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ABSTRACT

Time series data are often subject to measurement error, usually the result of

needing to estimate the variable of interest. While it is often reasonable to

assume the measurement error is additive, that is, the estimator is condition-

ally unbiased for the missing true value, the measurement error variances of-

ten vary as a result of changes in the population/process over time and/or

changes in sampling effort. In this paper we address estimation of the pa-

rameters in linear autoregressive models in the presence of additive and un-

correlated measurement errors, allowing heteroskedasticity in the measure-

ment error variances. The asymptotic properties of naive estimators that ig-

nore measurement error are established, and we propose an estimator based on

correcting the Yule-Walker estimating equations. We also examine a pseudo-

likelihood method, which is based on normality assumptions and computed

using the Kalman filter. Other techniques that have been proposed, including

two that require no information about the measurement error variances are re-

viewed as well. The various estimators are compared both theoretically and

via simulations. The estimator based on corrected estimating equations is easy

to obtain, readily accommodates (and is robust to) unequal measurement er-

ror variances, and asymptotic calculations and finite sample simulations show

that it is often relatively efficient.

Keywords: Estimating equation, heteroskedasticity, error in variables, time series,

state-space, Kalman filter.
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1 Introduction

Measurement error is a ubiquitous in many statistical problems and has re-

ceived considerable attention in various regression contexts (e.g., Fuller, 1987

and Carroll, Ruppert, and Stefanski, 1995). Time series data is no exception

when it comes to the presence of measurement error; the variable of interest

is often estimated rather than observed exactly. Ecological examples include

the estimation of animal densities through capture/recapture techniques or

the estimation of food abundance over a large area by spatial subsampling.

In environmental studies chemical concentrations in the air or water at a par-

ticular time are typically from collections at various locations, while many eco-

nomic, labor and public health variables are estimated on a regular basis over

time often through a complex sampling scheme. Examples of the latter include

medical data indices and results of a national opinion poll (Scott and Smith,

1974, Scott, Smith and Jones, 1977), estimation of the number of households in

Canada and labor force statistics in Israel (Pfeffermann, Feder, and Signorelli,

1998) and retail sales figures (Bell and Hillmer, 1990, Bell and Wilcox, 1993).

To frame the general problem, consider a times series {Yt}, where Yt is a

random variable and t indexes time. The realized true values are denoted

{yt, t = 1, ..., T}, but instead of yt one observes the outcome of Wt, where

E(Wt|yt) = yt, with |yt shorthand for “given Yt = yt”. Hence, Wt is a con-

ditionally unbiased estimator of yt, or equivalently, Wt = yt + ut, where ut,

which represents measurement/survey error, has E(ut|yt) = 0. In Section 2,

we show that this last assumption implies Cov(ut, Yt) = 0 but allows the con-

ditional measurement error variance to depend on Yt.

The focus of this paper is estimation of the parameters in an autoregressive

model for Yt from observations of Wt when the measurement error is addi-

tive, uncorrelated, and possibly heteroskedastic. Autoregressive models are a
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popular choice in many disciplines for the modeling of time series. This is es-

pecially true of population dynamics where AR(1) or AR(2) models are often

employed with Y equal to the log of population abundance (or density), see

for example Williams and Liebhold (1995), Dennis and Taper (1994, equation

7) and references therein. That work does not consider measurement error.

To motivate some aspects of the problem, Table 1 presents estimated mouse

densities (mice per hectare on the log scale to which autoregressive models

are usually fit for abundance data) and associated standard errors over a nine

year period from one stand in the Quabbin Reservoir, located in Western Mas-

sachusetts. This is one part of the data used in Elkinton et al. (1996). The

stand density and associated standard errors were obtained using estimates

from subplots. The sampling effort consists of two subplots in 87, 89 and 90

and three in the other years. The estimated standard errors for the log densities

were obtained using the delta method. The purpose of this example is to illus-

trate that the estimated standard errors vary considerably (with 1989 and 1990

values differing by a factor of about 11). This can occur for a number of reasons,

including the changes in sampling effort and changes of the nature of the pop-

ulation being sampled at each time point, and indicate the need to consider a

heteroskedastic measurement error model. Of course, if the estimated density

is unbiased for true density then (by Jensen’s inequality) the same will not be

true after a log transformation. In this example estimates of the approximate

biases were negligible, and the assumption of additive measurement error is

reasonable. If this were not the case then a non-linear time-series / measure-

ment model would be required.

Table 1 about here.

The following describes the paper’s organization and highlights our contri-

butions. First, the models are spelled out in Section 2, with particular interest

4



in allowing for heteroskedasticity in the measurement error variances and the

case when estimates of the measurement error variances are available. This

problem has not received careful attention in the literature. (Existing methods

are reviewed and discussed in Sections 4.2-4.4.) Following that, in Section 3

we derive the asymptotic bias of estimators of parameters in the AR(p) model

when the measurement error is ignored; the bias of so-called naive estimators.

These results do not appear to be in the literature currently. For the AR(1)

model the bias has a simple, explicit, and somewhat surprising “attenuation”

form. For p > 1, the biases have simple matrix forms, and we illustrate the

pernicious effects of measurement error in the AR(2) case. The naive estimator

of the error variance has positive asymptotic bias for all p. Next, Section 4.1

presents a simple new estimator for the problem of fitting autoregressive mod-

els in the presence of measurement error. This new estimator is based on cor-

rected asymptotic estimating equations and does not require the specification

of a likelihood or the assumption of constant measurement error variance. In

Section 4.1 we also develop the asymptotic properties of that estimator under

various assumptions. We believe that this is the first paper to develop asymp-

totic results for this problem when the measurement error is heteroskedastic.

After that, Section 4.2 discusses a pseudo-maximum likelihood approach that

assumes normality and uses estimated measurement error variances. Sections

4.3 and 4.4 review two other existing methods that do not require knowledge of

the measurement error variance. In Section 5 we compare our new method to

the existing methods both asymptotically and with a small simple simulation

study. Discussion follows in Section 6.

In addition to estimating the parameters in the dynamic model, a number

of authors have addressed forecasting Yt for t > T or estimating yt for t ≤ T

in the presence of measurement error. The latter has been the focus of much
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of the previous work in this area (e.g. Scott and Smith (1974), Scott, Smith and

Jones (1977), Bell and Hillmer (1990), Pfeffermann (1991), Pfeffermann, Feder

and Signorelli (1998), Feder (2001) and references therein). Certain aspects of

forecasting are addressed in Scott and Smith (1974), Scott, Smith and Jones

(1977), Wong and Miller (1990) and Koreisha and Fang (1999). We will not

address forecasting or estimation of yt in this paper directly.

2 Model for Observed Data

Assuming Yt is centered to have mean 0, the autoregressive model specifies

that Yt is a linear combination of previous values, plus noise:

Yt = φ1Yt−1 + . . . + φpYt−p + et, t = p + 1, . . . , T, (1)

where the et are iid with mean zero and variance σ2
e . Let Y refer to the entire

series. We focus on the case where φ1, . . . , φp are such that the process Yt is

stationary (e.g. Box, Jenkins, and Reinsel, 1994 Chapter 3).

As in the Introduction, Y is unobserved; we observe Wt = Yt + ut with

E(ut|yt) = 0 or equivalently E(Wt|yt) = yt. The ut represents additive mea-

surement or survey error. We assume the measurement errors are uncorre-

lated, that is Cov(ut, ut′ |yt, yt′) = 0 for t 6= t′. Note that the assumption

E(ut|yt) = 0 is enough by itself to imply Cov(ut, Yt) = 0 since Cov(ut, Yt) =

E{Cov(ut, Yt|Yt)} + Cov{E(ut|Yt), E(Yt|Yt)} = E(0) + Cov(0, Yt) = 0. Interest-

ingly, this occurs even if Var(ut|yt) is a function of Yt in which case ut and Yt

are dependent but uncorrelated.

One of the techniques discussed later relies on the following well known

result (see Box et al., 1994, Section A4.3, Morris and Granger, 1976, or Pagano,

1974). Lemma 1: If Yt is an AR(p) process with autoregressive parameters φφφ
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and Ut is white noise with constant variance σ2
u, then Wt = Yt + Ut follows

an ARMA(p, p) process. This can be written as φ(B)Wt = θ(B)bt where bt is

white noise with mean 0 and variance σ2
b , φ(z) = 1 − φ1z − . . . − φpz

p, θ(z) =

1 + θ1z + . . . + θpz
p, and B is the backward shift operator with BjWt = Wt−j .

The autoregressive parameters (φks) in this model are the same as in the model

for Y. The moving average (θks) and conditional variance (σ2
b ) parameters

can be related to φφφ, σ2
e , and σ2

u by solving σ2
ε + φ(z)φ(z−1)σ2

u = θ(z)θ(z−1)σ2
b .

These equations equate the covariance generating functions of W and Y + U.

There may be multiple solutions, only some of which result in a stationary and

invertible process.

2.1 Heteroskedastic Measurement Error

We allow for heteroskedasticity in the measurement error variances and distin-

guish between the conditional (given Yt = yt) and the unconditional measure-

ment error variance. Consider first Var(ut|yt), denoted by σ2
ut(yt), which may

depend on yt through a function h(yt) and may depend on the sampling effort

at time t. We do not require a specific form for h(·), but a power model is per-

haps common. Unconditionally, Var(ut) = σ2
ut = E[Var(ut|Yt)] = E[σ2

ut(Yt)].

For asymptotic purposes it is assumed that

lim
T→∞

T∑
t=1

σ2
ut/T = σ2

u. (2)

The unconditional variance σ2
ut can change over t if a fixed sampling effort

changes over time. In general, one can view the conditional variance, σ2
ut(yt),

as a function of two components; one describes the “variability” of the pop-

ulation sampled at time t (the meaning of this “variability” depends on the

sampling scheme), and the other is sampling effort. Unconditionally, the “vari-
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ability” will average out.

For example, in many applications Yt is the mean of measurements on

Nt subunits (e.g. individuals or spatial areas). Let Dt = {Yt1, . . . , YtNt
} de-

note the collection of random variables defined over the subunits, with Yt =∑Nt

j=1 Ytj/Nt. For simplicity, suppose that a simple random sample of nt sub-

units is chosen, and Yt is estimated by Wt, the sample mean of those nt se-

lected subunits. Let dt and yt denote realized values. The conditional vari-

ance of Wt given the subunit measurements is Var(Wt|dt) = fts
2
t /nt, where

ft = 1−(nt/Nt) and s2
t =

∑Nt

j=1(ytj−yt)2/(Nt−1). If the sample size nt is fixed,

then σ2
ut(yt) = ftE(s2

t |yt)/nt. As a result, σ2
ut = ftE[E(s2

t |Yt)]/nt = ftE(S2
t )/nt.

Notice that in this example unconditional heteroskedasticity comes from un-

equal sampling effort, while conditional heteroskedasticity is the result of the

sampling effort and among unit variability. Also, if the sampling effort is ei-

ther equal throughout, or unequal but random with a common distribution

that does not depend on t, then unconditionally σ2
ut = σ2

u, a constant.

The sampling that leads to Wt will almost always yield an estimate, σ̂2
ut, of

the conditional measurement error variance, where it is assumed that E(σ̂2
ut|yt) =

σ2
ut(yt), or unconditionally E(σ̂2

ut) = σ2
ut. This last assumption typically follows

from the nature of the sampling leading to Wt and σ̂2
ut.

3 Models and Properties of the Naive Estimators

We do two things in this section. First, we write down the asymptotic esti-

mating equations for the parameters in the AR(p) model without measurement

error. Following that, we derive the bias of the resulting estimators when mea-

surement error is present but ignored.
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3.1 Naive Estimation Methods and Asymptotic Estimating Equa-

tions

The unknown parameters in model (1) are φφφ = [φ1, . . . , φp]T and σ2
e . Without

measurement error, four common estimation methods are Maximum Likeli-

hood (ML) assuming Gaussian Errors, Least Squares (LS), Approximate Max-

imum Likelihood (aML), and Yule-Walker (YW). Letting γk be the lag k auto-

covariance for a process with an AR(p) structure (without measurement error),

we denote the p by p autocovariance matrix for an AR(p) process (without mea-

surement error) as ΓΓΓ =


γ0 . . . γp−1

...
. . .

...

γp−1 . . . γ0

 . Next, let Ĝ =



γ̂0 −γ̂1 −γ̂2 . . . −γ̂p

−γ̂1 γ̂0 γ̂1 . . . γ̂p−1

...
...

...
...

−γ̂p γ̂p−1 γ̂p−2 . . . γ̂0


:=



γ̂0 −γ̂1 . . . −γ̂p

−γ̂1

... Γ̂ΓΓ

−γ̂p


, where γ̂k =

∑T−k
t=1 YtYt+k/T . (Remember that Yt is centered.) Also, let φφφu = [1, φφφT]T. As

discussed in Box et al. (1994, Chapter 7) for instance, without measurement er-

ror the various estimation methods listed above lead to asymptotically equiv-

alent estimators. They all asymptotically solve the following estimating equa-

tions for φφφ and σ2
e :

(γ̂1 . . . γ̂p)
T − Γ̂ΓΓφφφ = 0, and

−1
σe

+
φφφT

uĜφφφu

σ3
e

= 0. (3)

The naive estimators of φφφ and σ2
e calculate Ĝ and its components based on

W rather than Y. In the sequel, we denote Γ̂ΓΓ calculated from W as Γ̂ΓΓW with

components γ̂W,k.
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3.2 Asymptotic Bias of φ̂φφnaive

Next, we consider estimates of the elements of Γ̂ΓΓW using the measurement

error model discussed in Section 2 and under regularity conditions to ensure

the convergence of sample autocovariances (e.g. Brockwell and Davis, 1996,

Chapter 7). The key observation is that for t 6= s, Cov(Wt,Ws) = Cov(Yt, Ys) +

Cov(Ut, Us) = γ|t−s|, so limT→∞ γ̂W,|t−s|
P= γ|t−s|, but limT→∞ γ̂W,0

P= γ0 +

σ2
u (see Appendix A.1), where P= denotes equal in probability. Note that, as

discussed in Section 2.1, when the measurement error is heteroskedastic, σ2
u is

defined as the limit average of σ2
ut. As T → ∞ the estimating equation for φφφ

from the previous section (Equation 3) converges in probability to:


γ1

...

γp

−


γ0 + σ2
u γ1 . . . γp−1

γ1
. . . . . .

...
...

. . . . . . γ1

γp−1 . . . γ1 γ0 + σ2
u




φ1

...

φp

 = 0, or γγγ−(ΓΓΓ+σ2
uIp)φφφ = 0.

Hence, the naive estimator, φ̂φφnaive, will converge in probability to the solution

of this equation: limT→∞ φ̂φφnaive
P= (ΓΓΓ + σ2

uIp)−1γγγ = (ΓΓΓ + σ2
uIp)−1ΓΓΓφφφtrue where

φφφtrue contains the true autoregressive parameters. As T → ∞, the asymptotic

bias of the naive estimator is

{(ΓΓΓ + σ2
uIp)−1 − ΓΓΓ−1}γγγ. (4)

When p = 1, the naive estimator converges in probability to an attenuated

version of the true parameter: limT→∞ φ̂1,naive
P= γ1

γ0+σ2
u

= λφtrue, where λ =

γ0
γ0+σ2

u
. We find it a bit surprising that the current model leads to the famil-

iar attenuation result of covariate measurement error in simple linear regres-

sion. Specifically, the current model can be seen as a linear regression model
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Yt = φ1Xt + εt (where Xt = Yt−1) with measurement error in both the re-

sponse (Wt = Yt + ut) and in the covariate (Vt = Xt + ut−1). While the two

measurement errors within an observation (ut and ut−1) are uncorrelated, the

measurement error in Y at time t is correlated with the measurement error in X

at time t−1. In fact, the two are the same measurement error. This falls outside

of the traditional treatments of measurement error in regression, which almost

always assume independence of measurement errors across observations. Still,

the attenuation is the same as the type seen in simple linear regression with

measurement error in the predictor only (e.g. Fuller, 1987, page 3).

Similar to the case of linear regression with covariate measurement error

(e.g. Carroll, Ruppert, and Stefanski, 1995, pages 25-26), when p > 1, the re-

lation between the large sample limits of the naive estimators become more

complicated and a simple result that relates φ̂φφnaive and φφφtrue does not exist.

For instance, when p = 2 we can write the estimators φ̂1 and φ̂2 in terms of the

the estimated lag one and two correlations (ρ̂1 and ρ̂2). Since we know that the

naive estimate of the correlation is attenuated, limT→∞ ρ̂j,naive
P= λρj , j > 1,

limT→∞

 φ̂1,naive

φ̂2,naive

 P=

 λρ1−λ2ρ1ρ2
1−λ2ρ2

1

λρ2−λ2ρ2
1

1−λ2ρ2
1

 . The asymptotic bias in either ele-

ment of φ̂φφnaive can be either attenuating (smaller in absolute value) or accen-

tuating (larger in absolute value), and the type of asymptotic bias depends on

both the amount of measurement error and the true values for φ1 and φ2. We

illustrate this phenomenon in Figure 1. The top two rows of Figure 1 use Equa-

tion (4) to calculate the asymptotic biases in φ̂naive,1 and φ̂naive,2 as a function

of λ when the true series follows one of four different AR(2) models. The bot-

tom row of Figure 1 shows the type of measurement error asymptotic bias as a

function of the true φφφ over the range of possible values that result in a station-

ary model.
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3.3 Asymptotic Bias of σ̂e,naive

Using notation from Section 3.2 limT→∞ σ̂2
naive,e

P= limT→∞ γ0+σ2
u−2φ̂φφ

T

naiveγγγ+

φ̂φφ
T

naive(ΓΓΓ + σ2
uI)φ̂φφnaive

P= γ0 + σ2
u − γγγT(ΓΓΓ + σ2

uI)
−1γγγ. As a result, since the true

limT→∞ σ̂2
e

P= γ0 + γγγTΓΓΓ−1γγγ, the asymptotic bias of σ̂2
e,naive is

σ2
u + γγγT

{
ΓΓΓ−1 − (ΓΓΓ + σ2

uI)
−1

}
γγγ. (5)

Appendix A.2 shows that σ̂2
e,naive has positive asymptotic bias.

4 Estimation Methods That Address Measurement

Error

In this Section we develop new estimators and review existing estimators that

account for measurement error. It is worth noting that the existing literature

that proposes techniques for estimating φφφ and σ2
ε in the presence of measure-

ment error is scattered over essentially three disciplines: econometrics, survey

sampling, and traditional mathematical statistical time series. Among the ex-

isting methods are two simple techniques that neither use nor require σ̂2
ut; a

method based on the ARMA result in Lemma 1 (which requires homoskedastic

measurement error) and a modified Yule-Walker approach. These are reviewed

in Sections 4.3 and 4.4. Other authors (e.g., Pagano, 1974, Miazaki and Dorea,

1993, Lee and Shin 1997), also working under a homoskedastic measurement

error model, begin with an ARMA fit and then obtain slightly more efficient

estimators by enforcing the restrictions in (2).

Section 4.1 presents an approach based on correcting the asymptotic esti-

mating equations which is quite simple, explicitly uses the estimated measure-

ment error variances, accommodates heteroskedasticity and does not require
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full likelihood assumptions. In Section 4.2 pseudo-likelihood based methods

are discussed. We compare the methods in Section 5.

4.1 Corrected Asymptotic Estimating Equations

As discussed in Section 3.2, the problem with the naive estimating equations in

large samples is that the diagonal of Γ̂ΓΓW is too large. This suggests an estimator

(φ̂CEE) based on a corrected version of Equation (3):

φ̂φφCEE = (Γ̂ΓΓW − σ̂2
uIp)−1 (γ̂W,1, . . . , γ̂W,p)

T
. (6)

where σ̂2
u =

∑T
t=1 σ̂2

ut/T. When p = 1 for instance φ̂CEE = γ̂W,1/(γ̂W,0 − σ̂2
u).

Like estimators described in Fuller (1987, e.g. Section 1.2), the sampling

moments of φ̂CEE as defined above often do not exist since the sampling den-

sity of γ̂W,0 − σ̂2
u often has mass at zero and values less than zero (e.g. Fuller,

1987, Section 2.5). In order to fix this problem, we use a modified version of

this estimator: if φ̂φφCEE results in a non-stationary model or if Γ̂ΓΓW −σ̂2
uIp is non-

positive definite, then φ̂CEE := φ̂naive. When limT→∞ σ̂2
u =

∑T
t=1 σ̂2

ut/T
P= σ2

u,

this adjustment will not effect the asymptotic properties of the estimator since

limT→∞

(
Γ̂ΓΓW − σ̂2

uIp

)
P= ΓΓΓ, which is assumed to positive definite in that case

(see Proposition 1 below).

The following three results describe the asymptotic behavior of φ̂φφCEE . First

we state a consistency result. An asymptotic variance result for p = 1 fol-

lows that. Finally, we state an asymptotic normality result which includes an

asymptotic variance for general p ≥ 1. We emphasize that none of these results

require either the measurement error or the unobserved time series to have a

normal distribution, but the asymptotic variances have slightly simpler forms

when the measurement error is normally distributed.
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Proposition 1 Under the model described in Section 2, the estimator φ̂φφCEE is con-

sistent if

lim
T→∞

σ̂2
u =

T∑
t=1

σ̂2
ut/T

P= σ2
u. (7)

Proof: Assuming non-singularity, limT→∞ φ̂φφCEE
P= (ΓΓΓ + σ2

uIp − σ2
uIp)−1γγγ =

(ΓΓΓ)−1γγγ = (ΓΓΓ)−1ΓΓΓφφφtrue = φφφtrue. We assume that E(σ̂2
ut) = σ2

ut and that∑
t σ2

ut/T → σ2
u (see (2)). Hence E(σ̂2

u) → σ2
u, and (7) holds if Var(σ̂2

u) =∑T
t=1 Var(σ̂2

ut)/T 2 +
∑

t

∑
t′ 6=t Cov(σ̂2

ut, σ̂
2
ut′)/T 2 → 0. Using conditioning,

Cov(σ̂2
ut, σ̂

2
ut′) = E[Cov(σ̂2

ut, σ̂
2
ut′ |Y1, . . . , YT )] + Cov[E(σ̂2

ut|Y1, . . . , YT ),

E(σ̂2
ut′ |Y1, . . . , YT )]. Since the conditional covariance is 0, this becomes

Cov[σ̂2
ut(Yt), σ̂2

ut′(Yt′)]. So, sufficient conditions for (7) are that
∑T

t=1 Var(σ̂2
ut)/T

and
∑

t

∑
t′ 6=t Cov[σ2

ut(Yt), σ2
ut′(Yt′)]/T converge to constants.

The asymptotic variance of φ̂CEE is needed to assess efficiency. We first

provide a result for the case with p = 1. Further detail for p > 1 is provided in

Proposition 3.

Proposition 2 For p = 1 under the model described in Section 2 plus the assumption

of Proposition 1 and the assumptions that the Uts and σ̂2
uts are independent of the Yts,

and that the limits below exist, the asymptotic variance of φ̂CEE is

aVar(φ̂CEE) =
1
T

[
(1− φ2)(2− λ)

λ
+

(1− φ2)σ4
u + φ2E(u4)
γ2
0

+
φ2σ2

σ2
u

γ2
0

]
,

with E(u4) = lim
T→∞

∑
t E(u4

t )/T , σ4
u = lim

T→∞

∑
t σ4

ut/T , σ2
u = lim

T→∞

∑
t σ2

ut/T , and

σ2
σ2

u
= lim

T→∞
TVar(σ̂2

ut). If we assume further constant variance σ2
u and E(u4

t ) = δσ4
u,

then

aVar(φ̂CEE) =
1
T

[
(1− φ2)(2− λ)

λ
+

(1− λ)2(1 + (δ − 1)φ2)
λ2

+
φ2σ2

σ2
u

γ2
0

]
.
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When the measurement error is normally distributed (δ = 3) this reduces to

aVar(φ̂CEE) =
1
T

[
1 + 2φ2 − 3φ2λ(2− λ)

λ2
+

φ2σ2
σ2

u

γ2
0

]
.

If the covariances between σ̂2
u and γ̂W,k, k = 0, 1 are non-zero then the following terms

are added: −2φ2Cov(γ̂W,0, σ̂
2
u)/γ2

0 + 2φCov(γ̂W,1, σ̂
2
u)/γ2

0 .

Finally, we give an asymptotic normality (and asymptotic variance) result

for any p. First, let γ̂γγW = (γ̂W,0, γ̂W,1, . . . γ̂W,p)T and γγγW = (γ0 + σ2
u, γ1, . . . γp)T.

If lim
T→∞

TVar

 γ̂γγW − γγγW

σ̂2
u − σ2

u

 = Q then from the multivariate delta method

lim
T→∞

TV ar(φ̂φφCEE) = GQGT where G is the matrix of derivatives of φ̂φφCEE

with respect to the components of γ̂γγW and σ̂2
u, evaluated at γγγW and σ2

u. Ana-

lytical expressions for Q depend on assumptions about the uts and the σ̂2
uts, in

particular whether they are dependent on the Yts or not. Decomposing Q as

Q =

 Qγ Qγ,σ2
u

QT
γ,σ2

u
Qσ2

u

, let qγrs denote the (r, s)th element of Qγ and qrs the

corresponding value if there were no measurement error (e.g. Brockwell and

Davis, 1996, equation 7.3.13 with their V as our Q). The following is proven in

Appendix A.3.

Proposition 3 Under the model described in Section 2, the assumption of Proposition

1, and the assumptions that the Uts and σ̂2
uts are independent of the Yts,

• qγ00 = q00 + 4γ0σ
2
u + E(u4)− σ4

u, where E(u4) and σ4
u are defined in Proposi-

tion 2.

• qγ0r = q0r + 4γrσ
2
u; for r 6= 0,

• qγrs = qrs + 2σ2
u [γr−s + γr+s]; for r 6= 0, s 6= 0, r 6= s

• qγrr = qrr + 2σ2
u [γ0 + γ2r] + lim

T→∞

∑
t σ2

utσ
2
u,t+r/T , for r 6= 0.
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• Qγ,σ2
u

= 0

• Qσ2
u

= σ2
σ2

u
.

If we assume further that the (ut, σ̂
2
ut) are i.i.d. with E(u2

t ) = σ2
u,E(u4

t ) = δσ4
u, then

T 1/2(φ̂φφCEE − φφφ) ⇒ N(0,GQGT), (8)

where the components of Q are as above with some simplification: qγ00 = q00 +

4γ0σ
2
u+σ4

u(δ−1), (δ = 3 under normality of ut), and qγrr = qrr+2σ2
u [γ0 + γ2r]+σ4

u,

for p 6= 0.

In this case, assuming normality of ut, the asymptotic variance of φ̂φφCEE can

be estimated using σ̂2
u, γ̂0 = γ̂W,0 − σ̂2

u, γ̂p = γ̂W,p for p 6= 0 and estimating the

variance of σ̂2
u using the (sample variance of the σ̂2

uts)/T . Additional discussion

on estimating the variance of φ̂φφCEE is in Appendix A.3.

4.2 Likelihood Based Methods and the Kalman Filter

If Y and u are both normal and independent of each other then W = Y + u is

normal with covariance matrix ΣY + Σu and maximum likelihood (ML) tech-

niques can be employed. Our interest is in cases where estimates of Σu are

available. Treating these as fixed and maximizing the Gaussian likelihood over

the rest of the parameters leads to a pseudo-ML estimation. Bell and Hillmer

(1990) and Bell and Wilcox (1993) took this approach where Yt and ut follow

ARIMA models. Wong, Miller and Shrestha (2001) formulate and estimate this

approach using a state space model and related techniques. We implement this

model using an EM algorithm with the Kalman filter to compute the required

conditional expectations (e.g. Shumway and Stoffer, 1982). Details are in Ap-

pendix A.4. The following describes the asymptotic behavior of φ̂pML.
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Proposition 4 Let Wt = Yt + Ut, t = 1, . . . , T where Yt is iid Gaussian and AR(1)

with parameter |φ| < 1 and Ut
i.i.d.∼ N(0, σ2

u). Let φ̂pML be a pseudo-maximum likeli-

hood estimate of φ from the series of length T , estimated by the Kalman filter and the

EM algorithm for instance (see Appendix A.4). Let φ̂pML use σ̂2
u, an estimate of the

measurement error variance that is consistent as T →∞ with lim
T→∞

TVar(σ̂2
u) = σ2

σu
.

As T →∞, φ̂pML is normally distributed with mean φ and

aVar(T 1/2φ̂pML) =
1
Iφ,φ

+ σ2
σ2

u

(Iφ,σ2
u

Iφ,φ

)2

,

where g(ω) = σ2
u +

σ2
e

1 + φ2 − 2φ cos ω
,

Iφ,φ =
1
2π

∫ π

0

{
g(ω)−1 ∂g(ω)

∂φ

}2

dω

=
1
2π

∫ π

0

{
2φ− 2 cos ω

1 + φ2 − 2φ cos ω

}2

×
{

σ2
e

σ2
e + σ2

u(1 + φ2 − 2φ cos ω)

}2

dω,

and Iφ,σ2
u

=
1
2π

∫ π

0

g(ω)−2 ∂g(ω)
∂φ

∂g(ω)
∂σ2

u

dω

=
1
2π

∫ π

0

−σ2
e(2φ− 2 cos ω)

{σ2
u(1 + φ2 − 2φ cos ω) + σ2

e}
2 dω.

Proof: With σ̂2
u held fixed, T 1/2φ̂pML is asymptotically normal with variance

I−1
φ,φ (e.g. Harvey, 1990, section 4.5.1, page 210). The additional variability

produced by estimating σ2
u is accounted for using Gong and Samaniego, 1981,

equations 2.5 and 2.6. We note also that the spectral generating function for

the Gaussian AR(1) process plus independent homoskedastic measurement

error, g(ω), is given in Harvey, 1990, example 2.4.6, page 60. The integrals

have evaded analytic solution, and equivalent time domain representations of

the asymptotic information matrix involve a matrix inverse that is analytically

intractable (although the likelihood and its derivatives can be computed effi-

ciently using the Kalman filter). Nonetheless, these one-dimensional definite

17



integrals can be evaluated numerically.

Although the pseudo-ML / Kalman filter approach appears to be straight-

forward, it has subtle potential problems when the measurement error is het-

eroskedastic. First, if the measurement error variances are treated as unknown

parameters without additional structure (as in Wong et al., 2001), then the num-

ber of parameters increases with the sample size (e.g. Neyman and Scott, 1948).

We are unaware of any work that explores the asymptotic properties of the esti-

mator in this specific time series case, and we expect this problem to be delicate.

As an Associate Editor pointed out, related work by Carroll and Cline (1988)

considers the problem of linear regression with independent heteroskedastic

errors in a replicated response and treats the variances as unknown parame-

ters. In that simpler case, consistency and asymptotic normality depend on the

number of replicates from which the unknown variances are estimated.

An alternative is to model the variance with a simple parametric function,

treat
{
Wt, σ̂

2
ut

}
as data (including assuming a distributional model for σ̂2

ut),

and use the flexible Kalman filter / state space approach to fit the model (e.g.

Harvey, 1990, chapter 6). One way to implement this would be to model the

σ2
uts a simple function of t. This approach is sometimes susceptible to mis-

specification though, and it does not address fact that the measurement error

at time t is often proportional to yt. A second implementation could model

the heteroskedasticity parametrically as a simple function of yt. This approach

has the problem that the marginal density of W typically will not be normal

though since Var(Wt|yt) = Var(ut|yt) depends on yt. However, if we expand

the density of W |y as a function of Var(Wt|yt) around σ2
ut then a first order

approximation gives an approximately normal W with covariance ΣY + Σu.

In our problem Σu = diag [E {Var(W1|Y1)} , . . . , {Var(WT |YT )}]. The quality

of this approximation will be situation dependent. We do not pursue these
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approaches in this paper.

4.3 Method based on the ARMA(p, p) model

From Lemma 1 in Section 2 Wt follows an ARMA(p,p) model when the mea-

surement error is homoskedastic. As a result, a simple approach to estimating

φ (part of the hybrid approach in Wong and Miller, 1990), is to fit an ARMA(p, p)

to the observed w series and to use the resulting estimate of the autoregressive

parameters, which we call φ̂φφARMA. We perform this estimation using the “off

the shelf” arima() function in the ts package in R. This function uses the

Kalman filter to compute the Gaussian likelihood and its partial derivatives

and finds maximum likelihood estimates using quasi-Newton methods. The

asymptotic properties of φ̂φφARMA can be computed using existing results (e.g.

Brockwell and Davis, 1996, Chapter 8). This will be a function of the φ’s and

the θ’s and can be expressed in terms of the original parameters by obtaining

the θ’s as functions of φφφ, σ2
u and σ2

ε ; see Appendix A.5.

For instance, when p = 1 φ̂ARMA ∼ AN
{

φ, (1+φ1θ1)
2(1−φ1)

2

(φ1+θ2
1)T

}
, where AN

denotes approximately normal. Note that this result does not require normality

of the observed series. There are two solutions for θ1 resulting from (2), but

only one leads to a stationary process. Defining k = (σ2
ε + σ2

u(1 + φ2
1))/(σ2

uφ1),

then, θ1 = (−k + (k2 − 4)1/2)/2 if 0 < φ1 < 1 and θ1 = (−k − (k2 − 4)1/2)/2

when −1 < φ1 < 0.

4.4 Modified Yule-Walker

This approach assumes uncorrelated measurement errors and requires no knowl-

edge of the measurement error variances. For a fixed j > p define γ̂γγW (j) =
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(γ̂W,j , . . . , γ̂W,j+p−1)
T and Γ̂ΓΓW (j) =


γ̂W,j−1 . . . γ̂W,j−p

...
. . .

...

γ̂W,j+p−2 . . . γ̂W,j−1

 . For j > 0,

recall that the lag j covariance for W is equivalent to that in the Y series,

and γ̂W,j estimates γj consistently under regularity conditions (Section 3.2).

The modified Yule-Walker estimator φ̂φφMY Wj
solves Γ̂ΓΓW (j)φφφ − γ̂γγW (j) = 0, or

φ̂φφMY Wj
= Γ̂ΓΓ

−1

W (j)γ̂γγW (j). For the AR(1) model, φ̂MY Wj = γ̂W,j/γ̂W,j−1, for j ≥ 2.

These estimators are consistent, and one can use Proposition 3 to arrive at the

covariance and more general results for the modified Yule-Walker estimates.

Note however that the denominator of φ̂MY Wj can have positive probability

around 0, leading to an undefined mean for the estimator. In Section 5, we

found this estimator to be impractical for moderate sample sizes.

The modified Yule-Walker estimate was first discussed in detail by Walker

(1960) (his Method B) and subsequently by Sakai et al. (1979). For p = 1 and

constant measurement error variance, Walker shows the asymptotic variance

of T 1/2φ̂MY W2 is 1−φ2

φ2

{
1 + 2 1−λ

λ + (1−λ)2(1+φ2)
λ2(1−φ2) )

}
and that this is smaller than

the asymptotic variance of φ̂MY Wj
, for j ≥ 3. Sakai et al. (1979) provide the

asymptotic covariance matrix of φ̂φφMWYp+1
for general p. Our Proposition 3

can also be used to arrive at these, and more general, results for the modified

Yule-Walker estimators.

Chanda (1996) proposed a related estimator, in which j increases as a func-

tion of n and derived the asymptotic behavior of that estimator. Sakai and

Arase (1979) also discuss this estimator, extensions, and asymptotic properties.

Neither the fact that this estimator often has no finite sampling mean nor cor-

rections for that deficiency appear to be discussed in the literature.
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5 Mean Squared Error Comparisons of the Estima-

tors

First, we compare the asymptotic variances of the estimators of φ (p = 1) in

Section 5.1. After that, Section 5.2 summarizes two Monte Carlo simulations

that evaluate the small sample performance of the estimators in the presence

of homoskedastic and heteroskedastic measurement error.

5.1 Comparison of the Asymptotic Variances

Section 4 presented four estimation methods to address the problem of an

autoregressive model plus additive measurement error: corrected estimating

equations (CEE), modified Yule-Walker (MYW), ARMA, and pseudo-Maximum

Likelihood (pML). The following proposition compares the pML estimator with

the CEE estimator. The result is an immediate consequence of Propositions 2

and 4.

Proposition 5 Under the assumptions of Proposition 4 (which include normality of

Y and the measurement error and homoskedastic measurement error), the asymp-

totic relative efficiency of φ̂CEE to φ̂pML, with (p = 1), is ARE(φ̂CEE/φ̂pML) =
I2

φ,φ

[
γ2
0{1+2φ2−3φ2λ(2−λ)}+λ2φ2σ2

σ2
u

]
λ2γ2

0

(
Iφ,φ+σ2

σ2
u
I2

φ,σ2
u

) .

Although we do not have simple analytic expressions for the information terms

in this equation, they are easy to compute. Figure 2 calculates the ARE as a

function of 0.1 < φ < 0.9 and 0.5 < λ ≤ 1 when σ2
σu

= 2σ4
u (left panel)

and σ2
σu

= 0 (right panel). The variance σ2
σu

= 2σ4
u would occur if each σ̂2

ut

were computed from two independent Gaussian replicates for instance. For

moderate amounts of measurement error (λ greater than about 0.6) and as φ

gets closer to zero (typically the null), φ̂CEE is nearly as efficient as φ̂pML. A
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comparison of the two panels shows that a known σ2
u (σ2

σu
= 0) often does not

cause a large gain in efficiency relative to an estimator based on two replicates

per time point. This suggests that a joint model for (σ̂2
ut,Wt) often would not

result in a much more efficient estimator.

We note that the difference between the asymptotic variances of the pML

and CEE estimators is a departure from the case of linear regression with co-

variate measurement error. This can be explained simply by observing that

in contrast to linear regression with covariate measurement error, in the time

series problem the corrected estimating equation is not the same as the pML

estimating equation.

We also have simple expressions for the asymptotic variance of φ̂MY W and

φ̂ARMA, estimators that do not require or use an estimate of σ2
u. Again, al-

though an analytical comparison of these asymptotic variances appears to be

intractable, Figure 3 compares the asymptotic variances as a function of λ and

φ for the AR(1) case with homoskedastic measurement errors. The asymptotic

variances of the CEE and pML estimators use σ2
σu

= 2σ4
u. Three observations

about this figure follow. First, unless φ is close to one, the MYW method is the

least asymptotically efficient of all the estimators. Next, similarly, the ARMA

estimator is less efficient asymptotically than either the CEE estimator or the

pML estimator when φ is less than about 0.5. Finally, the simulations in the

next Section suggest that when the time series is relatively short (20, 50, or 200)

then the pML and CEE estimators (which perform quite similarly in the simu-

lations) result in a much lower MSE than the ARMA estimator over a range of

φs and λs.
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5.2 Short Time Series Simulations

We performed four sets of Monte Carlo simulations to compare the small sam-

ple performance of the CEE, pML, and ARMA estimators presented in Sec-

tion 4. We do not include the MYW estimator since it often does not have a

sampling mean, and, as a result, Monte Carlo estimates of its bias were (not

surprisingly) very unstable. As benchmarks, we also include the “naive” es-

timator that ignores measurement error and the “gold standard” that applies

the maximum likelihood estimator to Y.

The four sets of simulations are (1) Gaussian time series errors and ho-

moskedastic Gaussian measurement errors, (2) Gaussian time series errors and

heteroskedastic Gaussian measurement errors, (3) Gaussian time series errors

and homoskedastic recentered and rescaled chi-squared measurement errors,

and (4) recentered and rescaled chi-squared time series errors and homoskedas-

tic recentered and homoskedastic Gaussian measurement errors. The chi--

squared errors had three degrees of freedom and were recentered to have mean

zero and rescaled so that the resulting variance was the same as in the Gaus-

sian simulations. The heteroskedastic measurement error uses a power model

for the measurement error variance: σ2
ut = βy2

t and with equal sampling effort.

As in the homoskedastic case, λ = var(Yt)/var(Wt). In the heteroskedastic

case, λ =
{
σ2

e(1− φ2)
}

/
[
β

{
1 + σ2

e/(1− φ2)
}]

and β = (1 − λ)/λ. In the

homoskedastic case, φ̂CEE and φ̂pML use σ̂2
u estimated from two normal repli-

cates per observation, but using the true σ2
u yielded nearly identical results. In

the heteroskedastic simulations, φ̂CEE uses σ̂2
u =

∑T
t=1 σ̂2

ut/T and φ̂pML uses

σ̂2
ut, t = 1, . . . , T .

Each set of simulations used a replicated (Monte Carlo sample size = 500)

full factorial combination of 3 factors: sample size (T = 20, 50, 200), measure-

ment error (λ = 0.5, 0.75, 0.9), and autoregressive parameter (φ = 0.1, 0.5, 0.9).
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Note that we parameterize the measurement error in terms of λ rather than σ2
u

since a value for σ2
u only has meaning relative to var(yt) which is a function of

φ.

Since each of the four sets of simulations told a nearly identical story about

the relative performances of these estimators, we only include a summary of

the first set of simulations (Figure 4). This figure depicts the average bias and

standard error of the five estimators as a function of either T , φ or λ with the

average computed over combinations of the other two factors. The established

deficiencies of the naive approach are evident. The CEE and PML estimators

have very similar performance and as we move towards extreme values of the

factors (T = 200, φ = 0.1 and λ = 0.9) their performance approaches that of

the gold standard; e.g., estimators based on the true values Y1, . . . , YT .

6 Discussion

We have done three things in this paper. First, we derived the biases caused

by ignoring measurement error in autoregressive models. Next, we proposed

an easy to compute estimator to correct for the effects of measurement error

and explored its asymptotic properties. An important and novel feature of

this estimator is that it can be proven to be consistent even when faced with

heteroskedastic measurement error. Finally, we reviewed and critiqued some

of the disparate literature proposing estimators for autoregressive models with

measurement error and compared our new estimator to some of the available

estimators both asymptotically and with a designed simulation study. These

comparisons suggest that the new estimator is often quite efficient relative to

existing estimators.

Following up on this work, we have identified two areas that we feel are

ripe for future study. First is further development of procedures for valid in-
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ferences about the autoregressive parameters in both large and small samples

in the presence of measurement error. An important consideration with small

samples will be the fact that the current estimators all have substantial small

sample bias (as does the gold standard). We would like to explore the use

of REML type estimators and second order bias corrections (e.g. Cheang and

Reinsel, 2000) in the presence of measurement error. Additionally, further in-

vestigation is needed into estimation of the asymptotic variance of φ̂φφCEE (see

the end of Section 4.1 and Appendix A.3 for some discussion) and the perfor-

mance of inferences that make use of these. Also, while Section 4.1 provides

some results that accommodate heteroskedasticity, general determination of

the asymptotic distribution and how to estimate the asymptotic covariance

matrix of the estimators under various scenarios of measurement error het-

eroskedasticity is a challenging problem that needs more study.

A second area for future study that may benefit from an estimating equa-

tions based approach is where the measurement errors are correlated, a com-

mon occurrence with the use of block resampling techniques (see, for example,

Pfeffermann, Feder, and Signorelli, 1998 or and Wilcox, 1993). Related to that

work, we believe that the corrected estimating equations approach can be used

for estimation of the unobserved responses and forecasting. This approach

may prove to be especially useful when the measurement error is heteroskedas-

tic.

APPENDIX: TECHNICAL DETAILS

A.1 Sample moments based on W.

Writing Wt = Yt + ut, γ̂W,0 =
∑T

t=1 W 2
t /T =

∑T
t=1 Y 2

t /T +
∑T

t=1 utYt/T +∑T
t=1 u2

t /T. The first term converges in probability to γ0. The third will con-

verge to σ2
u = lim

∑T
t=1 σ2

ut/T = lim
∑T

t=1 E(u2
t )/T as long as

∑
Var(u2

t )/T

converges to a constant. The middle term converges to 0 in probability since it
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has mean 0 (recall Cov(Yt, ut) = 0) and variance (1/T 2){
∑

t E[Var(Ytut|ut)] +

Var[E(Ytut|ut)]} = (1/T 2){
∑

t E[u2
t γ0]} = (γ0/T )

∑
t σ2

ut/T, which converges

to 0. Hence γ̂W,0 converges in probability to γ0 + σ2
u.

A.2 Asymptotic Bias of naive estimate of variance

We prove that the naive estimate σ̂2
e,naive has positive bias as T →∞. It suf-

fices to show that
{
ΓΓΓ−1 − (ΓΓΓ + σ2

uI)
−1

}
is positive definite which results from

showing that its eigenvalues are all positive. Since ΓΓΓ is symmetric positive def-

inite, ΓΓΓ = UDUT where U is an orthogonal matrix, and D = diagdj , dj >

0, j = 1, . . . , p + 1. The djs are the eigenvalues of ΓΓΓ. Similarly, ΓΓΓ−1 = UTD1U,

ΓΓΓ + σ2
uI = U(D + σ2

uI)U
T, and (ΓΓΓ + σ2

uI)
−1 = UT(D + σ2

uI)
−1U. This means

that
{
ΓΓΓ−1 − (ΓΓΓ + σ2

uI)
−1

}
= UTD−1U−UT(D + σ2

uI)
−1U

= UT
{
D−1 − (D + σ2

uI)
−1

}
U. Hence, the eigenvalues of

{
ΓΓΓ−1 − (ΓΓΓ + σ2

uI)
−1

}
are 1/dj − 1/(dj + σ2

u), j = 1, . . . , p + 1 which are all positive.

A.3: Asymptotic Properties of φ̂φφCEE .

Using developments similar to those in Brockwell and Davis, 1996, Chap-

ter 7), the asymptotic behavior of T 1/2

 γ̂γγW − γγγW

σ̂2
u − σ2

u

 is equivalent to that of

T 1/2Z̄, where Z̄ =
∑

t Zt/T , with Z′t = [W 2
t ,WtWt+1, . . . ,WtWt+p, σ̂

2
ut]. Hence,

assuming the limit exists, Q = limT→∞ Cov(T 1/2Z̄). To evaluate the compo-

nents of Qγ , one needs limT→∞ TCov(γ̂W,p, γ̂W,r)

= limT→∞(1/T )E(
∑

t WtWt+p

∑
s WsWs+r)− γW,pγW,s. This requires

E(WtWt+pWsWs+r) = E(YtYt+pYsYs+r) +
[
E(YtYt+pU

2
s ) + E(YtU

3
t+p)

+E(Yt+pU
3
t )

]
I(r = 0) +

[
E(YsYs+rU

2
t ) + E(YsU

3
t ) + E(Ys+rU

3
t )

]
I(p = 0) +

E(YtYsU
2
t+p)I(s = t+p−r)+E(YtYs+rU

2
t+p)I(s = t+p)+E(Yt+pYsU

2
t )I(s = t−r)

+ E(Yt+pYs+rU
2
t )I(s = t) + E(U2

t U2
s )I(p = r = 0) + E(U2

t U2
t+p)I(p = r 6= 0),

where I() is the indicator function. In general this requires modeling the de-

pendence of the Ut on the true Yt. Assuming independence, the expectations

can be split into the product of a term involving Us and one involving Y s. Do-
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ing this, straightforward but lengthy calculations lead to the expressions for

Qγ in Section 4.1.

Similarly, the limiting value of TCov(γ̂W,p, σ̂
2
u) is

lim
T→∞

(1/T )E(
∑

t WtWt+p

∑
r σ̂2

r) − γW,pσ
2
u. Assuming the σ̂2

t s are independent

of the Yts leads, after some simplification, to lim
T→∞

(1/T )E(
∑

t WtWt+p

∑
r σ̂2

r) =

γW,pσ
2
u and Qλ,σ2

u
= 0.

For the AR(1), using the delta method, the asymptotic variance of φ̂CEE is

aVar(φ̂CEE) = 1
γ2
0

[
Var(γ̂W,1 − φγ̂W,0) + φ2Var(σ̂2

u)− 2φ2Cov(γ̂W,0, σ̂
2
u)

+ 2φCov(γ̂W,1, σ̂
2
u)

]
. Using Qγ in Proposition 3, writing qγrs = qrs + crs,

and recognizing that the asymptotic variance of φ̂ without measurement er-

ror, which is (1 − φ2)/T , can be expressed as (1/Tγ2
0)(q11 − 2φq01 + φ2q00),

then aVar(φ̂CEE) = (1 − φ2)/T + (1/Tγ2
0)

[
c11 − 2φc01 + φ2c00

]
. Obtaining

crs = qγrs = qrs from Proposition 3 and simplifying leads to the expressions in

Proposition 2.

If

T 1/2

 γ̂γγW − γγγW

σ̂2
u − σ2

u

 ⇒ N(0,Q), (9)

then the asymptotic normality of φ̂φφCEE in (8) follows. If the ut are i.i.d. then

Wt follows an ARMA process and the asymptotic normality of γ̂γγW follows im-

mediately from known results (e.g., Proposition 7.3.4 in Brockwell and Davis,

1996). If the σ̂2
uts are iid and independent of the Wts then then (9) follows

immediately from use of the standard central limit theorem for σ̂2
u and the in-

dependence of σ̂2
ut and γ̂γγW .

If the uts and σ̂2
uts are independent of the Yts but the moments of ut and σ̂2

ut

change with t, then generalizing the proofs in Chapter 7 of Brockwell and Davis

(1996) requires use of a central limit theorem for m-dependent sequences with

heteroskedasticity (see for example Theorem 6.3.1 in Fuller, 1996). Suitable
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conditions on the moments of ut and σ̂2
ut will lead to (9) and hence (8)

Estimation of the asymptotic variance of φ̂φφCEE requires an estimate of Q.

If Cov(Zt,Zs) depends only on |t − s| (as it would if the uts and σ̂2
uts were

i.i.d.) and is denoted C(|t − s|) then Q = limT→∞
∑

|h|<T {1− (|h|/T )}C(h).

As pointed out by an anonymous referee, Q can be estimated by

Q̂ =
∑

|h|<M {1− (|h|/M)} Ĉ(h), where Ĉ(h) =
∑n−h

t=1 (Zt − Z̄)(Zt+h − Z̄)T/T ,

M → ∞, and M/T → 0 as T → ∞. This is the Bartlett kernel estimator that

truncaes for h ≥ M . Under general conditions, a Q̂ with T instead of M in the

above would converge to a random variable that is proportional to Q not equal

to Q in probability as T → ∞. For instance, see Bunzel, Kiefer, and Vogelsang

(2001) or Kiefer and Vogelsang (2002).

A.4 State space formulation, EM algorithm, and the Kalman filter

We assume Y is Gaussian and AR(p), the measurement error is indepen-

dent and Gaussian with a fixed variance that is held fixed at σ̂2
u, and estimate

φφφ and σ2
e by “pseudo-maximum likelihood.” A straightforward way to imple-

ment this procedure is to use the Kalman filter combined with the EM algo-

rithm (e.g. Shumway and Stoffer, 1982). Specifically, let yt = (yt, . . . , yt−p+1)T,

M = (1,0T
p−1) where 0p−1 is a vector of all zeros with length p − 1, ΦΦΦ = φ1 . . . . . . φp

1p−1 0p−1 . . . 0p−1

 where 1p−1 is a vector of all ones with length

p − 1, and et = (et,0T
p−1)

T. The observation equation is wt = Myt + ut, and

the state equations are yt = ΦΦΦyt−1 + et. Further, R = var(ut) = σ̂2
u and Q =

Var(et) =



σ2
e 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0


. Using this formulation, the (s+1)th update in

an EM algorithm follows. Note that [](i,j) denotes the i, jth element in a matrix

and [](i,:) denotes the ith row.
{

φ̂φφ
(s+1)

}T

=
[
B(s)

{
A(s)

}−1
]
(1,:)

,
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σ̂
2(s+1)
e =

(
T−1

[
C(s) −B(s)

{
A(s)

}−1
B(s)T

])
(1,1)

, where

A(s) =
∑T

t=1

(
PT (s)

t−1,t−1 + yT (s)
t−1 yT (s)T

t−1

)
, B(s) =

∑T
t=1

(
PT (s)

t,t−1 + yT (s)
t yT (s)T

t−1

)
,

and C(s) =
∑T

t=1

(
PT (s)

t,t + yT (s)
t yT (s)T

t

)
, with yv(s)

t = E(yt|w1, . . . , wv) and

Pv(s)
t,u = E

{
(yt − yv(s)

t )(yu − yv(s)
u )T|w1, . . . , wv

}
. The expectations are evalu-

ated using the (s)th set of parameter updates. The last two quantities can be

computed efficiently using the Kalman filter. Suppressing the notation for the

EM iteration and listing the equations as they are in the Appendix of Shumway

and Stoffer (1982), the forward equations are: (for t = 1, . . . , T ) yt−1
t = ΦΦΦyt−1

t−1,

Pt−1
t,t = ΦΦΦPt−1

t−1,t−1ΦΦΦ
T + Q, Kt = Pt−1

t,t MT(MPt−1
t,t MT + R)−1, yt

t = yt−1
t +

Kt(wt−Myt−1
t ), and Pt

t,t = Pt−1
t,t −KtMPt−1

t,t , where y0
0 = 0 and P0

0,0 = 0. The

backward equations are: (for t = T, . . . , 1), Jt−1 = Pt−1
t−1,t−1ΦΦΦ

T(Pt−1
t,t )−1, yT

t−1 =

yt−1
t−1+Jt−1(yT

t −ΦΦΦyt−1
t−1), and PT

t−1,t−1 = Pt−1
t−1,t−1+Jt−1(PT

t,t−Pt−1
t,t )JT

t−1. Ad-

ditionally, for t = T, . . . , 2, PT
t−1,t−2 = Pt−1

t−1,t−1J
T
t−2+Jt−1(PT

t,t−1−ΦΦΦPt−1
t−1,t−1J

T
t−2

with PT
T,T−1 = (I−KT M)ΦΦΦPT−1

T−1,T−1.

A.5 Asymptotic variance of ARMA estimator

The asymptotic variance of φ̂φφARMA is available in general form (see for ex-

ample Chapter 8 of Brockwell and Davis, 1996), but it involves φφφ as well as θθθ.

For the expression to be useful in our context, θθθ must be expressed in terms of

φφφ, σ2
e and σ2

u.

The AR(1) case: Applying equation (2) for p = 1 leads to σ2
ε + σ2

u(1 −

φ1z − φ1z
−1 + φ2

1) = σ2
b (1 + θ1z + θ1z + θ2

1). Equating coefficients and making

substitutions leads to σ2
b = −σ2

uφ1/θ1 and θ1 is a solution to the quadratic

equation 1 + θ2
1 + θ1k = 0 where k = (σ2

ε + σ2
u(1 + φ2

1))/(σ2
uφ1). It can be

shown that k2 − 4 = (k − 2)(k + 2) is positive since k > 2 is equivalent to

σ2
ε +σ2

u(1−φ2
1) > 0. The induced model is invertible if |θ1| ≤ 1 which after some

algebra is shown to be true for the root (−k + (k2 − 4)1/2)/2 when 0 < φ1 < 1

and for the root (−k − (k2 − 4)1/2)/2 when −1 < φ1 < 0.
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AR(2) Model: Applying equation (2) when p = 2 leads to the moving

average parameters θ1 and θ2 solving θ1(θ2 + 1) − c1(1 + θ2
1 + θ2

2) = 0 and

θ2 + c2(1 + θ2
1 + θ2

2) = 0, where with M = σ2
e + σ2

u(1 + φ2
1 + φ2

2), c1 =

σ2
u(φ1φ2 − φ1)/M and c1 = −σ2

uφ2/M . These equations have multiple solu-

tions and the one leading to a stationary and invertible process would be used.
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Table 1: wt = log(estimated density) and σ̂ut = estimated standard error of
wt for mouse population over a nine year period. The estimated density is
number of mice per hectare.

Year wt σ̂ut

86 1.67391 0.17626
87 0.69315 0.50000
88 1.88510 0.53484
89 3.17388 0.80335
90 3.28091 0.06015
91 2.81301 0.13613
92 2.82891 0.32262
93 2.03510 0.08533
94 3.37461 0.20515



Figure 1: This figures illustrates the pernicious nature of the bias in the naive

estimates in an AR(2) model. The first two rows show that the direction of the

bias depends on both the autoregressive parameters (φ1, φ2) and the amount of

measurement error (λ = γ0/(γ0 + σ2
u)). The thick lines are the true parameters;

the thin lines are the naive estimates; and the dotted lines are at zero. Note

that measurement error increases as λ decreases. The two cases are (φ1, φ2) =

(0.0686,0.8178) and (0.7346,0.0669); φ̂1,naive is accentuated in case 1, and φ̂2,naive

is accentuated in case 2. The last row illustrates the potential direction of the

measurement error bias in the naive AR(2) model as a function of the true au-

toregressive parameters over the range of possible values that result in station-

ary model.



Figure 2: This figure displays the log efficiency of φ̂CEE relative to φ̂pML as a

function of φ (different lines) and λ (x-axis) when p = 1. the left panel consid-

ers an estimated measurement error variance when σσ2
u

= 2σ4
u and the right

considers panel the variance when the measurement error is known (σσ2
u

= 0).

When φ is close to the null and the amount of measurement error is moderate

(λ > 0.7), φ̂CEE is nearly as asymptotically efficient as φ̂pML. In small sam-

ple simulations (Section 5.2), the CEE and pML estimators resulted in nearly

identical mean squared errors over a range of parameter values. Note that this

figure is based on asymptotic calculations, not simulation.



Figure 3: This figure presents the log relative asymptotic variances of four

asymptotically unbiased estimators of the autoregression parameters in the

AR(1) model discussed in Section 4. The log relative asymptotic variances are

shown as functions of φ (different lines) and λ (x-axes). Note that this figure is

based on asymptotic calculations, not simulation.



Figure 4: Homoskedastic simulation results.
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