 presents
our estimates of these quantities.

The annual OLS estimates of the cash flow coefficient in table 3 are
all positive and significant, as is the OLS-MD estimate. In contrast, only
two of the 12 annual GMM estimates are significantly positive at the .05
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level, and the GMM3-MD, GMM4-MD, and GMM5-MD are all insignif-
icant. Since the GMM standard errors are typically larger than those for
OLS, it is useful to point out that all but one of the annual GMM
estimates are closer to zero than the OLS estimate of the same year,
and all the GMM-MD estimates are closer to zero than OLS-MD. Since
the estimated coefficient gives the response of unconstrained firms, the
magnitude of the OLS-type estimates is unexpected; we shall remark on
this anomaly below.

Table 3 also shows that the annual OLS estimates of the sum of the
cash flow and interaction term coefficients, and the OLS-MD estimate
that pools these estimates of the sum, are all positive and significant—the
expected result for liquidity-constrained firms according to Fazzari et
al (1988). As was the case for unconstrained firms, however, virtually all
the GMM and GMM-MD estimates are insignificant at the .05 level; in
fact, the only significant estimate is negative. Further, the majority of
the GMM estimates are closer to zero than the corresponding OLS
estimate, despite the fact that the OLS estimates, contrary to expecta-
tions, are much closer to zero than the OLS coefficients for uncon-
strained firms.

The GMM results clearly do not support the FHP hypothesis. On the
other hand, the inconsistent OLS estimates cannot be said to support
the FHP hypothesis either, since they indicate that liquidity-constrained
firms are less sensitive to cash flow than unconstrained firms.7 Although
odd, this type of “wrong-way” differential cash flow sensitivity has been
reported by other researchers. For example, Gilchrist and Himmelberg
(1995), Kaplan and Zingales (1997), Kadapakkam, Kumar, and Riddick
(1998), and Cleary (1999) all provide evidence that firms classified as
unconstrained can have higher cash flow coefficients. In Section V below
we show how untreated measurement error can generate spurious dif-
ferential cash flow sensitivities, both the wrong-way pattern we experi-
ence and the “right-way” pattern predicted by the FHP hypothesis.

Next we examine the explanatory power parameter r2, which, as the
population R2 for (8), measures the usefulness or approximate cor-
rectness of q theory. There exist three versions of this parameter in the
interaction term model: one in which the quantities my, mx, and Var(zi)
appearing in (13) describe the a priori unconstrained-firm regime, a
second version in which they describe the constrained-firm regime, and
a third in which they describe the combined population. The combined
population values for b, and appear in (13) in all three2 2E(h ), E(u )i i

versions. Table 4 reports estimates of the third version only, since regime-

7 It is worth noting that we obtain similar results with standard panel data techniques.
The OLS estimates in first differences and instrumental variable estimates in levels and
first differences give the same “wrong-way” differential cash flow sensitivity. Annual OLS
estimates in deviations and first differences have this feature for every year.
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TABLE 4
Bond Rating Interaction Model: Estimates of Population of the2 2r , R

Investment Equation

OLS GMM3 GMM4 GMM5

1992 .228 .484 .417 .450
(.034) (.095) (.089) (.098)

1993 .211 .435 .385 .521
(.042) (.091) (.074) (.074)

1994 .219 .664 .459 .311
(.041) (.417) (.071) (.047)

1995 .201 .359 .271 .416
(.036) (.088) (.085) (.070)

Minimum distance .215 .436 .405 .384
(.025) (.046) (.046) (.036)

Note.—We define the OLS estimate of r2 to be the OLS R2. Standard errors are in parentheses under the parameter
estimates.

specific parameters are of little interest if the FHP hypothesis does not
hold. The GMM estimates are 1.4 to 2.5 times higher than the corre-
sponding OLS R2, evidence that simple q theory explains investment
considerably better than previously thought.

The large discrepancy between the GMM and OLS estimates above
is due to the poor quality of the proxy for marginal q. Recall that proxy
quality is described by t2, which ranges from zero to unity as the proxy
ranges from worthless to perfect as a measure of marginal q. There are
three versions of this parameter, analogous to those of the previous
paragraph, and table 5 gives estimates of the combined population ver-
sion. The estimates lie between .3 and .7, with an average of .46, sug-
gesting that our proxy is quite noisy.

Table 6 presents the p-values for the J-statistics of this model. We find
only one rejection at the .05 level, and its accompanying p-value is .046.
We therefore conclude that our data on investment, q, and cash flow
are consistent with the overidentifying restrictions generated by our
errors-in-variables model.

Table 7 presents the p-values for the test of overidentifying restrictions
associated with our minimum distance estimates (the minimum distance
analogue to the J-test). The hypothesis tested is that the parameter value
is constant over the four years. Time variation in a1 and is ofa � a1 2

interest since it violates the hypothesis that cash flow does not matter.
Time constancy of a1 is not rejected at the .05 level by any test, whereas
that for is rejected only by the GMM5-MD test, with a p-valuea � a1 2

of .046. The last result reflects the large negative GMM5 estimate for
1995. Time constancy of the adjustment cost parameter b is strongly
rejected by the GMM5-MD test, but by no other tests. It should be noted
that Monte Carlo results in Appendix B suggest that the time constancy
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TABLE 5
Bond Rating Interaction Model: Estimates of Population2t ,

of the Measurement Equation2R

GMM3 GMM4 GMM5

1992 .379 .535 .302
(.096) (.092) (.071)

1993 .398 .418 .353
(.059) (.062) (.064)

1994 .332 .469 .703
(.155) (.060) (.124)

1995 .508 .593 .477
(.068) (.126) (.065)

Minimum distance .442 .463 .391
(.048) (.049) (.050)

Note.—Standard errors are in parentheses under the parameter estimates.

tests (but not the GMM J-tests) may reject the null at rates very different
from the nominal .05 level.

C. Estimates of Other Models

Table 8 reports minimum distance estimates derived from the firm size
interaction term model. Table 8 also includes a model containing both
the firm size and bond rating dummies and their interactions with cash
flow. The coefficient sum estimate reported for this model is the sum
of the cash flow coefficient and both interaction term coefficients. Com-
paring this sum to the cash flow coefficient characterizes the difference
between the 215 firms that are liquidity constrained according to both
the bond rating and firm size criteria and the 275 firms that are un-
constrained according to both criteria.

The minimum distance estimates from table 8 reinforce the results
of the previous section. No more than about 50 percent of the variation
in measured q can be attributed to true marginal q, and correcting for
measurement error approximately doubles the estimates of both b and
r2. Most important, apart from the significant negative estimate of a1

from the firm size interaction model, cash flow does not matter, for
either liquidity-constrained or unconstrained firms. In other words, our
estimates do not support the FHP hypothesis of differential cash flow
sensitivity.

As a final check on the robustness of our results, we examined whether
using other measures of marginal q makes a difference. We reestimated
all models using as alternative proxies the tax-adjusted versions of To-
bin’s q in Poterba and Summers (1983). This gave only small quantitative
differences in our estimates and test statistics, and no qualitative dif-
ferences in our inferences. Although in theory tax adjustments should
improve the measurement of marginal q, in practice this improvement
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TABLE 6
Bond Rating Interaction Model: p-

Values of J-Tests of
Overidentifying Restrictions

Year GMM4 GMM5

1992 .251 .046
1993 .372 .141
1994 .704 .218
1995 .298 .506

appears negligible. The reason, we suspect, is that the adjustments use
firm-level effective tax rate estimates that are themselves quite noisy.
The gain from adjusting for taxes appears to be offset by this additional
source of noise. We also tried a simple ratio of the market value of assets
to the book value of assets, which is another proxy for marginal q used
in the corporate finance literature. Here, too, we found no qualitative
differences in our results.

V. Spurious Differences in Cash Flow Sensitivity

The large difference between the OLS-estimated cash flow sensitivities
for our constrained and unconstrained firms is not due to different
levels of measurement quality, but rather to differences in the variance
of the cash flow ratio. We shall explain this phenomenon for split-sample
estimation; the explanation for the interaction term models is essentially
the same. We conjecture that other authors’ estimates of differential
cash flow sensitivity can be explained similarly.

Consider the element of (12) corresponding to the cash flow
coefficient,

a p m � m b, (22)1 y1 x1

and recall that my1 and mx1 are the probability limits of the OLS slope
estimates from the regressions of yi on zi1 and xi on zi1. Suppose that

(cash flow does not matter), so that Further suppose,a { 0 b p m /m .1 y1 x1

for a simple example, that the constrained sample is generated by a
process in which whereas the unconstrained sample(m , m ) p (.2, 5),y1 x1

is generated by Then for the first(m , m ) p (.6, 15). a p .2 � 5by1 x1 1

group and for the other. Substituting the true valuea p .6 � 15b1

into either gives Substituting instead the at-b p m /m p .04 a p 0.y1 x1 1

tenuated value gives and In words, theb p .015 a p .125 a p .375.1 1

bias afflicting the marginal-q coefficient can be the same for both groups,
yet estimates of the cash flow coefficient will tend to be much larger
for one group than for the other.

In this example, my1 and mx1 differ substantially across subsamples
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TABLE 7
Bond Rating Interaction Model: p-Values of Parameter Constancy

Tests

Parameter OLS GMM3 GMM4 GMM5

b .437 .861 .133 .000
a1 .688 .948 .247 .092
a1 � a2 .637 .578 .318 .046
r2 .922 .782 .226 .052
t2 … .473 .281 .003

whereas the ratio remains constant. Our estimates andˆ ˆm /m m my1 x1 y1 x1

approximate these requirements, as table 9 shows for the bond rating
split. Insight into the subsample differences is suggested by the identity

: for both the bond rating and firm size splits,m p Cov (x , z )/ Var (z )x1 i i1 i1

the sample variance of zi1 is about three times larger for the constrained
firms than for the unconstrained firms.

VI. Conclusion

We have tackled directly the problem of how, when using a noisy proxy
for marginal q, to estimate the investment–marginal q relationship and
test for the effects of financial constraints on investment. Using our
approach, we find no evidence that cash flow belongs in the investment-
q regression, whether or not firms are deemed financially constrained.
It should not be surprising that our results differ from most of those
in the literature on finance constraints. The motivation for including
cash flow in the regression is not based on a formal model, but rather
on a loose analogy with the “excess sensitivity” arguments in the con-
sumption literature. The tenuous connection between these empirical
tests and any formal theory suggests that significant coefficients on cash
flow need not be evidence of finance constraints. Furthermore, as dis-
cussed in Chirinko (1993), the effects of liquidity constraints may be
reflected in marginal q because they may cause managers’ discount rates
to rise.

We feel that our results go a long way toward rehabilitating q theory:
despite its restrictive assumptions and simple structure, it apparently
explains much more data variation than had been previously thought.
Having said this, we must add that we do not think that q theory is the
“last word” on the theory of investment. Other aspects of the investment
process, such as learning, gestation lags, and capital heterogeneity, are
intuitively important. Our results strongly suggest, however, that future
work to evaluate their empirical importance should not ignore the prob-
lem of measurement error in marginal q. Further, as chronicled in Dixit
and Pindyck (1994), the theoretical investment literature has been mov-
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TABLE 8
Minimum Distance Estimates of Other Interaction Term Models

OLS GMM3 GMM4 GMM5

b

Firm size .014 .046 .057 .041
(.002) (.007) (.005) (.004)

Bond rating and firm size .013 .046 .042 .037
(.002) (.006) (.004) (.004)

a1

Firm size .226 �.125 �.190 �.012
(.059) (.089) (.093) (.074)

Bond rating and firm size .400 �.049 .042 .091
(.061) (.125) (.094) (.091)

a1 � Coefficients on Interaction Term(s)

Firm size .043 �.062 �.061 �.002
(.023) (.051) (.049) (.046)

Bond rating and firm size .043 �.061 �.024 .003
(.023) (.050) (.044) (.045)

r2

Firm size .210 .433 .451 .399
(.029) (.055) (.055) (.038)

Bond rating and firm size .221 .442 .357 .389
(.025) (.048) (.047) (.033)

t2

Firm size .442 .350 .440
(.053) (.041) (.042)

Bond rating and firm size .445 .449 .438
(.048) (.045) (.043)

Note.—We define the OLS estimate of r2 to be the OLS R2. Standard errors are in parentheses under the parameter
estimates.

TABLE 9
Estimates of andm , m , Var (z )x1 y1 i1

1992 1993 1994 1995

m̂ :y1

Constrained .210 .120 .206 .233
Unconstrained .566 .544 .620 .741

m̂ :x1

Constrained 5.686 4.362 7.429 8.966
Unconstrained 13.634 13.317 15.980 15.277

ˆ ˆm /m :y1 x1

Constrained .037 .027 .028 .026
Unconstrained .042 .041 .039 .049

̂Var(z ) :i1

Constrained .022 .023 .016 .013
Unconstrained .008 .007 .006 .005
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ing away from convex adjustment cost models, such as that underlying
q theory, toward theories that incorporate irreversibility and fixed costs.
Our results have obvious implications for testing such theories since
many of their predictions are formulated in terms of marginal q. Finally,
we caution that our results do not imply that investment is insensitive
to external financial constraints. Rather, the popular method of looking
at coefficients on cash flow may be misleading, and other possible tests
for liquidity constraints should be explored further.

Appendix A

Data

The data are taken from the 3,869 manufacturing firms (standard industrial
classification codes 2000–3999) in the combined annual and full coverage 1996
Standard & Poor’s Compustat industrial files. We select our sample by first
deleting any firm with missing data. To eliminate coding errors, we also delete
any firm for which reported short-term debt is greater than reported total debt
or for which reported changes in the capital stock cannot be accounted for by
reported acquisition and sales of capital goods and by reported depreciation.
We also delete any firm that experienced a merger accounting for more than
15 percent of the book value of its assets.

Appendix B

Monte Carlo Simulations

Readers may reasonably be skeptical of our empirical results since they are
produced by unusual estimators and tests based on high-order moments. We
therefore report some Monte Carlo simulations using artificial data very similar
to our real data, generated with parameter values very close to our real GMM
estimates. Some of the simulations use deliberately misspecified data generating
processes (DGPs) to investigate test power. We report only those outputs that
assist the reader in interpreting the results of Section IV.

Our first Monte Carlo simulation demonstrates that under correct specifica-
tion the cross-section GMM estimates can be very accurate, as well as distinctly
superior to OLS estimates made under the false assumption of correct mea-
surement. We generate 10,000 samples of 737 observations, the size of a cross
section of our actual data. Each observation has the form (yi, zi1, zi2, zi3, xi), where

and is a dummy variable. The first and second moments ofz p z d z p di2 i1 i i3 i

the simulation distribution for (zi1, zi2, zi3) equal the averages, over our four cross
sections, of the corresponding real-data sample moments from the bond rating
interaction term model. We generate (yi, xi) according to (8) and (9), where
(a, b) and the distribution for (xi, ei, ui) are such that (i) the assumptions of
Section IIIA are satisfied; (ii) (cash flow does not matter);a p a p a p 01 2 3

(iii) the OLS estimate (a0, a1, a2, a3, b) of the regression of yi on (1, zi1, zi2, zi3,
xi) equals, on average over the simulation samples, the average OLS estimate
over our four real cross sections; (iv) b, r2, and t2 are close to the average real-
data GMM estimates; and (v) the residuals and have, on averageˆ ˆy � z m x � z mi i y i i x

over the simulation samples, first and second moments equal to, and higher-
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TABLE B1
A. Monte Carlo Performance of GMM and OLS Estimators

OLS GMM3 GMM4 GMM5
ˆE(b) .014 .040 .041 .040

MAD ˆ(b) .026 .008 .006 .007
P ˆ(db � b d ≤ .01) .001 .738 .818 .755

ˆE(a )1 .387 �.007 �.012 �.001
MAD ˆ(a )1 .387 .137 .112 .123
P ˆ(da � a d ≤ .1)1 1 .001 .529 .572 .514

ˆ ˆE(a � a )1 2 .090 �.002 �.003 �.001
MAD ˆ ˆ(a � a )1 2 .090 .051 .047 .049
P ˆ ˆ(d (a � a ) � (a � a ) d ≤ .1)1 2 1 2 .599 .886 .907 .903

2ˆE(r ) .239 .407 .421 .406
MAD 2ˆ(r ) .134 .083 .072 .063
P 2 2ˆ(dr � r d ≤ .1) .230 .672 .734 .794

2ˆE(t ) … .480 .423 .403
MAD 2ˆ(t ) … .091 .098 .105
P 2 2ˆ(d t � t d ≤ 0.1) … .713 .819 .825

B. Average of the Sample Moments

Variance

Third
Standardized

Moment

Fourth
Standardized

Moment

Fifth
Standardized

Moment

From 10,000 Trials

ˆy � m zy .010 3.042 22.295 214.59
ˆx � m zx 5.326 2.539 14.950 117.61

From Our Four Years of Real Data

ˆy � m zy .010 2.847 19.351 159.55
ˆx � m zx 5.349 2.954 14.213 84.52

Note.—The true model is

2 2y p .023 � .04x � 0z � 0d z � 0d � u , r p .372, t p .437.i i 1i i 1i i i

The estimated model is

y p a � bx � a z � a d z � a d � u .i 0 i 1 1i 2 i 1i 3 i i

The sample size is 737, with 10,000 trials. In panel B, the nth standardized moment is defined as the nth moment
divided by the standard deviation raised to the nth power.

order moments comparable to, the corresponding average sample moments
from our real data; see panel B of table B1.

Panel A of table B1 reports estimator performance for the parameters of
interest from the interaction term model. We report the mean of an estimator,
its mean absolute deviation (MAD), and, except for b, the probability an estimate
is within .1 of the true value. Because b is quite small, we report the probability
that its estimates are within .01 of the true value. By every criterion the GMM
estimators are clearly superior to OLS.

We also record the actual sizes of GMM tests based on asymptotic .05 signif-
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TABLE B2
Monte Carlo J-Test Rejection Rates

GMM4 GMM5

Size .040 .068
Power:

Nonlinear functional form .326 .520
Heteroskedastic regression error .342 .533
Heteroskedastic measurement

error .400 .506
Mismeasured capital stock .230 .426

Note.—All rejection rates are calculated using an asymptotic .05 significance level critical value.

TABLE B3
Monte Carlo Performance of

Identification Tests

Observations Size Power

Interaction Term
Model

737 .043 .516

Basic Model

737 .044 .507
500 .047 .377
200 .049 .147

Note.—All rejection rates are calculated using an as-
ymptotic .05 significance level critical value. The “basic
model,” which excludes dummies and interaction terms, is
the model we fit to split samples. The null hypothesis is

or or both.3b p 0 E(h ) p 0i

icance level critical values. Those for the J-tests are given in table B2, where they
are seen to be approximately correct. Those for the t-tests of the nulls a p 01

and versus positive alternatives are not in the table, but their min-a � a p 01 2

imum is .068, evidence of a tendency to overreject that supports our findings
of insignificance in Section IVB.

We next simulate four different misspecified DGPs to investigate the power
of the J-test. Each is obtained by introducing one type of misspecification into
the correctly specified “baseline” DGP described above. We make yi depend
nonlinearly on xi, or we mismeasure the capital stock (modeled by multiplying
each (yi, xi, zi1) from the baseline DGP sample by an i.i.d. lognormal variable),
or we make the standard deviation of ui or ei depend on (zi, xi) (since, e.g.,
failure of conditions for independence of ui and xi given in Sec. IIIA will cause

to be nonzero). We limit the degree of each misspecification so that2Cov (z , u )il i

the absolute biases in the GMM estimates of b, a1, a2, and r2 are no larger than
the absolute differences between the means of the OLS and GMM estimates
from the baseline DGP. Table B2 shows that the GMM5 J-test exhibits usefully
large power, ranging from .426 to .533. These numbers clearly depend on how
a misspecification is “specified” in our experiment; some specifications will pro-
duce more power and others will produce less. Also, we did not combine mis-
specifications, which we suspect would increase test power.

Table B3 refers to the identification test of Section IIIC. Power numbers are
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TABLE B4
Monte Carlo Performance of GMM-MD and OLS-MD Estimators

OLS GMM3 GMM4 GMM5
ˆE(b) .014 .039 .039 .038

MAD ˆ(b) .026 .003 .003 .003
P ˆ(db � b d ≤ .01) .000 .982 .985 .971

ˆE(a )1 .393 �.006 �.007 .003
MAD ˆ(a )1 .393 .132 .100 .113
P ˆ(da � a d ≤ .1)1 1 .000 .570 .626 .556

ˆ ˆE(a � a )1 2 .091 .000 �.000 .002
MAD ˆ ˆ(a � a )1 2 .091 .037 .030 .032
P ˆ ˆ(d (a � a ) � (a � a ) d ≤ .1)1 2 1 2 .675 .953 .982 .978

2ˆE(r ) .229 .412 .415 .397
MAD 2ˆ(r ) .189 .055 .053 .043
P 2 2ˆ(dr � r d ≤ .1) .000 .871 .889 .944

2ˆE(t ) … .464 .457 .439
MAD 2ˆ(t ) … .042 .035 .033
P 2 2ˆ(d t � t d ≤ .1) … .944 .981 .984

TABLE B5
Monte Carlo Performance of Parameter Constancy Tests

OLS GMM3 GMM4 GMM5

Size

b .103 .094 .173 .283
a1 .071 .006 .011 .021
a1 � a2 .057 .021 .027 .028
r2 .065 .117 .113 .197
t2 … .103 .106 .191

Power

b .211 .287 .404 .513
a1 .290 .368 .513 .540
a1 � a2 .934 .684 .763 .782
r2 .980 .810 .858 .920
t2 … .502 .682 .776

taken from the baseline DGP. Size numbers are obtained by replacing the base-
line regressors with normal variates having the same first and second moments.
The test is accurately sized at all sample sizes and has good power at the full-
sample size but low power at a sample size like that of our smaller split samples.

Finally, table B4 confirms that the GMM-MD estimators can outperform the
cross-section GMM estimators. Each of the 737 observations in a sample from
this simulation consists of a draw from the baseline DGP and three additional
draws conditional on the value of the financial constraint dummy from draw 1.
Time dependence is generated by decomposing uit into two equal-variance com-
ponents: one that is fixed over the four cross sections and one that is i.i.d. The
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actual size of the .05 level time constancy test associated with each estimator is
given in table B5; note the very poor approximation for some of these tests.
The actual sizes of the one-sided t-tests of and are not ina p 0 a � a p 01 1 2

the table, but their minimum is .127. The power numbers in table B5 are ob-
tained by altering the DGP so that and2a p a � a p .26, b p .05, r p .547,1 1 2

in even-numbered “years.”2t p .696
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