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The competition between scrambling unitary evolution and projective measurements leads to a
phase transition in the dynamics of quantum entanglement. Here, we demonstrate that the nature of
this transition is fundamentally altered by the presence of long-range, power-law interactions. For
sufficiently weak power-laws, the measurement-induced transition is described by conformal field
theory, analogous to short-range-interacting hybrid circuits. However, beyond a critical power-law,
we demonstrate that long-range interactions give rise to a continuum of non-conformal universality
classes, with continuously varying critical exponents. We numerically determine the phase diagram
for a one-dimensional, long-range-interacting hybrid circuit model as a function of the power-law
exponent and the measurement rate. Finally, by using an analytic mapping to a long-range quantum
Ising model, we provide a theoretical understanding for the critical power-law.

Programmable simulators—capable of supporting
many-body entanglement—have opened the door to
a new family of quantum dynamical questions [1–
6]. A unifying theme behind these queries is the
competition between many-body entangling interactions
and entanglement-suppressing dynamics. For example,
many-body localization arises when interactions are pit-
ted against strong disorder [7–10]. Similarly, the dis-
sipative preparation of entangled states requires a deli-
cate balance between unitary and incoherent evolution
[11–15]. Recently, a tremendous amount of excitement
has focused on a new paradigm for such competition,
namely, “hybrid” quantum circuits composed of scram-
bling dynamics interspersed with projective measure-
ments (Fig. 1) [16–21].

Naively, such evolution appears similar to the perhaps
more familiar case of open-system dynamics, where an
environment is viewed as constantly measuring the sys-
tem. But there is a crucial difference: in open-system
dynamics, the results of the environment’s measurements
are unknown, and only the average over outcomes deter-
mines the system’s evolution [22–24]. In hybrid quantum
circuits, however, the projective measurement results are
recorded, so the dynamics resolve individual quantum
trajectories [17, 19]. This distinction has a profound con-
sequence on the long-time dynamics.

Most fundamentally, instead of approaching a steady-
state density matrix, the system perpetually fluctuates in
Hilbert space, building up many-body entanglement that
is, possibly, later eradicated by a few well-placed mea-
surements [25–30]. This constant ebb and flow of entan-
glement gives rise to a novel dynamical phase transition:
at low measurement rates, the dynamics generate exten-
sive entanglement, while at high measurement rates, only
few-body entangled clusters emerge [17–19]. To date,
this measurement-induced transition has been explored
in two limits: hybrid quantum circuits with local interac-
tions [29, 31–36] and all-to-all interacting circuits where

powerful analytic techniques can be applied [37–39]. Un-
derstanding the nature of the measurement-induced tran-
sition in generic, long-range-interacting systems (i.e. with
power-laws ∼ 1/rα) remains an essential open question
that finds motivation from two complementary angles.

First, such long-range interactions are known to have
profound effects on the universality, and indeed, even
the existence, of many phase transitions [40–45]; in ad-
dition, long-range interactions can parametrically alter
the form of Lieb-Robinson bounds and scrambling light-
cones [46–49]. Second, many of the most promising ex-
perimental platforms for investigating the measurement-
induced transition, including Rydberg tweezer arrays,
polar molecules, trapped ions and solid-state magnetic
dipoles, inherently feature long-range interactions [50–
54].

In this Letter, we demonstrate that the interplay be-
tween long-range interactions and projective measure-
ments leads to fundamentally new universality classes for
the measurement-induced transition. Our main results
are three-fold. First, we find that for α & 3 the univer-
sality class is consistent with previous studies of short-
range models; however, for α . 3, the phase transition is
no longer described by conformal field theory (CFT) and
exhibits continuously varying critical exponents (Fig. 2).
Second, we determine the phase diagram associated with
the transition as a function of the measurement rate, p,
and the power-law exponent α [Fig. 1(b)]. For α > 2, the
transition occurs between phases with volume- and area-
law scaling of entanglement entropy, while for α < 2, the
area-law entropy scaling crosses over to “sub-volume” law
scaling [55]. Finally, we develop an exact correspondence
between hybrid quantum circuits with long-range inter-
actions and a quantum Ising model with long-range inter-
actions. This correspondence allows us to understand the
measurement-induced transition in terms of the ground-
state properties of a quantum spin chain [56–58]; perhaps
most intriguingly, it provides an analytic explanation for



2

(a)

(b)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5 Sub-volume
Law

Volume Law

Area Law

FIG. 1. (a) Schematic of our long-range interacting hybrid
circuit, which consists of layers of unitary evolution and ran-
domly placed projective measurements. Two-qubit gates sep-
arated by distance r occur with a probability P (r) ∼ 1/rα.
(b) Phase diagram as a function of the measurement rate, p
and the power-law exponent, α. For α & 3, the measurement-
induced phase transition is described by conformal field the-
ory (purple), while for α . 3, the universality changes contin-
uously (purple-red gradient). For α < 2, area-law entropy
scaling crosses over to subvolume-law scaling, where half-
chain entanglement entropy (SL/2) scales as L2−α. Despite
this different scaling behavior, both the area and sub-volume
law regimes are in the purifying phase

the dramatic change in universality at α ≈ 3—this is
precisely when long-range interactions become a relevant
perturbation.

Long-range hybrid quantum circuits.—Consider a one-
dimensional system of L qubits with periodic boundary
conditions. Our hybrid quantum circuits consist of long-
range gates interspersed with projective measurements
[Fig. 1(a)] [59].

More precisely, a single time step of the scrambling
portion of the evolution consists of L random two-qubit
Clifford gates acting on qubits separated by r sites, with r
sampled according to P (r) ∼ 1/rα; each scrambling time-
step is then followed by pL randomly placed projective
measurements [55, 60].

We have carefully chosen our scrambling dynamics to
be qualitatively similar to those generated by long-range
interacting Hamiltonians. Indeed, the light cone (as mea-
sured via an out-of-time-order correlator) for our random
circuit model with power-law α is expected to match the
corresponding light-cone generated by chaotic Hamilto-
nian dynamics with power-law α/2 [61]. To this end,
our analysis also provides insights into the measurement-
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FIG. 2. The correlation length critical exponent, ν (red), and
the dynamical critical exponent, z (teal), extracted from a
finite-size scaling analysis of the purification time. For α & 3,
one finds z ≈ 1 corresponding to CFT. For α . 3, both critical
exponents vary continuously, indicating a continuum of non-
CFT universality classes in this regime. The dotted line (and
shaded grey region) is consistent with a critical power-law,
αc = 3− η, where η ∼ 0.2 is the anomalous dimension.

induced transition when the dynamics are driven by a
long-range-interacting Hamiltonian (provided one maps
α→ α/2).

Diagnostics.—We characterize the dynamics of our
long-range hybrid quantum circuits using four diagnos-
tics: 1) the half-chain entanglement entropy (SL/2); 2)
the anti-podal mutual information (IAB) [18, 19]; 3)
the global purification dynamics (S(t)) [25]; and 4) the
single-qubit purification time (τp) [26]. All observables
are defined as average quantities over many circuit real-
izations, and SL/2 and IAB are steady-state quantities,
i.e. averaged over late times.

The half-chain entanglement entropy, SL/2, is an in-
tuitive diagnostic of the transition in the case of short-
range interactions: at low measurement rates, the system
evolves to an extensively entangled state and SL/2 ∼ L
(volume law), while at high measurement rates the sys-
tem remains in a product state and SL/2 ∼ O(1) (area
law). Due to sub-leading corrections to its critical scaling
form, SL/2 is challenging to work with quantitatively [18].
It turns out to be more straightforward to analyze IAB,
defined as the mutual information between two small
anti-podal regions [Fig. 3(g)]. Crucially, IAB ≈ 0 in both
the product and extensively-entangled phases (where the
system is unentangled or thermal respectively), and only
peaks in the critical region, making it simple to use for
finite-size scaling [18].

Both SL/2 and IAB require a notion of geometric lo-
cality to be well-defined, which breaks down as α → 0
[37, 38]. Thus, in order to gain a complete understanding
of the dynamics, we also consider τp, the median time it
takes for measurements to purify a single qubit [Fig. 3(h)]
[26]. The qualitative physics of τp can be understood by
considering the fate of an initially localized bit of entropy
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FIG. 3. (a-c) The antipodal mutual information IAB , purification time τp, and global entropy dynamics S(t) as a function of

the measurement rate p, for power-law α = 3.5. Insets depict the corresponding finite-size scaling collapse with x = (p−pc)L1/ν

(the x-axis tick denotes x = 0). Different system sizes (L = [32, 64, 128, 256, 512]) are indicated via increasing opacity. (d-f)
Depict analogous plots for α = 2.25. Both the peak-heights of IAB [d] and the crossing points of τp/L [e] exhibit marked
L-dependence. This immediately indicates that the measurement-induced transition is no longer conformal. (c,f) Colors
indicate different time-slices of S(t) (see legend). Finite-size collapses (insets) are obtained by rescaling t = cL → cLz, with
c = {1/2, 2/3, 2} depending on the time-slice. (g) Circuit schematic for IAB . The system is initialized in a product state and
the mutual information is measured between antipodal regions A and B. (h) Circuit schematic for τp. The system is initialized
in a product state with a single maximally mixed qubit. To avoid early-time finite-size effects, we apply a global scrambling
Clifford, Us, before evolving with our hybrid circuit. (i) Circuit schematic for S(t). The system is initialized in a maximally
mixed state and slowly purifies under hybrid dynamics.

(e.g. a single maximally mixed qubit). For high mea-
surement rates, this bit of entropy remains localized and
hence τp is independent of system size and approaches a
constant in the thermodynamic limit. Meanwhile, at low
measurement rates, this bit of entropy becomes delocal-
ized and is unlikely to purify, so τp diverges with system
size. At the critical point, we expect τp ∼ Lz, where
z is the dynamical exponent. Finally, we complement
our study of the median purification time by investigat-
ing the global entropy of an initially maximally mixed
state as a function of time, S(t) [25]; indeed, τp can be
understood simply as the half life of S(t). For high mea-
surement rates, S(t) decays exponentially, while for low
measurement rates, S(t) becomes time-independent.

Long-range interactions with α & 3.—As a starting
point for our analysis, let us consider fixed α = 3.5. The
observables we investigate exhibit clear evidence of an
entanglement phase transition at a critical measurement
rate, pc [Fig. 3(a-c)]. Perhaps the most striking signature
of the transition comes from the anti-podal mutual infor-

mation, which exhibits a peak at the critical point that
sharpens with increasing system size [Fig. 3(a)]. More-
over, the height and location of this peak are independent
of L, consistent with prior observations in short-range-
interacting hybrid circuits [18]. This is a consequence of
conformal symmetry at the critical point [18], and sug-
gests that the measurement-induced transition remains a
CFT for sufficiently weak power-laws (Fig. 2). To quanti-
tatively characterize the transition, we perform finite-size
scaling [inset, Fig. 3(a)] using the scaling form:

IAB = Lβf((p− pc)L1/ν). (1)

Crucially, this allows us to extract both the scaling di-
mension, β, of IAB and the correlation length exponent
ν. We find, β ≈ 0 and ν ≈ 1.3 (Fig. 2), consistent
with all prior results in short-range interacting mod-
els [18, 19, 25, 27, 62]

In order to extract the dynamical critical exponent,
we turn to an analysis of the median purification time,
τp. As shown in Fig. 3(b), we observe a single crossing
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point (which independently identifies pc) for τp/L across
all system sizes. This is consistent with the dynamical
scaling hypothesis,

τp(p) = Lzg[ (p− pc)L1/ν ], (2)

with z = 1 (as expected for a CFT). The conformal na-
ture of the transition is further confirmed by the finite-
size-scaling collapse depicted in the inset of Fig. 3(b). A
few remarks are in order. First, we find that the corre-
lation length exponent extracted from τp gives ν ≈ 1.3,
in excellent agreement with both with the short-range
transition and the scaling analysis of IAB [55]. Second,
one hopes that the critical exponents extracted from τp
can be used to directly collapse the full time dynamics
of the global entropy, S(t). This is indeed born out by
the data [Fig. 3(c)], where we have utilized the general
scaling form,

S(p, t) = h( (p− pc)L1/ν , t/Lz ). (3)

Although we have focused our discussions on the spe-
cific case of α = 3.5, an extensive numerical study of the
transition for all α & 3 reveals the same physics [55].
In particular, the critical exponents ν and z are found
to agree with their short-range values, implying that the
universality class of the measurement-induced transition
is unchanged for α & 3.

Long-range interactions with α . 3.—We now turn
our attention toward the new physics that arises for α .
3. To be concrete, let us begin by applying the same
diagnostic toolset to long-range hybrid circuits with α =
2.25. Two profound differences emerge: (i) the location
and height of the peak of IAB drifts with system size
[Fig. 3(d)], and (ii) τp no longer exhibits a single crossing
point [Fig. 3(e)]. These trends immediately imply β 6=
0 and z 6= 1, indicating that sufficiently strong power-
laws alter the universality class of the transition. More
specifically, the critical point is no longer described by
CFT.

To determine precisely when the universality class of
the transition changes, we extract ν(α) and z(α) via the
purification time and the collapse of S(t) [Fig. 3(e,f)] [63].
As shown in Fig. 2, for α . 3, we find that ν and z
vary continuously; this identifies α ≈ 3 as the thresh-
old for which long-range effects become relevant for the
measurement-induced transition.

Interestingly, further reducing α yields additional mod-
ifications to the transition. Specifically, we find that for
α < 2 the half-chain entanglement entropy always scales
with system size even at very high measurement rate,
i.e., there is no longer a true area-law phase. Instead,
there is “sub-volume” entropy scaling, where SL/2 ∼ Lµ,
with 0 < µ < 1 [55]. The emergence of this sub-volume
law scaling can be understood quite simply by analyzing
the short-time half-chain entanglement generated by our
dynamics. Indeed, a single layer of long-range gates con-
tributes additional entropy ∼ L2−α for α < 2. Numerical

analysis indicates this bound is approximately tight, and
we conjecture µ = 2 − α [55]. We emphasize, however,
that both the sub-volume and area law regimes are in
fact in the purifying phase, connected by a crossover, as
evinced by the constant τp at large measurement rate for
α < 2 [55].

At α = 1, the “sub-volume” scaling becomes a true
volume law, and the half-chain entanglement no longer
probes the measurement-induced transition. However,
observables that are not geometrically local, such as S(t),
τp and the entangling power [38], do not suffer from this
limitation and demonstrate that a measurement-induced
transition occurs for all α ≥ 0 [37, 38].

Effective quantum spin model.—To provide a theoreti-
cal understanding for the change of universality at α ≈ 3,
we develop a mapping that relates the steady-state en-
tanglement entropy of our long-range hybrid quantum
circuit to the ground-state properties of a long-range 1D
quantum Ising model [55, 64]. This mapping hinges on a
conditional Rényi entropy (which is related to SL/2 via
the replica method [65, 66]),

S
(2)
A = − log

(∑
m

p2
m tr ρ2

A,m

)
+ log

(∑
m

p2
m

)
, (4)

where · represents an average over circuit realizations,
and ρA,m is the reduced density matrix for subsystem A,
conditioned on a specific set of measurement outcomes,
m, with probabilities pm [55, 64]. Much like the half-

chain entanglement entropy, S
(2)
A undergoes an area- to

volume-law transition as a function of the measurement
rate [67, 68]. Crucially, although this transition belongs
to a different universality class, it is analytically tractable
and will provide insights into the original transition.

In order to compute S
(2)
A , we consider a slightly mod-

ified circuit that trades random connectivity for random
interaction strengths. To be precise, we consider a circuit
consisting of layers of single-qubit Haar random unitaries,
projective local-Z measurements, and long-range Ising in-
teractions θijZiZj , where θij are drawn from a Gaussian
distribution with zero mean and variance ∝ 1/|i− j|α.
The scrambling properties of this circuit are similar to
those in our original long-range circuit [Fig. 1(a)], and we
believe that it undergoes a measurement-induced transi-
tion of the same universality class (as long as one consid-
ers the same observable).

One can calculate S
(2)
A for the modified circuit via an

exact mapping to imaginary time evolution under a long-
ranged Ising Hamiltonian [55, 64]:

Heff = −
∑
ij

J

|i− j|α
(
3σzi σ

z
j − σxi σxj

)
−
∑
i

hσxi . (5)

In this context, the measurement-induced transition in

S
(2)
A can be understood as the symmetry-breaking tran-

sition in the ground state of Heff [64, 69].
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To this end, let us recall the effect of long-range inter-
actions on the universality class of the Ising transition.
In particular, one can consider the long-range tail as a
perturbation to the action of the short-ranged model,
δS =

∫
dq dω qα−1φqφ−q, where q is the momentum, ω

is the Matsubara frequency and φ is the order parame-
ter [56, 70]. At the (short-ranged) Ising critical point,
the scaling dimension of δS is 3 − α − η, where η/2 is
the scaling dimension of the order parameter. Thus, the
long-range coupling becomes a relevant perturbation for
the Ising transition when α < 3− η. This insight imme-
diately allows us to understand why the measurement-
induced transition’s universality changes at α . 3.

More precisely, we also expect long-range interactions
to become relevant for the measurement-induced transi-
tion at α = 3− η, where η is now the anomalous dimen-
sion of the short-range measurement-induced transition.
Although difficult to compute directly, one can estimate
η in three ways: (i) in the modified circuit model from

this section, the transition of S
(2)
A has η = 1/4, (ii) in

a Haar-random hybrid circuit with infinite qudit dimen-
sion, the transition of SL/2 has η = 5/24 (and is described
by percolation), (iii) in numerics on short-range interact-
ing hybrid Clifford circuits, one finds η ≈ 0.22 [27]. All of
these calculations suggest α ≈ 2.8 as the critical thresh-
old for the relevance of long-range interactions, consistent
with our numerical phase diagram [Fig. 2].

Our work opens the door to a number of intriguing
future directions. First, it would interesting to compare
the critically-purifying sub-volume law phase obtained in
[71] to the critical point of hybrid long-range circuits with
α < 2. Despite vastly different microscope origins, these
fixed points both exhibit sub-volume entanglement en-
tropy scaling and polynomial purification time, hinting
at the possibility of a common long-wavelength descrip-
tion. Second, our predicted phase diagram can be di-
rectly probed in current generation quantum simulators,
including interacting boson [36, 72] or trapped ion plat-
forms [73]. The latter approach is particularly suitable
because the long-range interaction can, in principle, be
tuned between 0 < α < 3 [74, 75]

Note added: During the completion of this work, we
became aware of complementary work on the measure-
ment induced transition in long-range interacting Hamil-
tonian systems [76].
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