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Abstract

A new in situ vibration mode measurement method within a tomograph is proposed

based on Projection-based Digital Volume Correlation techniques. Several projection

angles are selected and a large number of radiographs of the vibrating sample are

acquired at random instants with a small exposure time in order to ‘freeze out’ the

displacement and avoid motion blurring. Based on an initial reconstruction acquired in

a static configuration, the displacement field measurement is performed using a Proper

Generalized Decomposition technique. All projections are analyzed as being due to a

few vibration modes deforming the known reference volume. The different projection

directions are related to each other assuming that the modal amplitude probability

distribution functions are statistically similar. A synthetic test case, mock-up of a liver, is

used to illustrate and validate the approach. In this case, 5 projection angles were

chosen, 300 radiographs per angle, and the first three vibration modes could be

recovered with a good accuracy.

Keywords: Computed tomography, Vibration modal measurements, Proper

Generalized Decomposition, Digital Volume Correlation, Data reduction

Introduction

In the last decades, full-field measurement methods have become a key element for the

validation and identification of (bio-)mechanical models [1,2]. Model identification is an

inverse problem that consists in estimating the constitutive parameters of a mechani-

cal model. The maturity of these approaches is such that one may argue that full-field

based identification can be properly considered as a genuine measurement. Targeting

identification or validation of a model (i.e., with a high signal to noise ratio), an experi-

ment can be designed and optimized to be discriminant, i.e., highly sensitive to parameter

changes [3]. Various levers can be activated to enhance sensitivity and hence mechanical

model identification:

• selecting adequatemeasurement device, with surfacemeasurements using e.g., visible

camera(s), high speed devices, thermal measurements, or volume analyzes: X-ray or

neutron Computed Tomography (CT) [4], etc.

• choosing the experiment procedure and loadings: e.g., multi-axial, with thermo-

mechanical loadings [5], cyclic loads [3], controlled crack paths [6,7], vibrations [8],

etc.
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• optimizing the sample shape (e.g., with holes or notches to enhance a plastic behavior

as in [9] or more sophisticated methods based on topology optimization [10]).

Being able tomeasure the vibrationdisplacement field (thus themodal basis) of a sample,

in 3D, is both relevant for model discrimination [11] but also very challenging. And, even

if the time evolution of the kinematics is not known, the determination of themodal basis

of a sample (even limited to its first few modes) is extremely sensitive to the density and

stiffness of the studied samples, and can therefore be used to (un)validate a model in a

very discriminating way. Although stereo-DIC methods coupled with high speed setups

appear to be very efficient and relevant measurement procedures [8,12], they are limited

to surface measurements [13]. Coupling vibration measurement and CT imaging is very

appealing. However, vibrations with multiple modes (say from 1 to 10 Hz) are much

too fast (or lack perfect periodicity) to be captured by standard tomography acquisition

approaches.

Concerning general mechanical tests, coupled with 3D imaging devices such as X-ray

CT scanners, in situ measurements of the displacement field using Digital Volume Cor-

relation (DVC) [14] offer remarkable opportunities for identification. However, temporal

resolution is a critical issue. To run standard 3D full field measurement techniques, with

its classical 4D (space-time) implementation [15], several volumes are required, and the

acquisition of each volume costs tens of minutes or hours in a lab-CT (although a much

faster rate, up to 20 Hz, can be achieved at synchrotron facilities [16,17], leading to 4D

scanmovies). A classical analysis would then require quasistatic acquisitions to avoid blur

in the reconstructions, what would imply a period larger than several tens of hours. 10 Hz

vibration would thus be out of reach by no less than a factor of 105 in frequency, or 5

orders of magnitude.

Different methods have been developed to be able to acquire tomographic volumes in

some of those fast applications:

• In fatigue tests for example, the sample is loaded cyclically and the test is interrupted

at some steps for the scanning process [4].

• For periodic motion, the acquisition can be triggered by other sensors giving the

phase of the motion [18]

• An extension of DVC where the measured quantities are identified on projections

is the Projection-based DVC (P-DVC) [19–21]. Those developments allow a 4D

(space/time) kinematics to be followed from a single projection per state. The devel-

oped P-DVC technique could also be applied to follow deformations radiograph after

radiograph, while the sample is rotating [22,23].

• Some dynamic tomography techniques [24], aim at imaging a moving sample by

capturing the kinematics and reconstructing the sample at the same time.

Although thosemethods have allowed extendingmeasurements to fast phenomenon, they

are not able to deal with vibrations.

In [25], the modal basis of a vibrating plate was measured using a deflectometry setup

with a random and unknown (but numerous) sampling in time. The collection of images

were acquired using a short exposure time to freeze out the displacement without motion

blurring. Without time information, frequencies cannot be measured. However, images

are related to each others by a kinematic field that is mainly composed of the first low
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frequency modes. From DIC analysis of those images, a weighted principal component

analysis (PCA) [26,27] could extract the first vibration modes. The latter were favorably

compared with numerical results. Such an approach overcomes the obstacle of not being

able to resolve finely the time evolution of the vibrations (because acquisition instants of

time are random) and only requires fast image capture to avoid blurring. Here and in the

following, the acronym PCA will be used, although a number of different acronyms exist

with essentially the samemeaning, such as Proper Order Decomposition (POD), Singular

Value Decomposition (SVD), Karhunen-Loeve (KL), etc.

The previous analysis [25] motivates the development of a similar technique to extract

3D vibrationmodes with a CT-scanner, by-passing the severe limitation of the slow acqui-

sition of 3D images. P-DVC is a way to reduce the time scale of tomographic acquisition to

that of radiographs (leading to several orders of magnitude gain in time scale). However, a

new challenge arises from the fact that each radiograph brings only a partial information

on the kinematic field, and the random acquisition times forbid any regularization that

would exploit a smooth temporal evolution. The present study addresses this challenge

based on a statistical assumption of a proper sampling of the first vibration modes. It

will be shown that exploiting such a property will allow to relate the different projection

angles, and hence reassemble from the various observed projections the spatial vibration

modes.

A standard static acquisition is first performed in a reference configuration. Five pro-

jection angles for the multi-view P-DVC are selected. A large series of radiographs (300

frames) is acquired at each angle, at random instants, using a short exposure time. To

mention a realistic order of magnitude, 80 Hz is a frame rate (per single projection) that

can be achieved in a lab-CT (whereas 1 to 10 kHz [16,28] can be reached at synchrotron

beamlines). The identification of the kinematics is then performed with a Proper General-

ized Decomposition [29,30] procedure computing sequentially the relevant modes using

statistical assumption(s) on the displacement field. A synthetic application for the mea-

surement of free vibration modes in a human liver shows the accuracy of the proposed

method with a CT-scanned liver that is virtually deformed with 3 numerical modes.

In “Modal measurement method section”, after having introduced the data acquisition

protocol, and recalled the principles of the Projection-based Digital Volume Correlation,

the methodology of the PGDmodal analysis is presented, together with the way to extract

the spatial vibration modes from the PGD modes. “Application of the method” section

presents an application to a numerical mock-up of the free vibration of a liver. Synthetic

projections are computed based on a numerical model, trying to reproduce the actual

complexity of a real application (namely, with added noise and no contrast within the

organ, so that the projections contain only boundary information). Yet, those synthetic

data will be shown to lead to a good reproduction of the first three vibration modes.

“Conclusion and discussion” section concludes this paper with a summary of the major

results and suggests some perspectives.

Modal measurement method

Problem definition and assumptions

The studied sample is first CT-scanned in a static configuration. A set of projections pref is

acquired when the source and detector are both rotated by an angle θ with respect to the
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Fig. 1 Scheme of the acquisition procedure. The point-like source (shown as a •) and the detector may

rotate around the sample by an angle θ

sample to refer to a medical imaging set-up as schematized in Fig. 1 (or equivalently the

sample is rotated in a static set-up including source and detector, as in lab CT scanners).

r denotes the 2D detector pixel position, and pref(r, θ ) is the cologarithm of the ratio of

X-ray intensity at pixel r to the flat-field at the same position. From pref, onemay compute

a 3D image where each voxel x is characterized by its coefficient of X-ray absorption, f (x).

This image is computed (or reconstructed) from the inversion of the linear relation

�θ [f (x)] = pref(r, θ ) (1)

where �θ is the projection operator [31] that sums the coefficient of absorption f (x)

along the beam that hits the detector at position r. In practice, f (x) is computed from the

minimization of

Ŵref(f ) =
1

β2
p

∑

r,θ

∥∥∥�θ [f (x)] − pref(r, θ )
∥∥∥
2

(2)

where β2
p is the detector noise variance.

The sample is then assumed to be excited to a steady vibrating motion. After having

scanned the reference configuration, the experiment consists in recording several sets of

projections, pvib(r, t). These radiographs of the vibrating sample are acquired at random

times using the shortest possible exposure time to avoid motion blur. Exposure times of

order 0.0125 s are available in some micro-lab-CT (as the one at the LMT Paris-Saclay).

Few,Nl , projection angles are chosen θl , and for each of them,Nt projections are recorded.

The projection angle attached to a label t is denoted θ (t). These projections are indexed

by a time label t, however their acquisitions are random instants does not allow t to be

fully interpreted as a time, as it would if the experiment were performed with a very fine

temporal sampling, i.e., much smaller than the inverse of the highest observed frequency.

Otherwise, any additional sensor information (i.e., laser interferometry, acoustic mea-

surements) could potentially be used in a temporal regularization if available. In the sequel,

no such supplementary information is assumed to be available.

Its 3Dmotion u(x, t) is described by a displacement field that can be decomposed on its

vibration modal basis as
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u(x, t) =
∑

mode i

αvib
i (t)�vib

i (x) (3)

with �vib
i (x), the ith spatial vibration mode, and αvib

i (t) its temporal amplitude. Vibration

displacements are assumed to be of small amplitude (small to be compared with the

characteristic length of the texture) and centered around the reference configuration (i.e.,

null mean displacement).

P-DVC

Projection-based DVC (P-DVC) aims at evaluating a displacement field, u(x, t), from

projections based on the consistency of the measured projection and the one computed

from thewarping of the reference volume byu. In the present case, considering vibrations,

the functional to minimize is similar to the one used for reconstruction, at the exception

of the warping. It reads

Ŵvib(u) =
1

β2
p

∑

r,t

∥∥∥�θ (t)[f (x + u(x, t))] − pvib(r, t)
∥∥∥
2

(4)

In the above expression, the functionalŴvib is normalizedusing the variance of thedetector

noise, β2
p .

P-DVC is a non-linear problem because the unknown displacement field comes in as an

argument of the sample texture f (.). However usingmultiscale approaches, the problem is

usually addressed from successive linearizations, treating the displacement correction as a

small perturbation, for which a Taylor expansion to first order is sufficient. In the present

case, it is assumed that the displacement magnitude is small enough so that a multiscale

approach is not needed and a mere linearization about the reference state is sufficient and

does not necessitate successive further updates. In practice, this means that at each point

of the sample the displacement amplitude is smaller than the microstructure correlation

length. Thus, the above functional can be linearized to

Ŵvib-lin(u) =
1

β2
p

∑

r,t

∥∥∥�θ (t)[f (x)] + �θ (t)[∇f (x) · u(x, t)] − pvib(r, t)
∥∥∥
2

=
1

β2
p

∑

r,t

∥∥∥�θ (t)[∇f (x) · u(x, t)] − (pvib(r, t) − pref(r, θ (t)))
∥∥∥
2

(5)

It is convenient to introduce ρ0(r, t) = pvib(r, t) − pref(r, θ (t)), the projection difference

between the vibrating state at time t, and the reference state with the same projection

angle. This mere difference has the additional merit of cancelling some spurious artefacts

due to the X-ray detectors, and to avoid possible reconstruction inaccuracies (for instance

due to approximate acquisition geometry parameters).

The above formulation is a very ill-posed problem and it calls for regularizations to

be solvable. This holds when dealing with a motion that is smooth in time, or when

prior knowledge can be incorporated from say a parametrization based on additional

measurement such as a load. However, in the present case, the randomness of the time

acquisition prevents such a strategy.

Instead, a statistical approach is proposed, based on a modal decomposition.
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PGDmodal analysis

The basic idea is to introduce modes as separated time functions and space fields, in the

same spirit as Eq. 3.

u(x, t) =
∑

mode i

αPGD
i (t)�PGD

i (x) (6)

However, it is important to note that nothing guaranties at this stage that themodeswhich

are identified from the measurements �PGD
i coincide with the vibration modes �vib

i .

To render the problem solvable, one needs another assumption, that is similar to the one

used to associate PCA modes and vibration modes [26,27]. The additional assumption

is that the displacement fields have a hierarchical structure. Namely, it is assumed that

the first mode dominates over all others, so that—to dominant order—the above sum can

be truncated to the first mode only. However, when the first mode is understood, and

both αPGD
1 (t) and �PGD

1 (x) are identified, they can be subtracted off from the data, ρ, and

more modes appear, and again, it is assumed that the second mode dominates over all the

other ones, and similarly order after order. This assumption is essentially based on a clear

separation of eigen-frequencies (large ratio of consecutive resonant frequencies). Such an

assumption leads naturally to a greedy approach where only one mode is identified at a

time. Modes are extracted iteratively from the remaining projection data, ρ, from which

the contribution of the previous modes has been erased. Thus, the elementary procedure

is to determine the displacement field as if it were composed of a single mode. In this

section, the superscript PGD is omitted for the sake of conciseness.

Displacements are discretized in space using a finite element mesh, fitted to the sample

shape, as usually done in global DIC or DVC procedures [32,33]. To specify our notations,

mesh shape functions ψj(x) are introduced, so that mode i, �i reads

�i(x) =
∑

j

φ
j
iψ

j(x) (7)

With this FE discretization, mode i reduces to a vector φi, that gathers all components φ
j
i .

To determine a single mode, the space-time separation of u(x, t) = α(t)�(x) is inserted

in the functional Ŵvib-lin (since only one mode is considered at a time, the index of the

mode is dropped in the following)

Ŵvib-lin(�(x),α(t)) =
1

β2
p

∑

r,t

∥∥α(t)�θ (t)[∇f (x) · �(x)] − ρ0(r, t)
∥∥2

=
1

β2
p

∑

r,t

∥∥∥α(t)φj�θ (t)[∇f (x) · ψj(x)] − ρ0(r, t)
∥∥∥
2

(8)

Because the above functional couples space and time, it is proposed to use a staggered

minimization. The following two steps are to be performed alternately

φ = Argmin
v

Ŵvib-lin(v,α) (9)

α = Argmin
a

Ŵvib-lin(φ,a) (10)
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leading to the following linear system, where l indexes the different Nl angles, each com-

posed of Nt projections

φi =

⎡
⎣

Nl∑

l=1

H
l

⎤
⎦

−1

ij

⎛
⎝

Nl∑

l=1

hlj

⎞
⎠ (11)

whereH l , indexed by l for angle θl , denotes the hessian of Ŵvib-lin minimized with respect

to φ,

H l
ij =

∑

r,tl

α(tl)
2
(
�θl

[
∇f (x) · ψi(x)

]) (
�θl

[
∇f (x) · ψj(x)

])
(12)

and where the second member is

hli =
∑

r,tl

ρ(r, tl)α(tl)�θl

[
∇f (x) · ψi(x)

]
. (13)

As the acquisition times are randomly sampled, to solve this problem, it is proposed

to resort to a statistical property, namely that, due to the large number of snapshots and

steady sample vibration, the full statistics of 3D motion is assumed to be identical for

any projection angle. Thus, conventionally, one may set (1/Nt )
∑

tl
αk (tl)

2 = 1. Let us

emphasize that this condition holds for the 3D displacement but not for residual fields.

Indeed, some displacement modes may not be visible on the ρ field if the projection

direction is colinear to the displacement, yet this displacement amplitude over time may

be normalized to unity. Using this assumption the Hessian matrix relative to one specific

projection direction, l, can be written

H l
ij = Nt

∑

r

(
�θl

[
∇f (x) · ψi(x)

]) (
�θl

[
∇f (x) · ψj(x)

])
(14)

It is interesting to note that these Hessian matrices are exactly the same as static and

fully defined P-DVC procedure, as presented e.g., in [34]. Indeed the assumption on the

stationary amplitude allows one to treat this measurement as if it were static.

Once the spatial mode �(x) has been computed, the determination of time amplitudes

becomes a small and elementary step,

α(t) =

⎡
⎣

Nl∑

l=1

H l

⎤
⎦

−1
Nl∑

l=1

hl(t) (15)

where H l is the scalar Hessians of Ŵvib-lin minimized with respect to α for angle l

H l =
∑

r

(
�θl

[
∇f (x) · �(x)

]) (
�θl

[
∇f (x) · �(x)

])
(16)

and the second member

hl(t) =
∑

r

ρ(r, t)
(
�θl

[
∇f (x) · �(x)

])
(17)

If the temporal amplitude α(t) differs from the one that allowed to compute �(x), both

spatial mode and temporal amplitudes are recomputed, until a fixed point is reached.
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The modal measurement method is summarized in the Algorithm 1.

Algorithm 1Modal P-DVC fixed-point procedure

for all projection directions l do

for all nodal shape functions i do

compute sensitivities Si(r, l) ← �θl

[
∇f (x)ψi(x)

]

end for

end for

for all projection directions l do

for all times tl do

Compute initial projection difference, ρ(r, tl) ← pvib(r, tl) − pref(r, θl)

end for

end for

for k=1:Nmode do

Initialize αk , such that ‖αk‖
2
l

= 1 and possibly
∑

tl
αk (t) = 0

while ‖
φk‖ > ǫφ or ‖
αk‖ > ǫα do

Compute spatial mode φk (eq. (11))

Compute temporal amplitude αk (eq. (15))

Normalize to ‖αk‖
2
l

= 1

end while

for all projection directions l do

for all times tl do

ρ(r, tl) ← ρ(r , tl) − αk (tl)φ
j

k
Sj(r, l)

end for

end for

end for

Relating vibration modes to PGDmodes

Up to this point, the vibration modes, �vib, and the above PGD modes, �PGD have no

reason to coincide. However, as explained in [35–37], the Principal Component Analysis

(PCA) of an infinite collection of displacement fields of a vibrating system corresponds to

the modal basis if the mass is an identity matrix. This last requirement comes from the

fact that vibrations modes are orthogonal with respect to a “mass” scalar product. In the

FE setting, ifM denotes the mass matrix, then

�vib
i · M · �vib

j = δij (18)

Using a PCA decomposition, the metric is just the Euclidean one, and hence PCA modes

�PCA are orthogonal using the identity matrix instead ofM. As a consequence, in general,

there is no chance that PCA and vibration modes coincide. However, if one assumes that

the resonant frequencies of the vibration modes are well separated, one may use a natural

hierarchy of modes: The first one dominates over the second, which itself dominates over

the third and so on. Because the first mode dominates in terms of amplitude, both PCA

and vibrationmodes coincide up to a scale factor. This is simply because the displacement

field is essentially unidirectional, and hence any vector is co-linear to the basis vector. The

metric will only affect the norm of the mode, thus, knowing the mass matrix, it is easy to

rescale the PCAmode so that it is of unit norm according to the mass matrix. Then (up to

a possible difference of sign) the two PCA and vibration modes will coincide. The second
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(resp. the nth) mode is also assumed to dominate over higher order ones, which means

that the first two (resp. n) modes, be they PCA or vibrations, generate identical vector

spaces. However, because the scalar product is different for vibration and PCA, these

second (nth) modes cannot be the same, but it is straightforward to orthogonalize the

basis vectors �PCA with the mass metric. Thus because the sub-spaces of displacements

obey the hierarchy property, onemay identify the vibrationmodes from the PCA ones (up

to undetermined signs) after a mere Gram-Schmidt orthonormalization process (using

the mass matrix).

In our case, themodes that we generate are PGDmodes. Even though PGD sharesmany

features with PCA, a natural question to ask is whether the above result may be extended

to PGD modes. The answer comes from the basis assumption about mode separation:

the vector spaces of vibration modes are again to match those from PGD simply because

of the postulated hierarchy. Henceforth, PGD modes can be orthonormalized using the

mass matrix and hence coincide with vibration modes. Additionally, one can show that

the PGDmodes are also orthogonal with respect to the natural scalar product issued from

P-DVC, namely with a metric given by the Hessian H =
∑

l H
l (see Eq. 16).

Let us underline that the assumption on the hierarchy property can be probed without

the orthonormalization of modes: the coincidence of sub-spaces truncated at order k can

be written as

‖�vib
k −

k∑

i=1

(�vib
k · �PGD

i )�PGD
i ‖H ≤ η‖�vib

k ‖H (19)

where η is a small parameter η ≪ 1 introduced as a small tolerance, (otherwise the left

hand side should be null). ‖ . . . ‖H refers to the H norm: ‖A‖H = A
t
HA.

It is also noteworthy to observe that the assumption about the complete hierarchical

structure of the vibration space, mode after mode, may be relaxed. It suffices to have a

large frequency band gap separating the first nmodes from the following ones, to expect

that the nth dimensional space generated by the first n vibrationmodes,and n PGDmodes,

coincide. In the case, the above condition can be relaxed, for all k ≤ n

‖�vib
k −

n∑

i=1

(�vib
k · �PGD

i )�PGD
i ‖H ≤ η‖�vib

k ‖H (20)

(note that the summation over the index i has been extended to n instead of k .)

Application of themethod

Synthetic test case: free vibrations of a liver

The method is tested with the identification of 3 vibration modes of a human liver at

[3.2–4.1–6.1] Hz. Although artificial, this test case has been designed to mimic the free

vibration modes and standard elastography procedures. The test case is generated from

the following steps:

• A CT-scan of a liver and the corresponding surface mesh is downloaded from the

IRCAD database [38].

The volume is composed of 512× 512× 124 voxels with a physical size of [0.56, 0.56,

1.6] mm. Figure 2(a, b) shows a slice of the scan, the 3D numerical mesh and mode 1

amplitude.
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Fig. 2 a Slice of the liver CT scan and b 3D view of the scan with the fine numerical mesh. The color of the

liver is chosen according to the amplitude of the first computed vibration mode �vib
1

• The numerical vibration modes�vib
i are computed using the meshed volume, a finite

element code (Abaqus), and state of the art parameter values taken from the literature.

As such these modes are considered as the ground truth, and should be distinguished

from the PGDmodes �PGD
i , and from the estimated vibration modes �est

i computed

from the latter.

• The CT image is warped with three numerical modes with realistic random ampli-

tudes, corrupted by noise and projected to generate the experimental sinogram.

The commercial software Abaqus is used to compute the numerical vibration modes

�vib
i . 201,627degrees of freedomareused in theFEmodel to obtain themodal convergence

and linear tetrahedron elements (type C3D4) are used to perform the frequency analysis.

The material parameters are set to representative values of soft tissues [39–41]. Because

only a small vibration amplitude is considered, a simple linear elastic constitutive law is

chosen, and should be considered as the tangent behavior in a small strain regime. The

elastic modulus is set to 30 kPa, the Poisson’s ratio is set to 0.45 and the mass density is

set to 1.59 g/cm3. The first three vibration frequencies are obtained at [3.2–4.1–6.1] Hz.

Each frame is then generated with the projection of the static volume warped with a

combination of the first three computed vibrationmodes: pest(r, tl) = �θl f (x+u
vib(x, tl))

with u
vib(x, t) =

∑
m σm(t)�

vib
m (x), �vib

m being the computed vibration modes and σm(t)

random amplitudes following a normal distribution whose standard deviation is chosen

to have a constant energy per mode. In the considered test cases, the vibration amplitude

was such that the local strain never exceeded 1.5%, justifying the assumption of a linear

elastic model.

The projection is performed using the ASTRA toolbox [31] and a parallel beam assump-

tion (the beam model does not affect the procedure). Five projection angles equally dis-

tributed (every 2π/5) are selected. The choice of five projections is motivated by the fact

that sensitivity in the different space direction is needed (hence more than one projection

angle) and a small number is more challenging for the proposed method. 300 projections

of 512×124 pixels are generated for each angle (i.e., total of 1500 projections). Finally, a
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Fig. 3 Fine numerical and circumscribed mesh composed of respectively 201,627 and 81 space degrees of

freedom (with tri-cubic C1 interpolation). Note that the bottom left node has a non-zero sensitivity as a result

of the cubic interpolation

Table 1 Summary of all measured and numerical mode notations

�̂
vib
i Numerical mode from Abaqus computed on the fine mesh

�̃
vib
i Projection of �̂

vib
i onto the coarse boxed mesh

�̃
PGD
i Measured mode from the proposed procedure

�̃
est
i Estimated vibration mode computed from the orthonormalization of �PGD

i with the mass matrix

white Gaussian noise with a standard deviation of 1% of the gray level dynamic is added

to each projection.

PGDmodes measurements

The kinematics is identified with a coarse boxedmesh: a circumscribed [3×3×3] nodded

box with tri-cubic interpolations. This simple mesh was chosen to reduce the number of

space unknowns (81 space degrees of freedom) and the spline interpolations are well

adapted to low frequency mode shapes (and ensure long-range sensitivity for each node).

The two meshes are compared in Fig. 3. In the following, when a field � is decomposed

over the fine (Abaqus)mesh, it will be denoted as �̂, whereas the coarsemesh interpolation

will be written �̃.

In order to compare numerical and measured modes, the initial Abaqus modes �̂
vib
m are

projected onto this coarse boxed mesh and written �̃
vib
m . For the different spatial modes

considered in this study, the difference between the initial and projected displacement

fields was observed to be negligible. A summary of all mode notations is proposed in

Table 1.

Two initial residual fields acquired at the same angle are presented in Fig. 4. It can be

seen that the residual fields (b and c) show different patterns because the displacement

amplitudes are different (they have been acquired at random instants of time, and in the

two chosen cases, in most parts of the projected liver, the two displacements point to

opposite directions).

Two analyses can be performed with the results of this test case:

• The evolution of the projected residual field that shows how the procedure works and

converges. This is the true minimized quantity of this procedure.
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Fig. 4 a Projection of the liver at angle 8π/5 and b, c two initial projections corresponding to two different

vibration states. The ground truth amplitudes for mode 1–2–3 are respectively for b and c [0.40; 0.76; − 0.19]

and [0.32; − 0.20; − 0.23]. Note that projections are shown with the acquisition scale factor [0.56, 1.6]

• The comparison between the measured kinematics and the numerical one used to

generate the test. It is interesting to note that the measured modes can be different

from the numerical modes yet generate the correct kinematic subspace (e.g., because

of the structure symmetry, two modes with the same frequency may be identified

up to an arbitrary linear combination of each other.) More than a mode to mode

comparison, considering the space generated by the kinematics will allow to validate

the procedure.

The identification of the first modes converges in 5–10 iterations. The measured 3D

space displacement fields, expressed on the numerical finite element mesh, are shown

for the [x, y, z] components Fig. 5. The norm of the residual fields is decreasing with the

iterations [3.48–2.04–1.77–1.47–1.38]. The associated amplitudes will be discussed in the

next session.

With the kinematics correction, the motion-induced patterns of the residual fields are

erased (see Fig. 6). The standard deviation of the residual is presented in Fig. 7. It can be

seen that the residual is reduced down to 1.3% (1% is the noise standard deviation), no

additional modes are required.

At this stage, the comparison with the ground truth (space modes and amplitudes)

cannot be performed since, as earlier discussed, the PGD modes are not coincident with

vibration modes.
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Fig. 5 Measured displacement fields of the five first modes �PGD
i in the x, y, z directions (here shown on the

numerical mesh yet computed on the boxed mesh composed of 81 space degrees of freedom). The

amplitude is to be associated with the 1500 time amplitudes normalized angle-wise

Fig. 6 Residual fields projected at 6π/5 (a) before kinematics correction and (d) after the 5 mode

identification. The dashed line corresponds to the envelop of the mesh projection and defines the region of

interest. The residual on the top left part corresponds to large motion that may not be correctly captured

with the boxed mesh

Fig. 7 Evolution of the residual norm at each iteration. The residual converges after 4–5 modes meaning

that no additional mode are required
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Fig. 8 The estimated vibration modes �est
i are computed with a Gram-Schmidt orthonormalization

procedure from �PGD
i

Vibration modes analysis

The measured vibration modes can be orthogonalized with respect to the scalar prod-

uct in order to be compared with the ground truth vibration modes. A Gram-Schmidt

procedure is thus applied: the first mode remains unchanged, the following modes are

orthogonalized with respect to the mass scalar product with the previous ones. Figure 8

hows the components of �est
i on the basis of �PGD

i . The rather large absolute value of

the off-diagonal component do show that the PGD basis is far from being orthogonal

with respect to the mass matrix, and hence, even if the vector space generated by the

first i = 1, . . . , n modes, either �est
i or �PGD

i coincide, it is imperative to carry out the

orthogonalization in order to compare �est
i with the actual ground truth modes.

In order to appreciate the obtained results, the 5 normalized vibration modes can be

projected onto the initial numerical modes used to generate this test case (in fact their

projections onto the boxed mesh �vib
i ). To compare the measured PGD modes and the

numerical ones, Fig. 9 shows with the same color code as in the previous figure, the

components of �vib
i on the set of vectors �est

j . Now it is clear that the three true vibration

modes almost coincide with the estimated ones (possibly with an opposite sign, which is

purely conventional). The measured 4th and 5th modes are computed to correct for the

slight misalignment of the two spaces. It is seen that these two extra estimated modes are

orthogonal to the three true vibration modes.

The (x-component of the) first three estimated vibration modes are displayed together

with their imposed counterpart in Fig. 10 (first and third column). The central column

shows the comparison of the corresponding estimated and prescribed amplitudes for all

the 1500 generated cases.

Conclusions and discussion

An in situ vibrationmodemeasurement of a sample based on P-DVC has been developed.

After the acquisition of a reference volume, a large set of projections are acquired at few

angles using a fast exposure time that freezes out the displacements withoutmotion blurs.

Because the vibration frequency may be much higher than the acquisition rate, the radio-

graphs cannot be related in time and the concept of frequency is out of reach. The time

sampling is hence considered random and unknown (although othermeasurements could
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Fig. 9 Projection of the measured vibration modes �̃
est
i with the ground truth vibration modes �̃

vib
i

Fig. 10 a Estimated space vibration modes �̃
est
i (1–2–3) shown here projected along the x direction, c

Imposed space vibration modes (actually its boxed mesh approximation) �̃i
vib

(1–2–3) also projected along

the x direction and b comparison between the 1500 measured and ground truth amplitudes. For this

comparison, the space functions were normalized and plotted with the same color scale and the sign of the

space functions was chosen to be the same. The x-component was arbitrarily selected to illustrate this

comparison, but the y or z components show a similar proximity

help providing this missing information). What links all projections is the microstructure

at rest (known) and the modal basis (unknown). Based on a PGD approach, each mode

is identified successively using the statistical assumption that the statistical distributions

of the 3D displacement amplitudes are identical for each angle of acquisition (valid for a

statistically steady excitation, and a sufficiently abundant sampling).

Let us stress here that the present paper does not pretend that any vibrating system

in the considered 1–10 Hz frequency range can be studied in a tomograph. The size of
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the studied object/organ, its visibility in the scanner, its inner contrast, the amplitude of

displacements, and thus in turn the excitation and the mechanical properties, etc. are key

factors to make such an experiment feasible. Above all, the proposed methodology relies

heavily on linear elasticity, so that displacement superposition holds, and no frequency

shift with amplitude is present. This restriction is not limiting with respect to biological

tissues (or more generally constitutive materials), but rather it requires imperatively that

the vibration excitation be small.

The method has been applied to a numerical test case, which is a mock-up of a low

frequency excitation of a liver thatwould be analyzedwith amedicalCT scanner. Synthetic

projection data are generated by deforming a volume with vibration modes associated

with random amplitudes. The numerical experiment is performed with 5 angles and 300

projections per angle. The kinematics is composed of three different vibration modes

associated to realistic amplitudes. The estimated displacement modes (i.e., spatial field

and amplitude), after its orthonormalizationwith themass, are comparedwith the ground

truth and allow validating the modal identification procedure.

This approach requires the acquisition of a single reference static image and a collec-

tion of projections (here 1500). It is a huge gain in data/acquisition time compared with

standard dynamic acquisition methods based for example on the motion phase [18] (that

would be complex when dealing with multiple mode identification). This reduction is of

utmost importance in material and bio/medical imaging [42].

This proposed procedure is very light to compute as the volume is never updated and

the sensitivity fields computed only once. A finer mesh could easily be designed and is

not a limit (and could be associated with an elastic regularization [43]). Implementing a

multi-scale approach may be crucial when dealing with large displacements, especially

because the volume is never advected in deformed configurations. The procedure would

be: (i) low-pass filter to smooth the functional shape (convolution with a Gaussian ker-

nel), (ii) downsizing to reduce computation time. This pyramidal identification would be

performed from the coarsest to the finest scales.

It is noteworthy that from the Rayleigh-Ritz ratio, a coupling of the obtained results

with assumptions on the stiffness [K ] and mass [M] (given by the tomography though it

has to be correctly weighted) matrices enables the frequencies of the measured modes to

be identified through

(
ωk

)2
=

�k [K ]�k

�k [M]�k
(21)

Optimizing such ameasurement, i.e., choice of angles, surface texture, number of projec-

tions per angle, is an interesting perspective. This prior optimization could be performed

with respect to an initial numerical model (e.g., an elasticmodel) fromwhich the kinemat-

ics could be identified. Any prior knowledge (for example learnt from other samples as

proposed in [44] for the liver shapes) could be combined for a better suited identification.

Performing an in situ measurement in a lab-CT is also an exciting perspective. As a

little teaser with order of magnitudes: the exposure time has to be approximately say 5–10

times shorter than the period to ignore motion blur. For the LMT lab-CT, an experiment

to measure modes at 5–15 Hz could be designed (minimal exposure time of 0.0125 s).

The sample could be soft, made out of gel or silicon to have low frequency modes and
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the excitation (ideally white) performed with, for example, acoustic excitation, air puffs,

mechanical tapping etc. Moreover, with the use of a low absorbing sample, an X-ray

beam chopper and an intense beam (i.e., a W-target source) the acquisition time could be

significantly reduced, thereby making much faster phenomena accessible.

Because P-DVC has very strong links with stereo-steps, this modal measurement

approach could also be implemented with ‘camera projection’ and surface measurements.

A multi-view DIC setup composed of a single camera positioned at different places for

the acquisition of snapshots could be designed and is an interesting perspective.

Finally, the identificationofmaterial or geometrical parameters could beperformedwith

this modal P-DVC framework, giving access to a novel non-destructive testing procedure.
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