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Anomalous diffusion occurs in many physical and biological phenomena, when the growth of the
mean squared displacement (MSD) with time has an exponent different from one. We show that
recurrent neural networks (RNN) can efficiently characterize anomalous diffusion by determining the
exponent from a single short trajectory, outperforming the standard estimation based on the MSD
when the available data points are limited, as is often the case in experiments. Furthermore, the
RNN can handle more complex tasks where there are no standard approaches, such as determining
the anomalous diffusion exponent from a trajectory sampled at irregular times, and estimating the
switching time and anomalous diffusion exponents of an intermittent system that switches between
different kinds of anomalous diffusion. We validate our method on experimental data obtained from
sub-diffusive colloids trapped in speckle light fields and super-diffusive microswimmers.

Anomalous diffusion underlies various physical and bi-
ological systems, such as the motion of microscopic parti-
cles in a crowded subcellular environment and the active
dynamics of biomolecules in the cytoplasm [1–3]. While
normal diffusion is characterized by a linear growth of the
mean squared displacement (MSD) with time, anomalous
diffusion features a non-linear, power-law growth. If we
consider a microscopic particle whose position is X(t),
its MSD is, in the stationary case,

E
[

(X(t+ τ) −X(t))
2
]

= Kατ
α, (1)

where α is the exponent characterizing the anomalous
diffusion and Kα is a generalized diffusion coefficient
with dimension [length2 time−α]. The exponent α con-
tains crucial information regarding the nature of these
systems distinguishing standard diffusion (α = 1) from
anomalous diffusion (α < 1 for sub-diffusion and α > 1
for super-diffusion). Therefore, it is crucial to be able to
determine its value from experimental data. When large
datasets are available, the exponent can be straightfor-
wardly fitted from the empirical MSD [4–8], or using al-
ternative techniques [9–15]. Most of these methods work
under the assumption that the exponent does not change
abruptly over the duration of the measurement, and re-
quire the particles’ trajectory to be sufficiently long and
to be sampled at regular time intervals (unless several
trajectories are available for each case).
However, especially in single-molecule studies and in

non-equilibrium experiments, the dynamic and unsteady
character of the process under study and the variabil-
ity of the environment restrict the possibility to col-
lect large amounts of data under the exact same con-
ditions [16]. Therefore, often one has only access to
trajectories that are short (e.g., limited measurement
time [11, 15, 17]), that are sampled at irregular times
(e.g., due to fluorophore blinking [17]), or whose diffusion
properties change over time (e.g., intermittent anoma-
lous diffusion [18–20]). In these cases, the standard ap-

proaches based on the MSD cannot be straightforwardly
employed. Instead, suitable approaches need to be de-
veloped on a case-by-case basis — a process that is often
time-consuming and subject to user bias.

Recently, data-driven approaches have emerged as an
alternative paradigm to analyze experimental data in sev-
eral branches of physics and biology [21, 22]. While stan-
dard algorithms require the user to explicitly give rules
to process the input data in order to obtain the sought-
after result, data-driven algorithms are trained through a
large series of input data and the corresponding desired
outputs from which they autonomously determine the
rules for recognizing patterns. In this way, data-driven
approaches can make very efficient use of all the infor-
mation contained in the available data. Neural networks
are one of the most successful data-driven approaches
in estimation and regression tasks due to their great
ability to automatically learn from data [23, 24]. This
feature has been successfully employed in a number of
tasks ranging from hand-written digits and image recog-
nition to natural language translation [25]. Therefore,
neural networks ideally complement standard techniques
to perform inference in cases for which no standard algo-
rithmic procedures are available. In fact, some seminal
works have already applied machine-learning techniques
to determine the properties of anomalous diffusion with
a focus on identifying its underlying mechanisms [26–
28]. We remark that, similarly to other advanced ma-
chine learning techniques, neural networks often operate
as black boxes and therefore should be applied carefully
to new experimental data and situations, always testing
and benchmarking their performance against established
techniques.

In this contribution, we show that recurrent neural net-
works (RNN) can successfully be employed to character-
ize anomalous diffusion. While RNN perform equally well
as MSD approaches when characterizing the anomalous
diffusion from sufficiently long, regularly sampled and
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FIG. 1. Measurement of anomalous diffusion with recurrent
neural networks (RNN). (a-c) Experimental trajectories of a
particle undergoing (a) sub-diffusion (motion in a speckle light
field), (b) normal diffusion, and (c) super-diffusion (light-
activated microswimmer). (d-f) Corresponding MSDs. (g)
Mean absolute error (MAE) of the exponent inferred using
the standard time-averaged MSD (gray squares) and the RNN
(orange circles) as a function of the trajectory length. The
performances are tested on 185000 simulated trajectories un-
dergoing fractional Brownian motion with α uniformly sam-
pled between [0.5, 1.5]. (h) Exponents estimated by the RNN
vs. those estimated by the MSD. The gray background repre-
sent a density plot of exponents obtained from simulated tra-
jectories and the colored points represent exponents obtained
from experimental data: orange for the sub-diffusive colloids
in a speckle light field, green for the same colloids freely dif-
fusing, purple for the super-diffusive microswimmers, and red
for the inactive microswimmers that diffuse normally.

stationary time series, RNN marginally outperform MSD
approaches when the available data points are limited, as
is often the case in experiments. More importantly, RNN
can also straightforwardly deal with more complex cases
for which there are no standard approaches: when trajec-
tories are sampled at irregular sampling times, and when
the system features an intermittent behavior. We vali-
date the use of RNN on experimental data obtained from
colloids sub-diffusing in a speckle light field [29, 30] and
microswimmers super-diffusing when illuminated [31].

Figs. 1a-c show some examples of experimental trajec-
tories (128 measurement points each, see Supplemental

Material [32]) corresponding to a colloidal microsphere
(SiO2, radius R = 2.5µm) undergoing sub-diffusion in a
speckle light field [29] (Fig. 1a), the same colloid without
the speckle light field normally diffusing (Fig. 1b), and
a microswimmer (SiO2 microsphere with iron-oxide in-
clusions, R = 0.49µm) in a critical mixture that super-
diffuses when illuminated by light [31] (Fig. 1c). The
time-averaged-MSD is calculated from each these trajec-
tories as

MSD(τ) =
1

T/δt− j + 1

T/δt−j
∑

i=0

(Xi+j −Xi)
2 , (2)

where the discrete measurements Xi = X(iδt) are taken
at intervals δt, and the time lag is given by τ = jδt.
The corresponding MSDs are plotted by colored lines in
log-log scale in Figs. 1d-f and the value of the exponent
is obtained from linear interpolation. Clearly, for these
short trajectories a precise estimation of the exponent
is challenging [16]: there is some arbitrariness in what
segments of the trajectories or of the MSD plots to use
for the fitting; and the choice depends on the specific
α, on the measurement noise, and on the length of the
trajectory, so that additional a priori knowledge about
the system is required [33–35].
We propose a new method based on RNN to deter-

mine α directly from the single trajectories. RNN are
ideal to deal with time sequences because they process
the input data sequence iteratively and, therefore, explic-
itly model the sequentiality of the input data [24, 36].
In fact, differently from other neural network architec-
tures that process the input data at once (e.g., dense
and convolutional neural networks), RNN loop over the
input data sequence, keeping an internal model of the in-
formation they are processing, built from past informa-
tion and constantly updated as new information arrives
[24, 36]. Thanks to their recurrent nature, RNN typ-
ically require fewer layers to perform a given task than
alternative neural network architectures; for example, the
neural network that currently powers the Google Trans-
late algorithm is a stack of just seven large “long short
term memory” (LSTM) layers [25]. We employ a RNN
constituted of two LSTM layers with states of dimension
64 and 16, respectively, and a densely connected out-
put layer, which provides the estimate of the exponent
α̂ [32]. We have implemented this neural network using
the Python-based Keras library [37] with a TensorFlow
backend [38] because of their broad adoption in research
and industry; nevertheless, we remark that the approach
we propose is independent of the framework used for its
implementation.
Once the network architecture is defined, we need

to train it on a set of single trajectories for which
we know the ground-truth values of α. For each tra-
jectory containing T measurement points, the input
data to the network is a 2 × T -dimensional array con-
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taining position and time for each measurement point
[(x1, t1) , (x2, t2) , . . . , (xT , tT )] (suitably normalized so
that the position’s average and standard deviation of
a trajectory are, respectively, 0 and 1 and the rescaled
measurement times are between 0 and 1, as discussed in
the Supplemental Material [32]). In each training step,
the neural network is tasked with predicting the expo-
nents corresponding to each trajectory from a batch of
the training set; its predictions are then compared to the
ground-truth values of the exponents; and the prediction
errors are finally used to adjust the trainable parame-
ters of the neural network using a back-propagation al-
gorithm [24, 36]. The training of a neural network is
notoriously data intensive, requiring in our case several
hundreds of thousand to millions trajectories. In order
to have enough trajectories and to accurately know the
ground-truth values of the corresponding exponents, we
simulate the trajectories. There are several models and
mechanisms that can give rise to anomalous diffusion dy-
namics [3] and several methods to identify such models
from data (e.g., [11, 28, 39–41]). We choose to train using
fractional Brownian motion (fBm) [42], which is defined
as a continuous-time Gaussian process (Bα(t)) with zero
mean and correlated increments that give rise to the co-
variance function

E [Bα(t)Bα(s)] =
1

2
(|t|α + |s|α − |t− s|α) , (3)

where α is the exponent with which the mean squared
displacement grows (Eq. 3). We simulate the trajectories
using the Davies-Harte and the Hosking algorithm [43]
implemented in a Python library [44].
To assess the performance of the RNN, we test it on

independently simulated trajectories with α uniformly
sampled in [0.5, 1.5] against the MSD, because this is the
most widespread and easy-to-use method in soft-matter
and biophysics experiments. We linearly fit the time-
averaged MSD for τ = 1, ..., 5, which delivers a good per-
formance for fractional Brownian motion in cases with-
out measurement noise. In case of the RNN, we train
a different network for each of the different trajectories’
lengths we consider. Fig. 1g shows the mean absolute
error (MAE) for the two methods as a function of the
trajectory’s length. For long trajectories, both methods
perform similarly well with MAE for RNN (MSD) 0.038
(0.035), 0.047 (0.049) and 0.066 (0.069) for trajectories
with 1024, 512 and 256 samples, respectively. For shorter
trajectories, which are known to be problematic for MSD-
based methods [7, 34], the RNN performs slightly better,
achieving MAE 0.092 (vs. 0.098 for the MSD), 0.127
(vs. 0.141) and 0.182 (vs. 0.207) for 128, 64 and 32
samples, respectively. This demonstrates that the RNN
is able to extract information from the trajectories that
is not used by the MSD. We remark that there is some
variability in the performance of the networks across dif-
ferent trainings and that, focusing on a specific trajectory

length, it is possible to further improve the predictions
by fine-tuning the training and by pooling the predic-
tions of different networks. In any case, the predictions
made with the RNN and the MSD are strongly corre-
lated, as can be seen in Fig. 1h where the estimations
made using the RNN are plotted against the ones for
the MSD for simulated trajectories of length 128. Im-
portantly, even though the RNN is trained on a specific
model for anomalous diffusion (fBM), it is able to gener-
alize and to correctly analyze also experimental data for
which we do not know the precise mechanism underlying
the anomalous diffusion behavior. The colored points in
Fig. 1g represent the estimations made using the RNN
plotted against the ones for the MSD for the experimental
data corresponding to sub-diffusive particles moving in a
speckle light field (orange points), to diffusive Brownian
particles (green and red points), and to super-diffusive
microswimmers (purple points). The RNN and MSD es-
timations are correlated in a similar way as for the data
generated from simulations using a fBM model, provid-
ing strong evidence for the experimental reliability of the
RNN method even when the underlying microscopic dy-
namics for the anomalous diffusion are other than fBM.

In the next step, we show that RNN can be used to
determine α in two cases where a straightforward com-
putation of the MSD becomes challenging: trajectories
are sampled at irregular times, and a system featuring
an intermittent behavior.

The first situation is motivated by the fact that, in
several experimental settings, it is not possible to record
the trajectories at equally spaced time intervals. For ex-
ample, the fluorescent biomarkers commonly employed
for tracking biomolecules are subject to blinking so that
some portion of a trajectory might be missing [17]. In
general, tracking algorithms might miss some frames, es-
pecially in noisy and challenging experimental conditions,
leading to trajectories with missing data points. No stan-
dard technique exists to deal with these cases for single
trajectories. Here, we test the RNN, trained in Fig. 1
on trajectories sampled at regular times, on trajectories
sampled at irregular times. We consider two scenarios:
(a) a fraction of the regularly recorded data is missing
(“missing data” scenario, Fig. 2a); (b) the data points
are sampled at random times (“uneven data” scenario,
Fig. 2b). As shown in Figs. 2c-d, the RNN is in fact
able to generalize to these cases. In particular, for the
“missing data” scenario with 12.5% data points randomly
missing, the performance of the network is unaffected as
long as the same number of data points as in the train-
ing set (in this case 128) is fed into the RNN (Fig. 2c).
For case (b), with measurement times geometrically dis-
tributed so that on average 1 frame every 8 contains a
signal, the RNN provides reasonable predictions, which
however are slightly biased and tend to underestimate
large exponents (Fig. 2d). For more accurate predic-
tions, one can retrain the RNN on irregularly sampled
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FIG. 2. Measurement of anomalous diffusion in irregularly
sampled trajectories. Often a trajectory is sampled irregu-
larly, either (a) because some data points are missing (“miss-
ing data”, here 12.5% data points are missing), or (b) because
data points are sampled at random times (“uneven data”,
here according to a geometric distribution). For each case,
two trajectories with different α are shown. (c-d) Estimated
exponent α̂ as a function of the actual exponent α for the two
cases using simulated trajectories with 128 frames. The lower
panels show the MAE as a function of α. The MAE averaged
over all α is 0.091 in (c) and 0.101 in (d). There exists a
systematic bias in the more challenging “uneven data” case,
visible in (d) for large α.

simulated data and significantly improve its performance
[32].

As the second situation, we consider systems featur-
ing intermittent behavior, where the particle diffusion
switches between different behaviors characterized by dif-
ferent α. Such behavior occurs, for instance, when par-
ticles are transiently trapped such as in sodium channels
[18] or when self-propulsion is switched on and off [31].
Relying on traditional MSD measurements, one would
first need to detect the change in behavior (e.g., using
change-point analysis techniques [45]) and successively
to estimate the exponents of the two sub-trajectories.
This is a challenging procedure, which has been at-
tempted only recently for trajectories switching between
sub-diffusive and super-diffusive dynamics [19, 46]. We
employ a modified version of the RNN discussed above to
determine simultaneously the exponent before switching

FIG. 3. Measurement of the switch between two anomalous
diffusion behaviors. (a) Simulated trajectory of a particle
whose exponent switches from α1 = 1.50 to α2 = 0.75 at time
ts = 108. Estimation by a RNN of (b) α̂1, (c) α̂2, and (d)
t̂s/T as a function of the respective ground-truth values, for
a test data set where |∆α| > 0.25, ts ∈ [0.25T, 0.75T ], and
T = 256.

α̂1, the exponent after switching α̂2, and the switching
time t̂s from the acquired trajectory. Specifically, we use
a network with the same architecture as before but with
5 output neurons that estimate α̂1, α̂2, ∆α̂ = α̂2 − α̂1,
sin

(

2πt̂s/T
)

, and cos
(

2πt̂s/T
)

(see [32]). We train this
RNN on a set of 1.6-million simulated trajectories where
a change in exponent occurs randomly with a uniform
distribution at time ts (see [32]). Figs. 3b-d shows
the performance of the estimations of α̂1 (Fig. 3b), α̂2

(Fig. 3c), and t̂s (Fig. 3d), when the change in α is not
too small (|∆α| > 0.25) and the switch occurs around the
middle of the trajectory (ts ∈ [0.25T, 0.75T ] = [64, 192]).
Under these conditions, the performance in estimating
α̂1 (Fig. 3b, MAE 0.116) and α̂2 (Fig. 3c, MAE 0.112)
is comparable to the case of constant α reported in
Fig. 1. The switching-time estimation can be challenging
when the change of the exponent is small or occurs very
early/late. For t̂s/T we have a MAE 0.148 as illustrated
in Fig. 3d.

In Fig. 4, we illustrate the power of the neural-network
approach using an experimental trajectory. We con-
sider a microswimmer, which undergoes super-diffusion
(α ≃ 1.4) when illuminated by light [31], and becomes
diffusive when the light is turned off (α = 1.0). Fig. 4a
shows the corresponding trajectory with a switching time
at t = 51.3 s. We measure this switch using the RNN with
a sliding window containing 256 measurement points
(38.3 s). The estimated exponent (averaged over the var-
ious sliding windows) is shown in Fig. 4b, where one can
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FIG. 4. Determination of anomalous diffusion exponents and
switching time in an experimental time series by sliding a
window containing 256 measurement points (T = 38.3 s). (a)
Trajectory of a microswimmers activated by light (α ≃ 1.4);
at t = 51.3 s the light is switched off and the microswim-
mers becomes a passive Brownian particle (α = 1.0). (b)
Orange curve: exponent α̂ estimated by averaging the pre-
dictions of the RNN for each sliding window. For reference,
the gray curve reports the exponent α̂ estimated by averaging
the predictions of the MSD for the same sliding windows. (c)
Histogram of the switching times t̂s estimated by the RNN.
Each prediction is obtained from a different starting point of
the sliding window and the histogram is built from reliable
windows where |∆α̂| > 0.25 and the estimated change point
is far from the boundaries of the window t̂s ∈ [0.25T, 0.75T ].

see that there is a clear shift from α̂ ≃ 1.4 to α̂ = 1.0
around t = 50 s. As a reference, we show the prediction
from the MSD (gray curve in Fig. 4b) obtained by aver-
aging the exponents inferred by a sliding window. One
can see that, in this case, the transition between the high
and low exponent is smoothed out and takes place in a
longer time interval. One could try to alleviate the issue
by choosing shorter window sizes but this would come at
the cost of a noisier estimation. The histogram of the
switching times predicted by the RNN in the different
windows is shown in Fig. 4c, where it can be seen that
the network correctly determines the switching time.

In conclusion, we introduced a new method for the esti-
mation of the exponent from single trajectories in anoma-
lous diffusion systems based on RNN. We have shown
that it can be straightforwardly applied to more complex
situations, where standard approaches are lacking. Our
method then emerges as a promising tool for the anal-
ysis of single trajectories with irregular measurements
and intermittent behaviors. We remark that our analysis

has been limited to the case in which the observed time
series can be described by a single exponent on the ob-
servation time scales (or a distinct switch between two
exponents). In several systems, the MSD smoothly in-
terpolates between different linear (in the log-log plot)
regimes on different time scales (see, e.g., [5, 7]). The
approach we propose here should not be directly applied
to analyze such time series on time scales where the tran-
sition between different diffusive regimes occurs, but has
to be separately applied to the different linear regimes.
In general, when dealing with completely unseen data,
before proceeding to a deeper analysis, it is advisable
to benchmark the preliminary predictions of the RNN
against the ones of the MSD. As future work, it will be in-
teresting to test the inference of the RNN method trained
on fBM simulated data on data obtained from different
anomalous diffusion models, such as, for instance, con-
tinuous time random walks. It would also be possible to
train the RNN using simulated data not generated from
fBM. Along these lines, it would be interesting to con-
sider higher-order moments, which are sensitive to the
specific kind of anomalous diffusion model; however, this
will likely require a more extensive training. Another in-
teresting extension would be to train a network on data
of the type mentioned above which is characterized by
different exponents on different time scales to infer the
whole profile of the MSD as a function of time instead
of separately considering its distinct diffusive regimes.
This extension may not be completely trivial since one
would have to learn more parameters that can be used
to parametrize more general curves.
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M. M. Tamkun, and D. Krapf, Sci. Rep. 7, 5404 (2017).
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