A. Osouli, F. Abbasi^{*}, M. Naseri

Radiation Application Department, Shahid Beheshti University, Tehran, Iran

Background: An amount of artificial radionuclide has been released into the environment as fallout, resulting from atmospheric nuclear weapon tests, nuclear accidents such as Chernobyl and together with air currents have polluted the world. Materials and Methods: 37 surface soil samples of Tehran province were collected in the period between June and September 2008, by implementing methods and standard instruments. The concentration of the artificial radionuclides (137Cs) in the soils of Tehran province were determined by gamma spectroscopy (HPGe), and the data were analyzed both quantitatively and qualitatively. The results have been compared with other radioactivity measurements. Results: The concentration of 137Cs found in top soils (0-5 cm), in the depth of (12.5-17.5 cm) and in the depth of (27.5- 32.5 cm), ranged from 0.29-28.82 0.3-19.81 Bq.kg⁻¹, 0.8-7.43 Bq.kg⁻¹, Bq.kg⁻¹, respectively. The total average of 137Cs activity, in the above depths was, 11.30, 4.87 and 1.8 Bq.kg⁻¹, respectively. Conclusion: Considering the obtained results from high average values of 137Cs in Europe and its relation to Chernobyl accident, and the higher average concentration of ¹³⁷Cs in Tehran province. can also be attributed to Chernobyl accident due to the proximity of Iran to the place of the accident's occurrence. Iran. J. Radiat. Res., 2009; 7 (3): 141-149

Keywords: Cs-137, soil sample, gamma spectroscopy, HPGe, Tehran province.

INTRODUCTION

Due to destructive interference of human being in his environment, artificial and natural radionuclides are found in the nature. An amount of artificial radionuclides have been released into the environment as fallout resulting from atmospheric nuclear weapon tests, nuclear accidents such as Chernobyl, and together with air currents have polluted the world ⁽¹⁾.

Among the various radionuclides released to the environment, we have focused on the distribution of ¹³⁷Cs, because of its long half life (about 30.17 year), which will remain in the environment with all its destructive effects ⁽²⁾.

Deposition of radioactive fallout including ¹³⁷Cs at any site is related to factors such as, latitude, precipitation and local topography. ¹³⁷Cs is strongly absorbed and retained by soil particles and it can enter into the diet of human beings, and other leaving creatures. Maintaining ¹³⁷Cs in surface layers of clay soil is considerable ^(3, 4). Therefore, the access to distribution of ¹³⁷Cs in Tehran province soils has been the main objective of this research.

In this study, points of sampling were chosen by VSP (Visual Sample Plan) software, GPS (Global Positioning System) and considering of Tehran province dominant wind current. The chosen points were marked by a digital map and their coordinates were entered in to GPS system. The points on the Tehran province map, as shown in figure 1 were marked and used while collecting soils. Tehran province is approximately located between 35°:43' N latitude and 51°:25' E longitude. Table 1 shows the geographical coordinates of the sampling point and the labels of different samples of different townships.

MATERIALS AND METHODS

Sampling procedure

Thirty-seven soil samples were collected from several regions all over Tehran province. The samples were collected from the depths of (0-5 cm), (12.5- 17.5 cm) and (27.5- 2.5 cm), using Template method ⁽⁵⁾.

**Corresponding author:*

Dr. F. Abbasi, Radiation Application Department, Shahid Beheshti University, Tehran, Iran. Fax: +98 21 29902546 E-mail: fabbasi@sbu.ac.ir

A. Osouli, F. Abbasi, M. Naseri

Sample code	Site	GPS coordinates	Alt(m)
S001	Lashgarak (I)	51.70150-35.86832	2800
S002	Lashgarak (II)	51.53354-35.96699	2800
S003	Rineh	52.07669-35.85727	3000
S004	Roodehen	51.75907-35.73762	1866
S005	Sarbandan	52.32778-35.64694	2665
S006	Arjmand (I)	52.62531-35.74773	2110
S007	Arjmand (II)	52.55092-35.75814	2100
S008	Pirdeh	52.81778-35.68754	2530
S009	Shangoldeh	52.42197-35.78739	2400
S010	Sefidargoleh	53.09712-35.79046	2945
S011	Yam	51.78658-35.36978	1000
S012	Javad Abad	51.69475-35.19797	836
S013	Varamin	51.58461-35.45075	977
S014	Arad	51.76667-35.31525	857
S015	Asara	51.11824-36.09546	3500
S016	Gajereh	51.31842-36.05314	2765
S017	Mahdasht (I)	50.90134-35.52739	1228
S018	Mahdasht (II)	50.96441-35.73711	1228
S019	Sharghe Tehran	51.67856-35.70783	1600
S020	Lavasan Bozorg	51.90361-35.77233	2400
S021	Shahryar	51.16330-35.64164	1100
S022	Robat karim	51.09011-35.46894	1100
S023	Tehran	51.42628-35.62172	1200
S024	Eshtehard	50.45989-35.73117	1630
S025	Gomrokan	50.69038-35.61284	1227
S026	Karaj (Part 2) (I)	50.77378-35.80309	1257
S027	Karaj (Part 2) (II)	50.86556-35.99667	1675
S028	Hashtgerd	50.74352-35.97528	2500
S029	Abyek	50.64517-36.11414	2560
S030	Fashand	50.94339-36.21442	2500
S031	Karaj (Part 1) (I)	51.07237-35.93467	2100
S032	Ghale boland	51.81147-35.14908	797
S033	Istgah Kavir	52.15878-35.17394	1000
S034	Tajrish	51.28223-35.78699	1700
S035	Karaj (Part 2) (II)	51.24222-35.86058	2632
S036	Gharpooz Abad	50.29572-35.76375	1260
S037	Gazorkhan	50.50469-36.41678	1645

Table 1. Sample identification.

Figure 1. The map of a part of the Tehran province and the location of the sampling sites.

Sample preparation

The samples were dried in an oven at the temperature of 200°C for about 24h. Then the dried soils were grounded by jaw and planet mill, and passed through a 50 mesh sieve (with 0.2 mm aperture diameter). Then, 950 gr of the homogenized samples were placed in the Marinelli Beaker for spectroscopy and analysis $^{(6)}$.

Spectroscopy and analysis

The samples were measured by using two p-type coaxial High Purity Germanium (HPGe) (EG&ORTEC) gamma spectrometers with relative efficiency (38.5%) and (55%). The resolution of these detectors at 1.33 MeV of 60Co were 1.98 keV and 1.8 keV, respectively. Both detectors were connected to standard electronics and the spectra were accumulated in 4K MCA (multi channel analyzer) Made by IAP (Institute of Applied Physics)). The detectors were surrounded by a 10-cm thick lead shield to reduce the background from the surrounding material and cosmic rays. The detectors were calibrated by using certified gamma-ray standard sources. The counting time was prolonged as necessary to ensure at least 95% of statistical significance. The background spectra was measured frequently under the same

conditions of sample measurements and used to correct the calculated sample activities. The characteristic gamma peak for the determination of ¹³⁷Cs was 661.66 keV.

After electronic instruments adjustment, the energy calibration in the region of 60–3000 KeV was done. The background rate for the mentioned detectors was 2.5 and 2.9 count/second, respectively. Analysis and collecting data for both detectors were fulfilled with OMINGAM Ortec software.

Determining the efficiency of HPGe detectors is the main factor for using of these detectors to specify quantity values of active samples. The use of convenient standard samples is a reliable method to determine the efficiency of the specified regions of energy. Science determining the efficiency of HPGe detectors is confined to the production of standard ¹³⁷Cs samples, to ensure the validity of determining efficiency, the standard samples of ¹⁵²Eu, ²⁴¹Am, ¹³⁷Cs and ¹³³Ba, in the same configuration of the analyzed samples were prepared ⁽⁷⁾, and after making sure of the accuracy of the production of the standard samples, the efficiency of 661.66 keV peak of ¹³⁷Cs was used to determine quantity efficiency. The preparation of these standard samples was accomplished by

A. Osouli, F. Abbasi, M. Naseri

spiking 50 gr of $Al_2O_3^{(3)}$, by a suitable volume of standard solutions and adding this dried spiked Al_2O_3 to the 900 gr of sieved soil (50-mesh), as a complete homogenized compound. After collecting the spectrums of the standard samples, they were processed by the mentioned software. In calculating the efficiency of photo peaks, equation (1) was applied.

$$\varepsilon(\%) = \frac{NetArea}{(A ct_{(Bq)})(B R_{(\%)})(t_{(Sec.)})} \times 100$$
(1)

In this equation, e stands for the efficiency of detector, Act is the activity of the standard isotope at Bq.kg⁻¹, B.R is the branching ratio related to concerned energy at percent, t is the time of collecting spectrum of samples at second, Net Area is the net area under the concerned peaks calculated by software. After fitting convenient functions on efficiency data through software, equations (2) and (3) are for efficiency functions of detectors (38.5%) and (55%), respectively.

Efficiency value at energy (661.66 keV) of 137 Cs, in HPGe (38.5%) and (55%) has been 1.41 and 2.03, respectively. The spectrums were collected between 30000-60000s. The peak (661.66 keV), indicated the presence of 137Cs in samples were the analysis of this isotope could be done.

RESULTS

Determination of radionuclide concentration

Equation (4) was applied for calculating the activities of ¹³⁷Cs in soil samples of Tehran province.

.Where, w is the weight of samples.

Table 2, shows the concentration of ¹³⁷Cs in soil samples of Tehran province. The first column is the sample code and the second column is the depth of collecting samples (0-5), (12.5-17.5) and (32.8-37.5) cm, and the last column is the ¹³⁷Cs concentration in the mentioned depths. For all 37 samples, in the 3 depths, the information were given and for almost all samples the depth profile distribution of ¹³⁷Cs showed a tendency to decrease toward deeper layers. The variations of ¹³⁷Cs concentration in the depths of (0-5), (12.5-17.5) and (32.8-37.5) cm is shown in figure 2, and the shape of frequency distribution of ¹³⁷Cs activity concentration are plotted in figure 3, X and Y axises are ¹³⁷Cs concentration (Bq.kg⁻¹) and Frequency, respectively.

Figure 2. The variations of 137 Cs concentration in the depths of (0-5), (12.5-17.5) and (32.8-37.5) cm.

$$\varepsilon(\%) = a + b \times Ln(E) + \frac{C}{Ln(E)} + d \times (Ln(E))^2 + \frac{e}{(Ln(E))^2} + f \times (Ln(E))^3$$
(2)

$$\varepsilon(\%) = \frac{a + c \times (E)^{0.5} + e \times E + g \times (E)^{1.5} + i \times (E)^2}{1 + b \times (E)^{0.5} + d \times E + f \times (E)^{1.5} + h \times (E)^2}$$
(3)

$$Act_{(Bq/kg)} = \frac{NetArea}{\varepsilon (\%)(-B.R_{(\%)})(t_{(sec)})(W)} \times 100$$
(4)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Code sample	Depth(cm)	¹³⁷ Cs(Bq.kg ⁻¹)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0-5	25.75±0.68
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S001	12.5-17.5	2.48±0.19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		27.5-32.5	0.36±0.16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0-5	11.76±0.91
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5002	12.5-17.5	5.48 ± 0.4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5002	27.5-32.5	4.13±0.36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		42.5-47.5	<mda*1< td=""></mda*1<>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0-5	20.47±1.11
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S003	12.5-17.5	14.36±0.39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		27.5-32.5	0.63±0.18
3004 12.5-17.5 4.0190.09 27.5-32.5 0.0190.09 905 12.5-17.5 8.129.027 27.5-32.5 0.1920.84 005 24.799.055 2006 12.5-17.5 3.3540.38 27.5-32.5 0.21±0.08 005 24.084.08 27.5-32.5 0.21±0.08 007 12.5-17.5 3.3540.38 27.5-32.5 0.3640.12 007 12.5-17.5 3.2740.3 27.5-32.5 0.3640.12 007 12.5-17.5 3.2740.3 27.5-32.5 0.71±0.09 005 28.20.79 5009 12.5-17.5 6.48±0.34 27.5-32.5 1.73±0.06 2010 12.5-17.5 3.2±0.2 2010 12.5-17.5 3.2±0.2 212.5-17.5 1.48±0.11 1.25-17.5 3010 12.5-17.5 3.2±0.2 2011 12.5-17.5 1.48±0.21 212.5-17.5 1.48±0.21 2.25-17.5 301	5004	0-5 12 5 17 5	22.35 ± 1.23
27.5 20.5 0.75 26.422.0.75 S005 12.5-17.5 8.12±0.27 0-5 24.79±0.55 24.79±0.55 S006 12.5-17.5 3.35±0.38 0-5 24.09±0.84 27.5-32.5 0.21±0.08 27.5-32.5 0.21±0.08 0-5 24.08±0.8 27.5-32.5 0.21±0.08 0.5 24.08±0.8 2007 12.5-17.5 5.79±0.36 27.5-32.5 0.34±0.12 0.6 20.33±0.50 27.5-32.5 0.71±0.08 0.6 20.32±0.79 S009 12.5-17.5 2.82±0.79 S010 12.5-17.5 1.40±1.96 27.5-32.5 1.73±0.06 27.5-32.5 1.73±0.02 27.5-32.5 4.80±0.14 0.5 1.80±0.24 27.5-32.5 4.82±0.17 27.5-32.5 4.82±0.17 27.5-32.5 4.82±0.17 27.5-32.5 1.90±0.11 0-5 0.76±0.01 S012 <td>5004</td> <td>27 5-32 5</td> <td>4.01±0.27</td>	5004	27 5-32 5	4.01±0.27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0-5	26.42+0.75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\$005	12.5-17.5	8.12+0.27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2000	27.5-32.5	0.19 ± 0.84
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0-5	24.79±0.55
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S006	12.5-17.5	3.35±0.38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		27.5-32.5	0.21±0.08
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0-5	24.08±0.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S007	12.5-17.5	5.72±0.36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		27.5-32.5	0.36±0.12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0-5	20.03±0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S008	12.5-17.5	3.27±0.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		27.5-32.5	0.71±0.09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5000	0-5	28.82±0.79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2009	12.3-17.5	0.48±0.54 1.73±0.06
$\begin{array}{c ccccc} & 0.5 & 14.01\pm1.96 \\ 12.5-17.5 & 3.2\pm0.2 \\ 27.5-32.5 & $		21.5-52.5	1.75±0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6010	0-5	14.01 ± 1.96
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S010	12.5-17.5	3.2±0.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		21.3-32.5	<mda< td=""></mda<>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0-5	1.80 ± 0.24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S011	12.5-17.5	4.82±0.17
$\begin{array}{c ccccc} & 0.5 & 1.7 \pm 0.03 \\ \hline 12.5-17.5 & 1.16 \pm 0.03 \\ \hline 27.5-32.5 & 1.90 \pm 0.11 \\ \hline 0.5 & 0.76 \pm 0.01 \\ \hline 0.5 & 0.78 \pm 0.12 \\ \hline 0.5 & 0.78 \pm 0.61 \\ \hline 0.5 & 0.74 \pm 0.74 \\ \hline 0.5 & 0.74 \pm 0.74 \\ \hline 0.5 & 0.53 \\ \hline 0.5 & 0.54 \pm 0.62 \\ \hline 0.5 & 0.54 \pm 0.42 \\ \hline 0.5 & 0.54 \pm 0.42 \\ \hline 0.5 & 0.64 \pm 0.14 \\ \hline 0.5 & 0.53 \\ \hline 0.5 & 0.64 \pm 0.14 \\ \hline 0.5 & 0.54 \pm 0.12 \\ \hline 0.5 & 0.64 \pm 0.14 \\ \hline 0.5 & 0.54 \pm 0.12 \\ \hline 0.5 & 0.64 \pm 0.14 \\ \hline 0.5 & 0.54 \pm 0.17 \\ \hline 0.5 & 0.54 \pm 0.17 \\ \hline 0.5 & 0.54 \pm 0.17 \\ \hline 0.5 & 0.54 \pm 0.14 \\ \hline 0.5 & 0.54 \pm 0.17 \\ \hline 0.5 & 0.54$		27.5-32.5	2.98±0.14
$\begin{array}{c ccccc} & 12.5 - 17.5 & 1.16 \pm 0.05 \\ \hline 27.5 - 32.5 & 1.90 \pm 0.11 \\ \hline 0 -5 & 0.76 \pm 0.01 \\ \hline 8013 & 12.5 - 17.5 & < MDA \\ \hline 0 -5 & 3.04 \pm 0.22 \\ \hline 8014 & 12.5 - 17.5 & 3.78 \pm 0.12 \\ \hline 27.5 - 32.5 & < MDA \\ \hline 0 -5 & 19.49 \pm 0.57 \\ \hline 12.5 - 17.5 & 10.75 \pm 0.61 \\ \hline 27.5 - 32.5 & 12.82 \pm 0.62 \\ \hline 0 -5 & 27.47 \pm 0.74 \\ \hline 8016 & 12.5 - 17.5 & 1.01 \pm 0.15 \\ \hline 0 -5 & 15.27 \pm 0.53 \\ \hline 12.5 - 17.5 & 1.01 \pm 0.15 \\ \hline 0 -5 & 15.27 \pm 0.62 \\ \hline 0 -5 & 15.27 \pm 0.42 \\ \hline 8017 & 12.5 - 17.5 & < MDA \\ \hline 0 -5 & 15.27 \pm 0.42 \\ \hline 8018 & 12.5 - 17.5 & 3.17 \pm 0.21 \\ \hline 8018 & 12.5 - 17.5 & 3.17 \pm 0.21 \\ \hline 27.5 - 32.5 & 2.92 \pm 0.17 \\ \hline \end{array}$	5012	0-5	$1.7/\pm0.03$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5012	12.3-17.3	1.10 ± 0.03 1.00+0.11
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$		0-5	0.76+0.01
27.5-32.5 <mda< th=""> 0-5 3.04±0.22 \$014 12.5-17.5 27.5-32.5 <mda< td=""> 0-5 3.04±0.22 \$014 12.5-17.5 27.5-32.5 <mda< td=""> 0-5 19.49±0.57 \$015 12.5-17.5 \$016 27.5-32.5 \$017 12.5-17.5 \$016 12.5-17.5 \$016 12.5-17.5 \$016 12.5-17.5 \$016 12.5-17.5 \$016 12.5-17.5 \$017 12.5-17.5 \$017 12.5-17.5 \$018 0-5 \$018 12.5-17.5 \$018 12.5-17.5 \$019 27.5-32.5</mda<></mda<></mda<>	S013	12.5-17.5	<mda< td=""></mda<>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		27.5-32.5	<mda< td=""></mda<>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0-5	3.04±0.22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S014	12.5-17.5	3.78±0.12
$\begin{array}{c ccccc} & 0-5 & 19.49\pm0.57 \\ 12.5-17.5 & 10.75\pm0.61 \\ 27.5-32.5 & 12.82\pm0.62 \\ \hline & 0-5 & 27.47\pm0.74 \\ 8016 & 12.5-17.5 & 12.95\pm0.53 \\ 27.5-32.5 & 1.01\pm0.15 \\ \hline & 0-5 & 15.27\pm0.42 \\ 8017 & 12.5-17.5 & $		27.5-32.5	<mda< td=""></mda<>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0-5	19.49±0.57
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S015	12.5-17.5	10.75 ± 0.61
$\begin{array}{c ccccc} & 0-5 & 27.47\pm0.74 \\ \hline S016 & 12.5-17.5 & 12.95\pm0.53 \\ \hline 27.5-32.5 & 1.01\pm0.15 \\ \hline 0-5 & 15.27\pm0.42 \\ \hline S017 & 12.5-17.5 & $		27.5-32.5	12.82±0.62
S016 12.5-17.5 12.95±0.53 27.5-32.5 1.01±0.15 0-5 15.27±0.42 S017 12.5-17.5 <mda< td=""> 27.5-32.5 <mda< td=""> 0-5 0.64±0.14 S018 12.5-17.5 3.17±0.21 27.5-32.5 2.92±0.17</mda<></mda<>	0017	0-5	27.47±0.74
27.5-52.5 1.01±0.15 0-5 15.27±0.42 S017 12.5-17.5 27.5-32.5 <mda< td=""> 0-5 0.64±0.14 S018 12.5-17.5 27.5-32.5 2.92±0.17</mda<>	5016	12.3-17.3	12.95±0.53
S017 12.5-17.5 <mda< th=""> 27.5-32.5 <mda< td=""> 0-5 0.64±0.14 \$018 12.5-17.5 3.17±0.21 27.5-32.5 2.92±0.17</mda<></mda<>		0.5	1.01±0.13
S017 12.5-17.5 CMDA 27.5-32.5 <mda< td=""> 0-5 0.64±0.14 \$018 12.5-17.5 3.17±0.21 27.5-32.5 2.92±0.17</mda<>	S017	0-3 12 5-17 5	13.27±0.42 ∠MD∆
0-5 0.64±0.14 \$018 12.5-17.5 3.17±0.21 \$27.5-32.5 2.92±0.17	5017	27.5-32.5	<mda< td=""></mda<>
S018 12.5-17.5 3.17±0.21 27.5-32.5 2.92±0.17		0-5	0.64+0.14
27.5-32.5 2.92±0.17	S018	12.5-17.5	3.17 ± 0.21
	-	27.5-32.5	2.92±0.17

Table 2. ¹³⁷Cs concentration in Tehran province soil samples by HPGe (38.5%) and (55%).

Iran. J. Radiat. Res., Vol. 7, No. 3, Winter2009 145

A. Osouli, F. Abbasi, M. Naseri

	0-5	1.62 ± 0.35
S019	12.5-17.5	<mda< td=""></mda<>
5017	27 5 32 5	0.08 ± 0.18
	21.3-32.3	0.06±0.16
	0-5	7.55±0.37
S020	12.5-17.5	6.38±0.21
	27 5 32 5	1 03+0 18
	21.5-32.5	4.95±0.18
	0-5	1.03 ± 0.13
S021	12.5-17.5	1.32 ± 0.12
	27 5-32 5	1 4+0 15
	27.5 52.5	4.51.0.41
	0-5	4.51±0.41
S022	12.5-17.5	3.47±0.29
	27 5-32 5	2 37+0 22
	0.5	
	0-3	< MDA
S023	12.5-17.5	<mda< th=""></mda<>
	27.5-32.5	<mda< th=""></mda<>
	0-5	25 36+0 47
6024	0-5	25.50±0.47
S024	12.5-17.5	10.65±0.54
	27.5-32.5	1.77±0.3
	0-5	6 92±0 29
5025	10 5 17 5	1.7 ± 0.12
5025	12.5-17.5	1./±0.13
	27.5-32.5	<mda< th=""></mda<>
	0-5	18.55+0.48
\$026	12 5 17 5	12 /1+0 /0
3020	12.3-17.3	13.41±0.49
	27.5-32.5	0.73 ± 0.06
	0-5	11.64+0.58
\$027	12 5-17 5	19.81+0.61
5027	12.5-17.5	1,41,0,10
	27.5-32.5	1.41±0.18
	0-5	6.79±0.23
\$028	12 5-17 5	0.44+0.11
5020	27.5.22.5	0.11 ± 0.11
	21.3-32.5	0.32±0.13
	0-5	1.21±0.28
S029	12.5-17.5	<mda< th=""></mda<>
	27 5 32 5	<md 4<="" th=""></md>
	21.5-32.5	
	0-5	1.27±0.17
S030	12.5-17.5	0.95±0.13
	27 5-32 5	<mda< th=""></mda<>
	0.5	0.02 . 0.41
	0-5	8.03±0.41
S031	12.5-17.5	1.36±0.29
	27.5-32.5	<mda< th=""></mda<>
	0.5	1.01+0.45
0022	0-3	1.71±0.43
S032	12.5-17.5	0.44±0.08
	27.5-32.5	<mda< th=""></mda<>
	0-5	11 86+0 23
5022	10 5 17 5	6 79 + 0 15
2022	12.3-17.3	0.70±0.13
	27.5-32.5	7.43±0.28
	0-5	1.77 ± 0.23
\$034	12 5-17 5	0.82 ± 0.14
5054	12.5-17.5	0.02 ± 0.17
	21.3-32.3	0.0±0.15
	0-5	5.41±0.27
S 035	12.5-17.5	1.48 ± 0.24
	27 5-32 5	1 97+0 1
	21.3-32.3	1.7/±0.1
	0-5	5.96±0.28
S036	12.5-17.5	0.3±0.09
	27 5-32 5	<mda< th=""></mda<>
	21.5 52.5	
	0-5	0.29±0.07
S037	12.5-17.5	6.92±0.19
	27.5-32.5	<mda< td=""></mda<>
	27.0 02.0	

Table 2 (Continue). ¹³⁷Cs concentration in Tehran province soil samples by HPGe (38.5%) and (55%).

* MDA:0.09±0.02

Minimum Detectable Activity (MDA)

Figure 3. The shape of frequency distribution of 137 C activity concentration in the depths: a. (0-5), b. (12.5-17.5) and c. (32.8-37.5) cm.

DISCUSSION

High-resolution gamma-ray spectrometry was used to determine the concentration of 137 Cs in soil samples collected in the period between June to September 2008 in Tehran province.

The relatively high contamination of ¹³⁷Cs in Tehran, in comparison with other countries, has been of significant importance to the present study.

The main reason for the accumulation of ¹³⁷Cs in some regions was due to atmospheric fallouts. It seemed that air currents, in their course of movements, accumulate heavy particles, such as ¹³⁷Cs covered with dust in higher altitudes (height of Alborz Mountains). The heights of North East of Tehran were strongly contaminated with ¹³⁷Cs which was at the end of the route of the dominant air currents during the year (with the direction of west to east).

Considering the obtained results from high average values of 137 Cs in Europe and its relation to Chernobyl accident, and the higher average concentration of 137 Cs in Tehran province, can also be attributed to Chernobyl accident due to the proximity of Iran to the place of the accident's occurrence, as shown in figure 4 and 5 ⁽¹⁵⁾. Neighboring countries which were in the same heights and geography with Iran could have the same average concentration of ¹³⁷Cs as Iran presumably, and it was obvious by moving farther from the place of occurrence (Chernobyl accident) to lower height, where the accumulation of ¹³⁷Cs decreased.

The depth profile distribution of ¹³⁷Cs in most of the Tehran province soil samples showed a tendency of decrease toward deeper layers (as figure 4 shows). To confirm the assumption, it was necessary to make a survey of ¹³⁷Cs concentration in different depths (with regard to annual accumulation of soils). To do so the time of the beginning of increasing ¹³⁷Cs concentration was estimated and proved to be related to Chernobyl accident. In addition, it seemed necessary to make a more accurate survey of the course of air currents in the regions behind the Alborz Mountains (Northern provinces).

The range of ¹³⁷Cs concentration in surface soils, was observed to vary in the range 0.29-77.35 (Bq.kg⁻¹), and the average ¹³⁷Cs activity was about 15.09 (Bq.kg⁻¹), which was more than the reported values in countries such as Egypt ⁽³⁾, China ⁽¹⁾, Nigeria ⁽⁸⁾, Alkharje city ⁽⁹⁾, Kuwait ⁽⁶⁾, western areas of Pakistan ⁽¹⁰⁾, Faisalabad in Pakistan ⁽¹¹⁾, Dhaka city ⁽⁴⁾; and also provinces in Iran, such as Booshehr,

Figure 4. 137Cs activity versus of depths.

Khoosestan and Hormozgan ⁽¹²⁾, and it was less than the reported values in countries such as, Coniferous forest ⁽²⁾, Jordan ⁽¹³⁾, Firtina Valley (Rize, Turkey) ⁽¹⁴⁾. The limit of detection was mainly governed by the counting statistics. ¹³⁷Cs in some samples was found to be lower than the minimum detectable activity of the gamma counting systems (<MDA).

CONCLUSION

The results of the measurements are presented in table 2. The range of ¹³⁷Cs concentration in surface soils, was observed to vary in the range 0.29-28.82 (Bq.kg⁻¹), and the average ¹³⁷Cs activity was about 11.3 (Bq.kg⁻¹). The highest concentrations 28.82 (Bq.kg⁻¹) was observed in Shangoldeh and the lower concentrations 0.29 (Bq.kg⁻¹) in Gazorkhan. The depth profile distribution of ¹³⁷Cs in most of the Tehran province soil samples showed a tendency of decrease toward deeper layers.

REFERENCES

 Lu J, Huang Y, Li F, Wang L, Li S, Hsia Y (2006) The investigation of ¹³⁷Cs and ⁹⁰Sr background radiation levels in soil and plant around Tianwan NPP, China. *Journal of Environmental Radioactivity*, **90**: 89-99.

- Segovia N, Gaso MI, Alvarado E, Pena P, Morton O, Armienta MA, Reyes AV (2003) Environmental radioactivity studies in the soil of coniferous forest. *Radiation Measurement*, **36**: 525-528.
- Ibrahim NM, Abdel Ghani AH, Shawky SM, Ashraf EM, Farouk MA (1993) Measurement of radioactivity levels in soil in the Nile Delta and middle Egypt. *Health Phys*, 64: 620-627.
- Miah FK, Roy S, Touhiduzzaman M, Alam B (1998) Distribution of radionuclides in soil samples in and around Dhaka city. *Appl Radiat Isot*, **49**: 133-137.
- International Atomic Energy Agency (2003) Collection and preparation of bottom sediment samples for analysis of radionuclides and trace elements. IAEA-TECDOC-360, IAEA, VIENNA.
- Bou-Rabee F (1997) Radiation safety unit, Faculty of science, Kuwait University Soil radioactivity atlas of Kuwait. *Environment International*, 23: 5-15.
- 7. de Flik P, Iskandar D, Fazio A, Biagini R (1998) The quality control in the production of spiked reference materials for gamma-ray spectrometry. *Appl Radiat Isot*, **49**: 1421-1427.
- Fasasi MK, Tchokossa P, Ojo JO, Balogun FA (1999) Occuurrence of natural radionuclides and fallout cesium -137 in dry-season agricultural land of South Western Nigeria. Journal of Radioanalytical and Nuclear Chemistry, 240: 949-952.
- Orabi H, Al-Shareaif A, El Galefi M (2006) Gamma-ray measurement of natural occurring radioactive sample from Alkharje city. *Journal of Radioanalytical and Nuclear Chemistry*, 269: 99-102.
- Younis M, Subhani MS, Khan K, Orfi SD (2005) Radioactivity mapping of north western areas of Pakistan Journal of Radioanalytical and Nuclear Chemistry, 266: 325-332.
- 11. Tufail M, Akhtar N, Waqas M (2006) Measurement of terrestrial radiation for assessment of gamma dose

from cultivated barren saline soils of Faisalabad in Pakistan. *Radiation Measurement*, **41**: 443-451.

- Abdi R, Faghihi H, Mostajaboddavati M, Hasanzadeh A, Kamali M (2006) Distribution of natural radionuclides and hot points in coasts of Hormozgan, Persian Gulf, Iran. Journal of Radioanalytical and Nuclear Chemistry, 270: 319-324.
- AL Hamarneh I, Wreikat A, Toukan K (2003) Radioactivity concentrations of ⁴⁰k, ¹³⁴Cs, ¹³⁷Cs, ⁹⁰Sr , ²⁴¹Am , ²³⁸Pu and radionuclides in Jordanian soil samples. *Journal of Environmental Radioactivity*, **67:** 53-67.
- Kurnaz A, Kucukomeroglu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Cevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey). Applied Radiation and Isotopes, 65: 1281-1289.
- Forte M, Rusconi R, Tolomei S, Giuseppe Sgorbati (1986). ¹³⁷Cs and ⁹⁰Sr concentration in lombardia soils, measurements and migration profiles analysis.

[Downloaded from ijrr.com on 2022-08-25]