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ARTICLE

ABSTRACT

The Scientific Teaching (ST) pedagogical framework provides various approaches for 

science instructors to teach in a way that more closely emulates how science is prac-

ticed by actively and inclusively engaging students in their own learning and by making 

instructional decisions based on student performance data. Fully understanding the im-

pact of ST requires having mechanisms to quantify its implementation. While many useful 

instruments exist to document teaching practices, these instruments only partially align 

with the range of practices specified by ST, as described in a recently published taxono-

my. Here, we describe the development, validation, and implementation of the Measure-

ment Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy 

and designed to gauge the frequencies of ST practices in undergraduate science courses. 

MIST showed acceptable validity and reliability based on results from 7767 students in 87 

courses at nine institutions. We used factor analyses to identify eight subcategories of ST 

practices and used these categories to develop a short version of the instrument amenable 

to joint administration with other research instruments. We further discuss how MIST can 

be used by instructors, departments, researchers, and professional development programs 

to quantify and track changes in ST practices.

INTRODUCTION

National calls over the past several decades recommend that science programs alter 

their undergraduate teaching to optimize student learning and achievement (National 

Research Council [NRC], 1999, 2003a,b; American Association for the Advancement 

of Science [AAAS], 2011; President’s Council of Advisors on Science and Technology 

[PCAST)], 2012). These reports propose a wide range of changes based on research-

based models of how students learn and the types of expertise and skills that will best 

serve students in their future careers. They also emphasize the use of teaching strate-

gies that consider the experiences of all students and alleviate historic achievement 

and representation gaps for particular demographic groups. As a result of these calls, 

many educators and researchers have made efforts to implement new teaching prac-

tices, generate improved curricula, train instructors in research-based instructional 

strategies, and conduct research on the impacts of pedagogical transformation.

Among the many recent educational movements, a pedagogical approach called 

“Scientific Teaching” (ST) has gained prominence, particularly in biology disciplines 

(Handelsman et al., 2004, 2007; AAAS, 2011). Consistent with recommendations in 

national reports, ST aims to make the teaching of science more closely resemble how 

science is practiced by infusing courses with the nature and rigor of the scientific 

process and by incorporating teaching strategies supported by empirical evidence. 
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Building on previous ST descriptions, we developed a taxon-

omy of ST practices to provide a framework for future investi-

gations (Couch et al., 2015). This taxonomy defines the core 

pedagogical goals of ST and articulates a general approach and 

specific practices that fulfill each goal. In this manner, the 

taxonomy translates ST into a list of behaviors, artifacts, and 

conditions that can be observed and documented in a course.

With respect to its scope, ST promotes the active engage-

ment of students in the learning process through group activi-

ties and formative assessments (Frederick, 1987; Prince, 2004) 

and recommends that instructors use a backward design pro-

cess to align their learning objectives, course activities, and 

assessments (Wiggins and McTighe, 2005). ST also highlights 

the importance of cognitive processes critical for the practice of 

science and learning, including connecting science with society 

(Sadler et al., 2004; Zeidler et al., 2005; Chamany et al., 2008; 

Labov and Huddleston, 2008; Pierret and Friedrichsen, 2009), 

using science process skills (Hanauer et al., 2006; Bao et al., 

2009; Coil et al., 2010; Wei and Woodin, 2011; Goldey et al., 

2012), incorporating concepts from across different disciplines 

(Bialek and Botstein, 2004; Labov et al., 2010; Tra and Evans, 

2010), and developing metacognitive reflection (Ertmer and 

Newby, 1996; Pintrich, 2002; Schraw et al., 2006; Tanner, 

2012). Finally, ST further emphasizes inclusive teaching prac-

tices that reduce unconscious biases and affirm students with 

diverse backgrounds as members of the scientific community 

(Steele, 1997; Seymour, 2000; Dasgupta and Greenwald, 2001; 

Uhlmann and Cohen, 2005; Tanner and Allen, 2007).

Over the past two decades, a number of faculty develop-

ment programs have been created to promote the use of 

research-based instructional practices, including those associ-

ated with ST. In particular, the Summer Institutes on Scientific 

Teaching (SI)1 has trained more than 1600 instructors in ST 

strategies between 2004 and 2016 (Pfund et al., 2009). The SI 

is a 4- to 5-day workshop in which participants learn about ST 

and work in groups to develop an ST-based teaching module. 

Participants are then encouraged to implement ST practices in 

their courses and share this pedagogical approach with peers at 

their home institutions. The practices associated with ST are 

also used in a variety of other teacher development workshops, 

such as the On the Cutting Edge program in geosciences (Man-

duca et al., 2010), the Cottrell Scholars program in chemistry 

(Baker et al., 2014), the Workshop for New Physics and Astron-

omy Faculty (Henderson, 2008), and the FIRST IV (Faculty 

Institutes for Reforming Science Teaching IV) workshop in 

biology (Ebert-May et al., 2015). While initial reports from the 

SI have detected promising changes in instructional practices 

among SI alums (Pfund et al., 2009; Aragón et al., 2016), many 

questions still remain regarding the degree to which instructors 

trained at the SI or through other programs implement ST prac-

tices in their courses, how successfully participants disseminate 

the ST approach within and across departments, and whether 

changes in teaching practices lead to corresponding changes in 

student outcomes. In the longer term, addressing these ques-

tions requires the development of instruments to quantify the 

use of ST practices in courses.

Many different instruments have been used by researchers to 

characterize teaching in undergraduate science courses (AAAS, 

2013). In addition to differences in their underlying development 

frameworks, these instruments also vary in who completes the 

evaluation. Some instruments ask students to answer survey 

questions based on their experiences in a course. For example, 

the Student Evaluation of Educational Quality (SEEQ) asks 

students to evaluate the quality of various course components, 

such as overall learning, instructor enthusiasm, course organi-

zation, group interactions, instructor rapport, topical breadth, 

exams, and assignments (Marsh, 1982). With other instru-

ments, instructors report on the strategies used in their own 

courses. The Teaching Practices Inventory (TPI) and the Post-

secondary Instructional Practices Survey both ask instructors 

about the extent to which they implement various research-

based teaching practices and include questions related to how 

students engage with course content, whether students interact 

with their peers, and how the instructor gauges and provides 

feedback on student learning (Wieman and Gilbert, 2014; 

Williams et al., 2015; Walter et al., 2016). Finally, a number of 

instruments rely on an external observer to evaluate or docu-

ment classroom dynamics. For example, the Reformed Teaching 

Observation Protocol (RTOP) evaluates whether a course incor-

porates certain reformed teaching strategies that create a stu-

dent-centered learning environment and includes questions 

regarding lesson design, propositional knowledge, procedural 

knowledge, student–instructor interactions, and student–stu-

dent interactions (Sawada et al., 2002). The Teaching Dimen-

sions Observation Protocol (TDOP) and Classroom Observation 

Protocol for Undergraduate STEM (COPUS) describe teaching 

practices by recording whether certain behaviors occur during 

2-minute intervals throughout a class period (Hora et al., 2013; 

Smith et al., 2013). The Practical Observation Rubric to Assess 

Active Learning (PORTAAL) is used by observers to document 

the frequency and duration of class activities that employ 

specific active-learning techniques documented to improve stu-

dent learning (Eddy et al., 2015). These instruments also vary 

in the extent to which they use human judgment to evaluate the 

quality of teaching or solely describe practices with no judg-

ment of teaching quality or efficacy (Hora, 2013). For example, 

the COPUS is strictly descriptive, whereas the SEEQ is largely 

evaluative.

While the existing instruments can measure various teach-

ing practices within undergraduate science courses, none of 

them is explicitly aligned with the ST framework and, there-

fore, they do not account for the full spectrum of ST practices. 

For example, none of the abovementioned instruments mea-

sures alignment of formative or summative assessments with 

learning goals or how often examples and analogies highlight 

diverse groups or perspectives. Several other ST practices are 

measured by only one instrument from this group. The RTOP is 

the only instrument that measures the use of interdisciplinary 

content, how often students design or evaluate experimental 

strategies, how often the instructor mentions contributions 

from diverse people or perspectives, and the level of instructor 

sensitivity (Sawada et al., 2002). The TPI is the only instru-

ment that determines how often students are asked to read or 

evaluate scientific articles, how often instructors describe the 

historical context of breakthrough discoveries, or whether sum-

mative assessment items use a variety of question formats 

1The Summer Institutes on Scientific Teaching was previously called the National 

Academies Summer Institute for Undergraduate Education in Biology.
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(Wieman and Gilbert, 2014). The TDOP is the only instrument 

that measures how often students are asked to reconcile con-

flicting data, use scientific judgment to address challenges, or 

use appropriate statistical methods (Hora et al., 2013). Finally, 

PORTAAL is the only instrument that explores how often an 

instructor uses strategies to promote individual accountability 

within group exercises (Eddy et al., 2015).

While all of the instruments described were rigorously devel-

oped and serve their designed purposes well, no single existing 

instrument fully accounts for the current breadth of recom-

mended ST practices. We developed the Measurement Instru-

ment for Scientific Teaching (MIST) to fill this role. Here, we 

describe the development of MIST, including how we established 

instrument validity during the item development process, and 

we report factor analyses and reliability statistics from a large-

scale administration of the instrument with undergraduate stu-

dents. We further demonstrate how results from this instrument 

can be used for the documentation and ongoing improvement 

of teaching practices in science courses.

METHODS

Item Development and Revision

We began the instrument development process by translating 

supporting practices from the ST taxonomy into survey ques-

tions (Couch et al., 2015). To the extent possible, questions 

focused on activities, opportunities, and structures provided by 

an instructor to students, and items were worded in objective 

terms using limited educational jargon to ensure they could 

be interpreted and answered by any person affiliated with the 

course (e.g., student, instructor, observer, teaching assistant, 

or administrator). In some cases, definitions and examples 

were provided to help survey respondents better understand 

the range of activities satisfying a given question. Similar to 

other existing instruments, item response scales varied based 

on the type of question being asked (Brawner et al., 2002; Wie-

man and Gilbert, 2014). In total, MIST uses 49 items to cap-

ture the 37 supporting practices of ST delineated in the ST 

taxonomy, because some taxonomy practices, such as course 

alignment with learning goals, require more than one MIST 

item to adequately capture the extent of their use in the course. 

Most MIST items used one of four answer choice scales: a sev-

en-point Likert-style frequency scale, a six-point Likert-style 

agree–disagree scale, a 0–100% slider-bar scale, or a no/yes 

answer.

We used interviews to optimize the clarity of the individ-

ual items and improve the face and content validity of the 

instrument (Reeves and Marbach-Ad, 2016). Interviewees 

completed an online version of MIST while participating in a 

think-aloud session in which they shared the thought process 

they used to answer each question (Anders and Simon, 

1980). This helped identify issues with question interpretabil-

ity and answer choices. Question revisions proceeded in an 

iterative cycle in which we conducted two to five interviews 

between each round of item editing. In total, we conducted 

54 interviews with undergraduate students at the University 

of Nebraska–Lincoln (UNL), instructors from multiple institu-

tions, and other individuals involved in educational efforts 

(e.g., program evaluators, professional society representa-

tives). In addition, a draft version of MIST was piloted to 29 

students in a 2015 summer session course to test software 

and participation logistics. The full MIST instrument is pro-

vided in Supplemental Material 1.

MIST Structure and Administration

MIST items were composed in the third-person tense so that any 

person with access to a course could complete the instrument. 

In this article, we have focused on responses from the student 

perspective. We purposefully recruited student participants 

from courses using a wide range of teaching practices. Table 1 

presents a complete description of institution, course, and stu-

dent demographics. Institutions spanned a range of sizes and 

were primarily classified as research institutions. Courses repre-

sented a balance of enrollment sizes and course levels and were 

largely from biology disciplines. Participating students had gen-

der and race/ethnicity distributions roughly reflective of the 

TABLE 1. MIST 2015–2016 administration demographics

n Percent of sample

Institutions

 Carnegie classification

 Highest research activity (R1) 5 56

 Higher research activity (R2) 3 33

 Primarily undergraduate institution 1 11

Undergraduate enrollment

 Small (<10,000) 2 22

 Medium (10,000–20,000) 1 11

 Large (20,000–30,000) 3 33

 Very large (>30,000) 3 33

Courses 87

Discipline

 Biology 79 91

 Other STEM 8 9

Enrollment

 Small (<25 students) 18 21

 Medium (26–100 students) 28 32

 Large (>100 students) 41 47

Course level

 Lower division (100–200 level) 46 53

 Upper division (300–400 level) 41 47

Students 7767

Class year

 First year 1542 20

 Sophomore 2080 27

 Junior 2233 29

 Senior 1694 22

 Other 218 3

Gender

 Female 4788 62

 Male 2873 37

 Other 18 0.2

 Not specified 88 1

Ethnicity

 Underrepresented minority (URM) 1224 16

 Non-URM 6543 84
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broader student populations at each institution and ranged 

from first-years to seniors.

We administered the final version of MIST containing 49 

total items2 to students enrolled in 87 courses at nine different 

institutions during the 2015–2016 academic year. Students 

completed MIST between weeks 13 and 14 of a 15-week semes-

ter. The instrument was administered online, outside class 

through Qualtrics, and was followed by a demographics ques-

tionnaire. To streamline the participant experience, the survey 

included conditional questions that appeared only if certain 

teaching strategies were reported in prior questions. We asked 

instructors to give students a small amount of course credit for 

participating in the survey. Of the 9960 students enrolled in par-

ticipating courses, 8006 accessed the online survey. After 

removal of incomplete responses and responses from noncon-

senting students and students under 18 years of age, the final 

data set contained 7767 complete student survey responses, rep-

resenting 78% of the total enrollment in participating courses.

Data Processing

Survey responses were converted to numerical codes for data 

analysis. Responses were assigned a value of 0–6 for Likert-style 

scales,3 1–6 for agree–disagree scales,4 0–10 for slider-bar 

scales, and 0/1 for no/yes questions. Conditional response 

questions that were not displayed were scored as zero, indicat-

ing that the practice did not occur.

Thirteen participating instructors taught duplicate course 

sections in the same semester. We collected data separately for 

each of these sections and examined the correlation in student 

question-level responses between sections. In all cases, paired 

section responses had a Pearson’s correlation greater than 0.80, 

so the data were combined and treated as a single course for 

that instructor. There were also 10 team-taught courses in 

which separate instructors taught different portions of the 

course. For these courses, students were randomly assigned to 

complete MIST based on the teaching of one instructor or the 

other, and these responses were treated as separate courses.

To calculate survey durations, we tabulated individual page 

dwell times. For any cases in which a student stayed on the 

same page for longer than 20 minutes, we replaced this dwell 

time with the average dwell time for that page for the student’s 

course section. We then used the sum of page dwell times to 

calculate total survey completion time. Students completed 

MIST in an average of 11.2 minutes, with 80% of students com-

pleting the instrument in less than 15 minutes.

Analysis of MIST as a Single Scale

To analyze MIST responses as a single scale, we calculated the 

internal reliability across all survey items using scale reliability 

analyses in SPSS. While we did not expect that instructors who 

implemented one practice would necessarily implement all the 

other practices, we did suspect that each of the ST practices in 

MIST would be more likely to be implemented by more trans-

formed instructors compared with more traditional instructors. 

Output from the reliability procedure included Cronbach’s 

alpha coefficient and item-total correlations, which are both 

measures of the internal consistency of survey items (Nete-

meyer et al., 2003; Hanauer and Dolan, 2014). The alpha coef-

ficient reflects the degree of covariance between survey items 

and ranges from 0 to 1, with values above 0.7 considered 

acceptable. Item-total correlations indicate the degree to which 

responses for each item are consistent with responses on the 

entire instrument and range from −1 to 1, with correlations 

above 0.3 considered representative of the overall scale (Pallant, 

2010).

We also conducted confirmatory factor analysis (CFA), using 

the lavaan package in R to determine whether response pat-

terns were consistent with a single underlying factor (Rosseel, 

2012). CFA model goodness of fit was evaluated following 

established recommendations (Hu and Bentler, 1999). The 

comparative fit index (CFI) and Tucker-Lee index (TLI) are 

comparative fit indices that compare the fit of the specified 

model with the fit of a baseline model in which covariances 

between items are set to zero (Brown, 2015). The root-mean-

square error of approximation (RMSEA) is a population-based 

parsimony measure that estimates the extent to which the 

model fits the data, taking sample size into account. The stan-

dard root-mean-square residual (SRMR) estimates absolute fit 

of the model by measuring the difference between observed 

and model-predicted item correlations (Brown, 2015). We cal-

culated factor loadings to determine the extent to which each 

item can be explained by the underlying factor, and nearly all 

MIST items saliently loaded above 0.3 (Fabrigar et al., 1999; 

Costello and Osborne, 2005; Field, 2014).

Identification of MIST Subcategories

In developing MIST, we recognized that certain groups of prac-

tices were related, in that they reflected a more general teaching 

approach. For example, we might expect an instructor commit-

ted to active learning to score high on items related to in- and 

out-of-class activity, group work, peer feedback, and polling 

methods. Similarly, an instructor wishing to help students 

develop fluency with data analysis and interpretation might 

have students apply statistical approaches, construct graphs, 

interpret different data representations, and use models. We 

used a combination of factor analyses and theoretical ground-

ing to identify groups of related practices and ensure that each 

group aligned with the underlying ST framework (Woolley 

et al., 2004; Brown, 2015; Harshman and Stains, 2017).

We began by using exploratory factor analysis (EFA) to 

determine whether we could detect underlying factors that 

explained the variance in student responses to particular groups 

of questions (Thompson, 2004; Hanauer and Dolan, 2014). 

The underlying factors identified by EFA thus reflected groups 

of teaching practices that tended to be implemented together 

by instructors (Fabrigar et al., 1999; Field, 2014). This analysis 

was initially conducted on 63 courses from Fall 2015. Several 

criteria indicated that the data set was suitable for this analysis: 

many correlation coefficients in the correlation matrix were 

above a 0.3 threshold; the Kaiser-Meyer-Olkin measure of 

2One question (Q19) inquiring about how students were grouped is asked of 

instructors only.

3One question referring to learning goal dissemination had a select-all answer 

format with seven possible answers to select. For this question, a single code of 

0–6 was assigned corresponding to the highest frequency at which learning goals 

were provided to students.

4Three of the four agree/disagree items had a “not applicable” answer choice (e.g., 

“This course did not include whole-class discussions”). The n/a responses were 

assigned a zero score. All remaining disagree-agree responses were scored as 1–6.
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sampling adequacy was 0.929, which exceeded the 0.6 recom-

mended threshold (Kaiser, 1970; Kaiser and Rice, 1974); and a 

significance of p < 0.001 was reached with the Bartlett’s test of 

sphericity (Bartlett, 1950).

We completed EFA procedures in SPSS using maximum-like-

lihood extraction and direct oblimin rotation. We considered 

three types of criteria to determine the number of factors to 

accept (Fabrigar et al., 1999; Brown, 2015). The Kaiser- Guttman 

rule recommends including all factors with eigenvalues above 

1.0 in the correlation matrix (Guttman, 1954; Kaiser, 1960). 

The scree test recommends including all factors with eigenval-

ues that are substantially lower than the previous factor, as 

inferred by the inflection point on a “scree plot” (Catell, 1966). 

Parallel analysis compares eigenvalues of the sample with 

eigenvalues of random numbers to determine the number of 

factors to include in the EFA (Horn, 1965). We used the initial 

EFA output to determine the Kaiser-Guttman rule and the scree 

test results, and we completed parallel analysis using a syntax 

for SPSS (O’Connor, 2000).

Based on an initial EFA with no a priori number of factors, 

the Kaiser-Guttman rule specified seven factors, the scree test 

indicated between five and eight factors, and parallel analysis 

indicated the presence of 10 factors. We explored each of these 

models by running separate EFAs with five, six, seven, eight, 

and 10 factors. Preliminary EFA analyses revealed that two 

items (one question about exam frequency and one question 

about incorporating the historical context of scientific break-

throughs) did not factor consistently into any category, so these 

items were excluded from this and all subsequent subcategory 

analyses. We eliminated the eight- and 10-factor EFA models, 

because they resulted in one or more factors with less than 

three items (Fabrigar et al., 1999; Costello and Osborne, 2005). 

We concluded that the seven-factor model, which explained 

47.6% of the variance in the data, was the best fit to the data. 

We intended to use EFA solely as an initial guide to identify 

subcategories from a data-driven perspective, so we assigned 

items to the factors in which they had the highest factor load-

ings and did not set a rigid cutoff. Nonetheless, most MIST 

items loaded on their respective factors above 0.30 (Fabrigar 

et al., 1999; Costello and Osborne, 2005; Field, 2014), and no 

items were cross-loaded above 0.30 (Supplemental Material 2).

While EFA procedures represent a rigorous approach to 

obtaining empirically derived factor structures, these structures 

are highly contingent on the particular sample. In fact, a recent 

investigation of the widely used Approaches to Teaching Inven-

tory (ATI) indicated that at least 23 different plausible EFA 

structures have been used to categorize ATI items in 39 differ-

ent studies (Harshman and Stains, 2017). Furthermore, we 

recognized that unrelated items may factor together for other 

reasons, such as their co-occurrence in professional develop-

ment programs. To address these limitations and ensure that 

the MIST subcategories would be meaningful to users in 

broader contexts, we made theoretically grounded adjustments 

to the EFA structure to bring the groups into alignment with the 

ST framework (Woolley et al., 2004; Hughes et al., 2006; 

Harshman and Stains, 2017).

The three questions related to polling methods initially 

appeared as a separate factor in EFA; however, polling methods 

could also be viewed as a specific active-learning modality. 

Thus, we removed this factor and reassigned the polling method 

questions to the factors related to active learning and learning 

goal alignment. In light of the groupings and resultant factor 

loadings, we retained five of the six remaining factors that res-

onated with the ST framework. The sixth factor appeared to 

be combining subsets of ST practices related to different cogni-

tive processes, so we split this factor into three subcategories. 

We then confirmed these eight subcategories by performing 

CFA and calculating coefficient alphas for each factor sepa-

rately on the Fall 2015 sample, the Spring 2016 sample, and 

the full sample of 87 courses from both semesters (Fabrigar et 

al., 1999; Netemeyer et al., 2003; Hanauer and Dolan, 2014).

To verify that the revised groupings reflected sets of related 

teaching practices and that we had adequately defined the 

approach underlying each group, we solicited feedback from 10 

faculty with expertise in ST. We asked experts to indicate whether 

or not they agreed that each MIST item fit with the other items in 

its assigned category. In the case of disagreement, experts were 

asked to explain their reasoning and indicate an alternative cate-

gory. The expert panel generally agreed with our MIST subcate-

gory groupings, and no concerns were raised with respect to the 

categories that were modified from the original EFA structure. 

Forty-one of the 46 MIST items included in the subcategory 

model had 90–100% expert agreement with their assigned cate-

gories. The remaining five items had 50–70% expert agreement. 

Three of these items referred to the instructor providing feedback 

to students on formative or summative assessments, one referred 

to students stating interests and asking original questions during 

whole-class discussions, and one referred to incorporating real-

life examples. In each of these cases, expert concerns were related 

to the MIST subcategory titles being inclusive of the items con-

tained within the subcategory, which we addressed by adding 

appropriate descriptions to the titles. The final MIST subcategory 

model consists of eight subcategories of ST practices: Active-Learn-

ing Strategies, Learning Goal Use and Feedback, Inclusivity, 

Responsiveness to Students, Experimental Design and Communi-

cation, Data Analysis and Interpretation, Cognitive Skills, and 

Course and Self-Reflection.

Development of a MIST Short Version

We developed a short version of MIST (MIST-Short) for users 

with survey time constraints, such as instructors or researchers 

who want to pair MIST with other instruments. MIST-Short was 

developed to retain representation of each subcategory. Thus, 

two or three items within each subcategory were selected based 

on several criteria, including high factor loadings, high response 

variation across courses, low variation within courses, and 

centrality to the ST framework. To analyze MIST-Short as a sin-

gle scale, we calculated coefficient alphas and conducted CFA 

with a single-factor solution using data extracted from the full 

version of MIST. We also calculated Pearson’s correlations 

between MIST-Short subcategory scores and corresponding 

subcategory scores from the full MIST instrument. On the basis 

of the timing per question, we estimate that students can com-

plete MIST-Short in approximately 5 minutes.

Scoring System

To determine MIST scores, we calculated the mean response for 

students in a given course for each question, and this value was 

normalized to the maximum scale value for that question, using 

the equation
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x s a/j j jmax=

where x
j
 is the normalized response for question j, s j is the mean 

student response for question j, and a
maxj

 is the maximum scale 

value possible for question j (i.e., 10 for slider-bar questions and 

6 for Likert-style questions). Item 15, a no/yes question on 

group work, was not included in score calculations, because 

group-work information is included in subsequent questions.

For determination of total scores for MIST as a single scale, 

the eight MIST subcategories and MIST-Short, normalized 

mean responses from relevant MIST items were summed and 

divided by the number of contributing questions, using the 

equation

X X X nMIST . /Q Q Qnscale score 1 2( )= + +… + 

where X
Q1

 … X
Qn

 are the normalized mean responses for each 

question contributing to the specified scale and n is the num-

ber of questions included in the scale calculation. Total scores 

were normalized to a 0–100 scale by multiplying by 100. Note 

that nonnormalized MIST subcategory scores will not add up 

to the full MIST score because two MIST items were not 

included in any subcategories and because each MIST subcat-

egory score is drawn from a different number of MIST items.

This project was classified as exempt from institutional 

review board review at UNL (project ID 15016) and all other 

participating institutions.

RESULTS

MIST Can Provide an Overall Estimate of ST

We conducted several analyses to determine the extent to 

which student responses to MIST items aligned as a single 

scale. MIST had high internal reliability, with an overall alpha 

of 0.93. Nearly all the MIST items had item-total correlations 

above 0.30; however, some items pertaining to inclusivity or 

exam alignment showed weaker correlations with the overall 

MIST scale (Table 2). In addition, the exam frequency item 

did not correlate with the overall scale. A variety of minimum 

factor- loading cutoffs are recommended in the literature to 

indicate salient loadings, including 0.4 (Matsunaga, 2010), 

0.32 (Tabachnick and Fidell, 2001; Costello and Osborne, 

2005), and 0.30 (Costello and Osborne, 2005; Field, 2014). 

Aside from the inclusivity and exam items, all MIST items 

saliently loaded at 0.30 or above.

MIST Contains Discernible Subcategories of 

Teaching Practices

Student MIST responses were also used to develop a scoring 

system that provides information on discrete aspects of ST. To 

examine and identify the underlying structure of MIST, we 

performed an iterative series of factor analyses aimed at 

identifying the number of subcategories present within the 

instrument and determining which items aligned with each 

subcategory. On the basis of results of these analyses and the-

oretical groundings in the ST framework, we arrived at a final 

“subcategory model” that specified eight latent variables with 

three to 13 individual items loading on each factor (Table 3). 

Both semester samples and the full sample produced similar 

model fit characteristics (full sample: CFI = 0.73, TLI = 0.71, 

RMSEA = 0.082, SRMR = 0.079). All factors loaded saliently 

onto their respective subcategories at 0.4, except one item 

that loaded at 0.316. Furthermore, each subcategory showed 

evidence of acceptable internal reliability with alphas of 

0.69–0.86 (Table 3).

MIST Shows a Wide Range of Responses at Di�erent 

Levels of Resolution

To determine the range of teaching practices used across the 

sample courses, we visualized the distribution of MIST results 

at the level of overall scores, subcategory scores, and individual 

teaching practices. Overall MIST scores ranged from 24 to 71 

on a scale of 0–100, with a relatively normal distribution and 

higher scores representing higher levels of ST implementation 

(Figure 1). Based on the structure of the survey, it was unlikely 

that MIST scores would have fallen in the extreme ranges of the 

scale (i.e., outside 15–85).

MIST subcategory scores showed varying degrees of imple-

mentation across the courses sampled (Figure 2). Three subcat-

egories generally had score distributions closer to the upper end 

of the scale (learning goal use and feedback, inclusivity, and 

responsiveness to students), four subcategories had moderate 

implementation levels (active-learning strategies, experimental 

design and communication, data analysis and interpretation, 

and cognitive skills), and one subcategory was noticeably lower 

than the others (course and self-reflection).

Individual items showed the broadest range of response dis-

tributions (Table 2 and Supplemental Material 3). Items with 

the highest normalized responses included instructor sensitivity 

to socially controversial issues (Q26), students stating interests 

and asking questions in class (Q29), and exam alignment with 

learning goals (Q13). Items with the lowest implementation 

levels were out-of-class group work (Q18), group participation 

strategies (Q20), and scientific communication in formal writ-

ten papers or oral presentations (Q41).

With respect to global measures of in-class activity, students 

reported engaging in nonlecture activities for an average of 

48% of class time (Q1) and working in groups for an average of 

42% of class time (Q16). On average, three polling questions 

were asked each week, and students completed in-class activi-

ties about once per week.

SI Participants Show Higher MIST Scores

We examined associations between MIST results and instructor 

and course characteristics for the given sample (Figure 3). Stu-

dents in courses taught by instructors who had attended an SI 

reported significantly higher perceptions of ST practices than 

students in courses taught by instructors who had not attended 

an SI (Figure 3A, SI participants, mean = 53.8 ± 1.6 SE; non-SI 

participants, mean = 47.0 ± 1.3 SE; t = 3.07, df = 84, p = 0.003, 

effect size as Cohen’s d = 0.71). We found no difference in over-

all MIST scores between lower-division (100–200 level) and 

upper-division (300–400 level) courses (Figure 3B, lower divi-

sion, mean = 49.5 ± 1.4 SE; upper division, mean = 48.6 ± 1.8 

SE; t = 0.39, df = 85, p = 0.70). The sample also showed no 

trend in overall MIST scores based on course size (Figure 3C, 

r = −0.05, p = 0.65).

MIST Provides Feedback for Individual Instructors

Instructor MIST profiles showed different instructional 

strengths and weaknesses. We highlight results from three 
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TABLE 2. Item-total correlations, factor loadings, and descriptive statistics for individual MIST items on full MIST scale: ST single-scale 

model (alpha = 0.93)

Question no. Item description

Item-total 

correlation

Full MIST 

factor 

loading

Max scale 

value

Mean 

normalized 

scorea SDa

Mean 

course SDa

1 Percent active 0.52 0.561 10 0.45 0.27 0.20

2 Learning goal maximum frequency 0.35 0.345 6 0.64 0.27 0.25

3 Polling method: frequency 0.41 0.396 6 0.60 0.39 0.19

4 Polling method: % alignment 0.50 0.459 10 0.55 0.39 0.27

5 Polling method: % peer learning 0.47 0.389 10 0.52 0.39 0.25

6 In-class: frequency 0.59 0.622 6 0.42 0.29 0.19

7 In-class: % alignment 0.57 0.399 10 0.59 0.39 0.30

8 In-class: % feedback 0.60 0.500 10 0.49 0.37 0.31

9 Out-of-class: frequency 0.34 0.350 6 0.49 0.25 0.16

10 Out-of-class: % alignment 0.43 0.365 10 0.67 0.35 0.28

11 Out-of-class: % feedback 0.46 0.429 10 0.45 0.36 0.32

12 Exams: frequency 0.03 −0.009 6 0.65 0.20 0.16

13 Exams: % alignment 0.26 0.185 10 0.79 0.27 0.24

14 Exams: % feedback 0.40 0.372 10 0.53 0.35 0.31

15 Group work: y/nb 0.53 0.589 1 0.37 0.35 0.20

16 Group work: % of class time 0.53 0.623 10 0.42 0.37 0.20

17 Group work: in-class frequency 0.59 0.678 6 0.18 0.27 0.21

18 Group work: out-of-class frequencyc 0.40 0.545 6 0.18 0.28 0.24

20 Group work: group participation strategy 0.46 0.611 6 0.40 0.38 0.22

21 Group work: share results with whole class 0.56 0.649 6 0.27 0.33 0.27

22 Peer feedback 0.56 0.615 6 0.54 0.36 0.28

23 Students respond to each other 0.54 0.584 6 0.58 0.35 0.31

24 Diverse examples and analogies 0.29 0.300 6 0.63 0.33 0.29

25 Diverse scientist/researcher contributions 0.28 0.284 6 0.78 0.19 0.18

26 Instructor sensitivity 0.23 0.195 6 0.29 0.29 0.24

27 Students provide feedback on activities/content 0.44 0.492 6 0.38 0.38 0.33

28 Make adjustment from student feedback 0.46 0.507 2 0.77 0.18 0.16

29 Student state interests and ask original questions 0.37 0.357 6 0.66 0.27 0.23

30 Instructor aware of student nonunderstanding 0.45 0.424 6 0.64 0.30 0.27

31 Follow-up activities provided if not understood 0.48 0.467 6 0.50 0.30 0.25

32 Make hypotheses/predictions 0.62 0.687 6 0.37 0.31 0.26

33 Critique hypotheses and experimental strategies 0.58 0.670 6 0.29 0.30 0.25

34 Design experiments 0.57 0.647 6 0.40 0.31 0.25

35 Summarize, interpret, analyze data with math 0.53 0.598 6 0.28 0.29 0.22

36 Make graphs or tables 0.51 0.587 6 0.50 0.28 0.22

37 Analyze/interpret data graphs/tables 0.54 0.586 6 0.45 0.30 0.25

38 Use data to make decisions/defend conclusions 0.60 0.661 6 0.48 0.29 0.26

39 Use models 0.51 0.549 6 0.28 0.29 0.23

40 Scientific literature or media articles 0.40 0.463 6 0.16 0.25 0.22

41 Science communication: written papers/oral pres. 0.33 0.408 6 0.59 0.27 0.24

42 Course concepts applicable to life 0.37 0.355 6 0.49 0.28 0.24

43 Historical context 0.32 0.316 6 0.46 0.32 0.29

44 Use nonwritten formats 0.42 0.449 6 0.42 0.32 0.29

45 Interdisciplinary 0.48 0.511 6 0.66 0.27 0.23

46 Higher-level thought processes 0.45 0.446 6 0.47 0.32 0.26

47 Open-ended exercises/case studies 0.58 0.633 6 0.35 0.28 0.27

48 Reflection: effective study habits 0.49 0.533 6 0.37 0.30 0.27

49 Reflection: problem-solving strategies 0.55 0.600 6 0.45 0.27 0.20

aMean normalized score and SD are calculated from all individual student responses. Mean course SD is the mean of SDs from each course.
bQuestion 15 was included in initial scale analyses, but was not included in MIST scores because it was accounted for in questions 16–21.
cQuestion 19 was asked only of instructor participants.
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FIGURE 1. Frequency distribution of overall MIST scores. Bars 

represent the number of courses within each score bin. For 

example, the rightmost bin contains MIST scores greater than 70 

and less than or equal to 75. n = 87 courses.

TABLE 3. MIST subcategory model, subcategory reliabilities, and 

factor loadings of MIST items

Item Item description Factor loading

Active-Learning Strategies (alpha = 0.86)

Q1 Percent active 0.598

Q3 Polling method: frequency 0.405

Q5 Polling method: % peer learning 0.513

Q6 In-class: frequency 0.645

Q9 Out-of-class: frequency 0.356

Q15 Group work: y/na 0.840

Q16 Group work: % of class time 0.806

Q17 Group work: in-class frequency 0.894

Q18 Group work: out-of-class frequency 0.636

Q20 Group work: group participation  

strategy

0.680

Q21 Group work: share results with whole  

class

0.838

Q22 Peer feedback 0.600

Q23 Students respond to each other 0.510

Learning Goal Use and Feedback (alpha = 0.79)

Q2 Learning goal maximum frequency 0.418

Q4 Polling method: % alignment 0.536

Q7 In-class: % alignment 0.783

Q8 In-class: % feedback 0.773

Q10 Out-of-class: % alignment 0.549

Q11 Out-of-class: % feedback 0.523

Q13 Exams: % alignment 0.429

Q14 Exams: % feedback 0.475

Inclusivity (alpha = 0.69)

Q24 Diverse examples and analogies 0.835

Q25 Diverse scientist/researcher  

contributions

0.854

Q26 Instructor sensitivity 0.316

Responsiveness to Students (alpha = 0.73)

Q29 Student state interests and ask original 

questions

0.555

Q30 Instructor aware of student 

 nonunderstanding

0.820

Q31 Follow-up activities provided if not 

understood

0.803

Q42 Course concepts applicable to life 0.431

Experimental Design and Communication (alpha = 0.83)

Q32 Make hypotheses/predictions 0.743

Q33 Critique hypotheses and experimental 

strategies

0.848

Q34 Design experiments 0.777

Q40 Scientific literature or media articles 0.588

Q41 Science communication: written papers/

oral pres.

0.525

Data Analysis and Interpretation (alpha = 0.85)

Q35 Summarize, interpret, analyze data with 

math

0.714

Q36 Make graphs or tables 0.656

Q37 Analyze/interpret data graphs/tables 0.798

Q38 Use data to make decisions/defend 

conclusions

0.845

Q39 Use models 0.663

instructor participants to demonstrate how individuals could 

derive information from their MIST reports to guide instruc-

tional decisions (Figure 4). Instructors A and B had a high 

degree of ST implementation, evidenced by overall MIST 

scores in the 70th and 85th percentiles, respectively, but these 

instructors showed different strengths in MIST subcategories. 

Instructor A showed higher levels of inclusivity and experi-

mental design and communication, while Instructor B had 

higher rankings in responsiveness to students, cognitive skills, 

and course and self-reflection. Conversely, Instructor C’s over-

all ST implementation levels were much lower, but this 

instructor showed relative strength in having students con-

sider aspects of experimental design and communication, 

with responses in this MIST subcategory reaching the 84th 

percentile.

MIST-Short Approximates Scores from the Full Version

Because we did not administer MIST-Short by itself, we esti-

mated characteristics of the shortened instrument by analyzing 

student responses to the selected subset of items from the full 

version of MIST. From this subset of student data, estimated 

Item Item description Factor loading

Cognitive Skills (alpha = 0.72)

Q44 Use nonwritten formats 0.584

Q45 Interdisciplinary 0.640

Q46 Higher-level thought processes 0.591

Q47 Open-ended exercises/case studies 0.689

Course and Self-Reflection (alpha = 0.77)

Q27 Students provide feedback on activities/

content

0.503

Q28 Make adjustment from student feedback 0.488

Q48 Reflection: effective study habits 0.853

Q49 Reflection: problem-solving strategies 0.903

aQuestion 15 was included in factor analyses but was not included in the subcat-

egory score because it was accounted for in questions 16–21.
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results for MIST-Short showed good internal reliability (alpha = 

0.85), and each item on the short version saliently loaded at 

0.30 or above with a single factor specified in CFA (Table 4). 

Simulated MIST-Short total scores correlated very closely with 

MIST full-version total scores (r = 0.97). Each simulated 

short-version subcategory also showed a strong correlation 

(r range: 0.87–0.98) with the corresponding subcategory score 

from the full version (Table 5).

DISCUSSION

The ST pedagogical framework and its supporting instruc-

tional practices have been emphasized in many national calls 

to improve undergraduate science, technology, engineering, 

and mathematics (STEM) education (AAAS, 1990, 2011; 

NRC, 2003a). To further understanding of how ST practices 

influence student success, we recognized a need for a descrip-

tive instrument to gauge the extent of ST implementation in 

undergraduate courses. While existing instruments capture 

some aspects of ST, we developed MIST to specifically align 

with the full range of potential ST practices. The 49 items on 

MIST represent nearly all the supporting practices identified 

in the ST taxonomy (Couch et al., 2015). Furthermore, the 

development process and results presented here provide evi-

dence for the validity and reliability of the full scale, eight 

subcategories, and individual items corresponding to the fre-

quency or extent of specific teaching practices. MIST-Short 

also demonstrated a capacity to approximate scores from the 

full version.

Integrating Response Patterns with Underlying Theory

Building on the framework specified in the ST taxonomy, our 

response modeling process revealed both expected and unex-

pected aspects of how instructors implement ST. In developing 

a subcategory model, we discovered that student responses 

empirically grouped into seven factors. This implies a degree of 

correspondence in the implementation and perception of cer-

tain groups of teaching practices. For example, the items in the 

active-learning strategies factor address the extent to which stu-

dents were actively engaged, answering questions, and working 

together during a course. To ensure that all item groupings had 

practical significance for survey users, we also made theoreti-

cally grounded decisions to adjust some factors to arrive at a 

final subcategory model. We recognize that these categorical 

groupings reflect the current state of implementation patterns 

and may change over time, so different factoring models should 

be considered in the future as the state of transformed teaching 

advances. Fit statistics for the final model were on par with 

those of a recently published instrument measuring instruc-

tional practices (Walter et al., 2016). Thus, the final eight sub-

categories represent an integration of response patterns with 

underlying theory and provide an additional level at which to 

consider ST implementation.

Our modeling process also revealed that current perceived 

implementation patterns of some practices are not tightly 

aligned with the overall ST framework. When considered as a 

single scale, two items related to exam frequency and align-

ment did not correlate strongly with the full scale. The mis-

alignment of the exam frequency question was not surprising, 

because ST does not have explicit directives on an ideal exam 

frequency. Having exams that align with underlying learning 

FIGURE 3. MIST scores based on (A) SI participation status, (B) course level, and (C) course enrollment. Bars represent mean ± SE for 

courses in each group. Diamonds correspond to MIST scores for each individual course of the indicated enrollment size. The solid line 

represents the regression line. n = 58 non-SI participants, 28 SI participants; n = 48 lower-division, 39 upper-division courses; n = 87 total 

courses.

FIGURE 2. Score distributions for the eight MIST subcategories. 

Central bars represent subcategory median scores, boxes 

represent inner quartiles, and whiskers represent the 5th and 95th 

percentile values. n = 87 courses.



16:ar67, 10  CBE—Life Sciences Education • 16:ar67, Winter 2017

M. F. Durham et al.

objectives, however, is an explicit part of the ST taxonomy. 

Because responses to the item on exam alignment were very 

high, we suspect that students may have considered the content 

of exams to be synonymous with course objectives, limiting the 

ability of this question to discern between courses with high 

and low exam alignment. We also found that the items pertain-

ing to inclusivity did not align well with the full scale. While 

inclusivity represents a central part of ST, these results suggest 

that the degree to which instructors implement certain inclusive 

teaching practices is partly decoupled from their broader imple-

mentation of other ST practices. Lower variance in responses to 

inclusivity items may also have contributed to the lower degree 

of alignment with the larger scale.

MIST Reveals Factors That Influence ST Implementation 

Levels

While our initial efforts focused on instrument development, 

our data also provide insights into potential factors correlated 

with the extent of ST implementation. Among the courses sam-

pled, student responses indicated that courses taught by 

individuals who had attended an SI workshop had higher over-

all ST implementation scores than nonattending counterparts 

(Figure 3A). This finding agrees with previous self-reported 

data suggesting that attending an SI facilitates instructor adop-

tion of ST practices (Pfund et al., 2009; Aragón et al., 2016). 

Importantly, the results presented here relied on student 

observations of instructional practices and, therefore, avoided 

the potential issue of instructors inflating their self-reported 

teaching practices (Ebert-May et al., 2011). However, work 

TABLE 4. MIST-Short single-factor model item loadings: MIST-

Short model (alpha = 0.85)

Item Item description Factor loading

Q2 Learning goal maximum frequency 0.355

Q3 Polling method: frequency 0.403

Q4 Polling method: % alignment 0.472

Q6 In-class: frequency 0.584

Q7 In-class: % alignment 0.542

Q17 Group work: in-class frequency 0.577

Q24 Diverse examples and analogies 0.314

Q25 Diverse scientist/researcher contributions 0.301

Q27 Students provide feedback on activities/

content

0.474

Q30 Instructor aware of student 

 nonunderstanding

0.464

Q31 Follow-up activities provided if not 

understood

0.509

Q32 Make hypotheses/predictions 0.710

Q34 Design experiments 0.615

Q37 Analyze/interpret data graphs/tables 0.612

Q38 Use data to make decisions/defend 

 conclusions

0.681

Q46 Higher-level thought processes 0.501

Q47 Open-ended exercises/case studies 0.650

Q48 Reflection: effective study habits 0.519

TABLE 5. Correlations of total scores and subcategories between 

the MIST-Short and the MIST full version

MIST scale/subcategory title

No. of 

questions

r with full 

instrument

Overall MIST-Short 18 0.97

Active-Learning Strategies 3 0.95

Learning Goal Use and Feedback 3 0.87

Inclusivity 2 0.98

Responsiveness to Students 2 0.95

Experimental Design and 

Communication

2 0.89

Data Analysis and Interpretation 2 0.93

Cognitive Skills 2 0.95

Course and Self-Reflection 2 0.96

FIGURE 4. MIST profiles for three instructors across MIST subcategories. (A) Points represent MIST subcategory scores for Instructors A, B, 

and C based on mean student responses in each course. (B) Full MIST score, MIST subcategory scores, and percentile rankings in the full 

sample are displayed for each instructor.
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from student course evaluations suggests that student ratings 

may also reflect various sources of bias, including course grad-

ing policies, required student workload, student skill level, 

course entertainment value, and instructor demographics 

(Becker and Watts, 1999; Spooren et al., 2013; Braga et al., 

2014). Given that the structure of MIST questions differs from 

standard student course evaluations, further investigation is 

needed to understand the extent to which MIST scores are 

susceptible to student biases. In addition, investigations includ-

ing pre–post SI surveys and more directed sampling strategies 

will be needed to determine whether instructors with already 

high ST implementation levels are more likely to attend an SI 

or whether the SI itself enables instructors to increase their use 

of ST.

We found that course level and enrollment were not cor-

related with MIST overall scores, suggesting that ST can be 

implemented in varying course environments (Figure 3, B and 

C). These results agree with several other studies demonstrat-

ing that course transformation can be achieved despite practical 

constraints associated with large courses (Hake, 1998; Crouch 

and Mazur, 2001; Allen and Tanner, 2005; Knight and Wood, 

2005; Freeman et al., 2007; Derting and Ebert-May, 2010; 

Smith et al., 2014). Furthermore, these findings suggest that 

MIST does not have an implicit bias toward detecting ST prac-

tices in a particular course context.

MIST Enables Investigation of Particular Research 

Questions

In addition to tracking changes in teaching practices over time 

or after professional development workshops, MIST can also be 

used to investigate specific research questions. For example, 

while many studies have linked active learning to improved 

course performance and decreased failure rates (Freeman et al., 

2014), comparatively fewer studies have investigated whether 

and how other recommended teaching practices influence stu-

dent outcomes. The MIST subcategories provide a means to 

empirically decipher the contributions of a particular factor to 

a set of student outcomes, such as engagement, conceptual 

learning, skills development, science identity, and persistence 

(Graham et al., 2013). Thus, MIST can help support more 

nuanced studies of teaching practices (Freeman et al., 2014; 

Wieman, 2014; Hora, 2015).

Recent reports have begun to investigate differences in how 

instructors, students, and observers document course practices. 

This issue remains critical to advancement in the education 

field, because many studies on the efficacy of professional 

development programs and the impact of teaching practices 

hinge on having accurate measures of instructional practice 

(AAAS, 2013; Smith et al., 2013; Wieman and Gilbert, 2014). 

Some data suggest that instructors may systematically overesti-

mate the adoption of transformed practices in self-report sur-

veys, particularly after professional development programs 

(Ebert-May et al., 2011). Conversely, other work indicates an 

association between instructor self-reports and course observa-

tions that may be attributed to the low-stakes nature of the 

instructor survey and questions that target very specific teach-

ing practices (Smith et al., 2014; Wieman and Gilbert, 2014). 

More recently, researchers compared instructor and student 

reports of teaching practices in a lab course (Beck and Blumer, 

2016). While this study found significant correlations between 

student and instructor survey responses, these relationships 

only accounted for a moderate amount of variance. In this case, 

course observations were not available to determine which 

veiwpoint agreed more closely with an observation-based per-

spective. The syntax of MIST items enables them to be interpre-

table to any course affiliates (i.e., instructors, students, or 

observers). Thus, MIST will lay a groundwork for future studies 

to understand differences in these modes of documenting 

course practices.

Given the limitations of any one mode of course documenta-

tion, we chose to use student reports for initial MIST studies for 

several reasons. First, most national reports focus on the imple-

mentation of student-centered instruction, which places stu-

dent perceptions, behaviors, and learning at the center of 

instructional design. Accordingly, transformed instructional 

practices should have detectable effects on student course expe-

riences. Second, we wished to develop a mechanism for docu-

menting course practices that circumvents the possibility that 

instructors who participate in professional development pro-

grams, such as the SI, could inflate their scores. Third, despite 

potential biases and limitations, student surveys and evalua-

tions of teaching (e.g., the National Survey of Student Engage-

ment) have long been used by instructors and institutions as a 

common benchmark. Finally, students represent a universally 

available resource: every course has students who can provide 

insight on teaching practices, and these students attend class 

for the entire semester. By comparison, few courses have 

resources for or access to trained observers, and it becomes 

increasingly cost-prohibitive to employ multiple observers or 

too time-consuming to have faculty observers attend more than 

a few class sessions.

While the student viewpoint represents an accepted and 

pragmatic way for instructors to document their teaching prac-

tices, future studies are needed to understand additional affor-

dances and limitations of relying on the student perspective. For 

example, MIST items ask students to make judgments with 

respect to their perception of events that occurred over a full 

semester time span. While we do not expect each student to 

report on practices with exact precision, the frequency response 

scales on most questions were designed to indicate rough 

approximations of monthly, weekly, or daily frequencies. During 

validation interviews, students expressed comfort with their 

ability to identify the appropriate frequency at these levels, but 

student perceptions of the frequencies varied among students 

and could have been influenced by a host of variables, including 

individual student characteristics and the activities imple-

mented in recent class sessions.

Interpreting and Using MIST Results

As with any educational instrument, MIST results must be 

interpreted and used in a manner consistent with the overall 

goals of a course or academic program. We developed fre-

quency scales of individual MIST items to capture the full 

extent of potential variation of practices, ranging from com-

pletely absent to very frequent. It is unlikely that every ST 

practice will be implemented at the highest level in an indi-

vidual course. Thus, when interpreting MIST scores, instruc-

tors should focus on questions that align with their own goals. 

Subcategory percentile ranks can be helpful for determining 

how a given course compares with other courses, but this 



16:ar67, 12  CBE—Life Sciences Education • 16:ar67, Winter 2017

M. F. Durham et al.

Qualtrics, and two Excel files with embedded formulas for 

calculating overall scores and subcategory scores for each 

instrument (Supplemental Materials 4, 5, 7, and 8). A one-page 

front-and-back handout summary of MIST questions, suitable 

for distribution at workshops or among colleagues, is available 

in Supplemental Material 6.
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