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We present a study of B0
s decays to the CP-odd final state J=c f0ð980Þ with J=c ! �þ�� and

f0ð980Þ ! �þ��. Using p �p collision data with an integrated luminosity of 3:8 fb�1 collected by the

CDF II detector at the Tevatron we measure a B0
s lifetime of �ðB0

s ! J=c f0ð980ÞÞ ¼ 1:70þ0:12
�0:11ðstatÞ �

0:03ðsystÞps. This is the first measurement of the B0
s lifetime in a decay to a CP eigenstate and corresponds

in the standard model to the lifetime of the heavy B0
s eigenstate. We also measure the product of branching

fractions of B0
s ! J=c f0ð980Þ and f0ð980Þ ! �þ�� relative to the product of branching fractions of

B0
s ! J=c� and� ! KþK� to be Rf0=� ¼ 0:257� 0:020ðstatÞ � 0:014ðsystÞ, which is the most precise

determination of this quantity to date.

DOI: 10.1103/PhysRevD.84.052012 PACS numbers: 13.25.Hw, 12.15.Ff, 14.40.Nd

I. INTRODUCTION

In the standard model, the mass and flavor eigenstates of
the B0

s meson are not identical. This gives rise to particle—
antiparticle oscillations [1], which proceed in the standard
model through second-order weak interaction processes,
and whose phenomenology depends on the Cabibbo-
Kobayashi-Maskawa quark mixing matrix. The time ðtÞ
evolution of B0

s mesons is approximately governed by the
Schrödinger equation

i
d

dt

jB0
sðtÞi

j �B0
sðtÞi

 !
¼
�
M̂s � i

2
�̂s
� jB0

sðtÞi
j �B0

sðtÞi

 !
; (1)

where M̂s and �̂s are mass and decay rate symmetric 2� 2

matrices. Diagonalization of M̂s � i
2 �̂

s leads to mass

eigenstates

jB0
sLi ¼ pjB0

si þ qj �B0
si; (2)

jB0
sHi ¼ pjB0

si � qj �B0
si; (3)

with distinct masses ðML
s ;M

H
s Þ and distinct decay rates

ð�L
s ;�

H
s Þ, where p and q are complex numbers satisfying

jpj2 þ jqj2 ¼ 1. An important feature of the B0
s system is

the nonzero matrix element �s
12 representing the partial

width of B0
s and �B0

s decays to common final states which
translates into a nonzero decay width difference ��s of the
two mass eigenstates through the relation

��s ¼ �L
s � �H

s ¼ 2j�s
12j cos�s; (4)

where �s ¼ argð�Ms
12=�

s
12Þ. The phase �s describes CP

violation in B0
s mixing. In the standard model �s is pre-

dicted to be 0:22� � 0:06� [2,3]. The small value of the
phase�s causes the mass andCP eigenstates to coincide to
a good approximation. Thus the measurement of the life-
time in a CP eigenstate provides directly the lifetime of the
corresponding mass eigenstate. If new physics is present, it
could enhance �s to large values, a scenario which is not
excluded by current experimental constraints. In such a

case the correspondence between mass and CP eigenstates
does not hold anymore and the measured lifetime will
correspond to the weighted average of the lifetimes of
the two mass eigenstates with weights dependent on the
size of the CP-violating phase�s [4]. Thus a measurement
of the B0

s lifetime in a final state which is a CP eigenstate
provides, in combination with other measurements, valu-
able information on the decay width difference ��s and
the CP violation in B0

s mixing.
One of the most powerful measurements to constrain a

new physics contribution to the phase �s is the measure-
ment of CP violation in the decay B0

s ! J=c� with
� ! KþK�. The decay B0

s ! J=c� has a mixture of
the CP-even and -odd components in the final state and
an angular analysis is needed to separate them [5]. In the
standard model, CP violation in the decay B0

s ! J=c� is
given by �s ¼ arg½ð�VtsV

�
tbÞ=ðVcsV

�
cbÞ�. New physics ef-

fects in B0
s mixing would shift �s and �2�s from the

standard model value by the same amount. A sufficiently
copious B0

s ! J=c f0 signal with f0 ! �þ��, where f0
stands for f0ð980Þ, and B0

s flavor identified at production
can be used to measure �s without the need of an angular
analysis [6] as J=c f0 is a pure CP-odd final state. Since
the B0

s is a spin-0 particle and the decay products J=c and
f0 have quantum numbers JPC ¼ 1�� and 0þþ, respec-
tively, the final state has an orbital angular momentum of
L ¼ 1 leading to a CP eigenvalue of ð�1ÞL ¼ �1. Further
interest in the decay B0

s ! J=c f0 arises from its possible
contribution to an S-wave component in the B0

s !
J=cKþK� decay if the f0 decays to KþK�. This contri-
bution could help to resolve an ambiguity in the ��s and
�s values determined in the B0

s ! J=c� analyses.
Because it was neglected in the first tagged B0

s ! J=c�
results [7,8], each of which showed an approximately 1:5�
deviation from the standard model, it was argued that the
omission may significantly bias the results [9,10].
However, using the formalism in Ref. [11], the latest
preliminary CDF measurement [12] has shown that the
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S-wave interference effect is negligible at the current level
of precision.

In Refs. [2,3] the decay width difference in the standard
model is predicted to be ��SM

s ¼ ð0:087� 0:021Þ ps�1

and the ratio of the average B0
s lifetime, �s¼2=

ð�L
s þ�H

s Þ, to the B0 lifetime, �d, to be 0:996<
�s=�d<1. Using these predictions in the relations

�H
s ¼ 1

�Hs
¼ �s � 1

2
��s; (5)

�s
L ¼ 1

�Ls
¼ �s þ 1

2
��s; (6)

where �s ¼ 1=�s, together with the world average B0

lifetime, �d ¼ ð1:525� 0:009Þ ps [13], we find the theo-
retically derived values �Hs ¼ ð1:630� 0:030Þ ps and
�Ls ¼ ð1:427� 0:023Þ ps.

While no direct measurements of B0
s lifetimes in decays

to pure CP eigenstates are available, various experimental
results allow for the determination of the lifetimes of the
two mass eigenstates. Measurements sensitive to these
lifetimes are the angular analysis of B0

s ! J=c� decays

and the branching fraction of B0
s ! Dð�Þþ

s Dð�Þ�
s , which can

be complemented by measurements of the B0
s lifetime in

flavor specific final states. The combination of available
measurements yields �Hs ¼ ð1:544� 0:041Þ ps and �Ls ¼
ð1:407þ0:028

�0:026Þ ps [14]. From CDF measurements we can

infer the two lifetimes from the result of the angular
analysis of B0

s ! J=c� decays. The latest preliminary
result [12], that is not yet included in the above average,
yields �Hs ¼ ð1:622� 0:068Þ ps and �Ls ¼ ð1:446�
0:035Þ ps assuming standard model CP violation.

Compared to measurements using B0
s ! J=c� decays,

lifetime and future CP violation measurements in the
B0
s ! J=c f0 decay suffer from a lower branching fraction.

Based on a comparison to Dþ
s meson decays Ref. [9]

makes a prediction for the branching fraction of
B0
s ! J=c f0 decay relative to the B0

s ! J=c� decay,

Rf0=� ¼ BðB0
s ! J=c f0Þ

BðB0
s ! J=c�Þ

Bðf0 ! �þ��Þ
Bð� ! KþK�Þ ; (7)

to be approximately 0.2. The CLEO experiment estimates
Rf0=� ¼ 0:42� 0:11 from a measurement of semileptonic

Dþ
s decays [15]. A theoretical prediction based on QCD

factorization yields a range of Rf0=� between 0.27 and 0.58

[16]. With the world average branching fraction for the
B0
s ! J=c� decay of ð1:3� 0:4Þ � 10�3 and the branch-

ing fraction of f0 ! �þ�� in the region between 0.5–0.8,
predictions of BðB0

s ! J=c f0Þ [17,18] translate into a
wide range of Rf0=� values of approximately 0.1–0.5.

The first experimental search was performed by the
Belle experiment [19]. Their preliminary result did not
yield a signal and they extract an upper limit on the
branching fraction of BðB0

s ! J=c f0ÞBðf0 ! �þ��Þ<
1:63� 10�4 at 90% confidence level . Recently the LHCb

experiment reported the first observation of the decay
B0
s ! J=c f0 [20] with a relative branching fraction of

Rf0=� ¼ 0:252þ0:046
�0:032ðstatÞþ0:027

�0:033ðsystÞ. Shortly after the

LHCb result was presented, the Belle collaboration an-
nounced their result of an updated analysis using
121:4 fb�1 of �ð5SÞ data [21]. They observe a significant
B0
s ! J=c f0 signal and measure BðB0

s ! J=c f0Þ�
Bðf0 ! �þ��Þ ¼ ð1:16þ0:31þ0:15þ0:26

�0:19�0:17�0:18Þ � 10�4, where

the first uncertainty is statistical, the second systematic,
and the third one is an uncertainty on the number of

produced Bð�Þ0
s �Bð�Þ0

s pairs. Using their preliminary measure-
ment of the B0

s ! J=c� branching fraction [22], and
assuming that the uncertainty on the number of produced

Bð�Þ0
s �Bð�Þ0

s pairs is fully correlated for the two measure-
ments, this translates into Rf0=� ¼ 0:206þ0:055

�0:034ðstatÞ �
0:052ðsystÞ. A preliminary measurement of the D0 experi-
ment yields Rf0=�¼0:210�0:032ðstatÞ�0:036ðsystÞ [23].
In this paper we present a measurement of the ratio

Rf0=� of the branching fraction of the B0
s ! J=c f0 decay

relative to the B0
s ! J=c� decay and the first measure-

ment of the B0
s lifetime in a decay to a pure CP eigenstate.

We use data collected by the CDF II detector from
February 2002 until October 2008. The data correspond
to an integrated luminosity of 3:8 fb�1.
This paper is organized as follows: In Sec. II we describe

the CDF II detector together with the online data selection,
followed by the candidate selection in Sec. III. Section IV
describes details of the measurement of the ratio Rf0=� of

branching fractions of the B0
s ! J=c f0 decay relative to

the B0
s ! J=c� decay while Sec. V discusses the lifetime

measurement. We finish with a short discussion of the
results and conclusions in Sec. VI.

II. CDF II DETECTOR AND TRIGGER

Among the components of the CDF II detector [24] the
tracking and muon detection systems are most relevant for
this analysis. The tracking system lies within a uniform,
axial magnetic field of 1.4 T strength. The inner tracking
volume hosts seven layers of double-sided silicon micro-
strip detectors up to a radius of 28 cm [25]. An additional
layer of single-sided silicon is mounted directly on the
beam pipe at a radius of 1.5 cm, providing an excellent
resolution of the impact parameter d0, defined as the
distance of closest approach of the track to the interaction
point in the transverse plane. The silicon tracker provides a
pseudorapidity coverage up to j�j � 2:0. The remainder of
the tracking volume up to a radius of 137 cm is occupied by
an open-cell drift chamber [26]. The drift chamber pro-
vides up to 96 measurements along the track with half
of them being axial and other half stereo. Tracks with
j�j � 1:0 pass the full radial extent of the drift chamber.
The integrated tracking system achieves a transverse mo-
mentum resolution of �ðpTÞ=p2

T � 0:07% ðGeV=cÞ�1 and
an impact parameter resolution of �ðd0Þ � 35 �m for
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tracks with a transverse momentum greater than 2 GeV=c.
The tracking system is surrounded by electromagnetic and
hadronic calorimeters, which cover the full pseudorapidity
range of the tracking system [27–30]. We detect muons in
three sets of multiwire drift chambers. The central muon
detector has a pseudorapidity coverage of j�j< 0:6 [31]
and the calorimeters in front of it provide about 5.5 inter-
action lengths of material. The minimum transverse mo-
mentum to reach this set of muon chambers is about
1:4 GeV=c. The second set of chambers covers the same
range in �, but is located behind an additional 60 cm of
steel absorber, which corresponds to about three inter-
action lengths. It has a higher transverse momentum
threshold of 2 GeV=c, but provides a cleaner muon iden-
tification. The third set of muon detectors extends the
coverage to a region of 0:6< j�j< 1:0 and is shielded
by about six interaction lengths of material.

A three-level trigger system is used for the online event
selection. The trigger component most important for this
analysis is the extremely fast tracker [32], which at the first
level groups hits from the drift chamber into tracks in the
plane transverse to the beamline. Candidate events con-
taining J=c ! �þ�� decays are selected by a dimuon
trigger [24] which requires two tracks of opposite charge
found by the extremely fast tracker that match to track
segments in the muon chambers and have a dimuon invari-
ant mass in the range 2.7 to 4:0 GeV=c2.

III. RECONSTRUCTION AND
CANDIDATE SELECTION

A. Reconstruction

In the offline reconstruction we first combine two muon
candidates of opposite charge to form a J=c candidate. We
consider all tracks that can be matched to a track segment
in the muon detectors as muon candidates. The J=c can-
didate is subject to a kinematic fit with a vertex constraint.
We then combine the J=c candidate with two other oppo-
sitely charged tracks that are assumed to be pions and have
an invariant mass between 0.85 and 1:2 GeV=c2 to form a
B0
s ! J=c f0 candidate. In the final step a kinematic fit of

the B0
s ! J=c f0 candidate is performed. In this fit we

constrain all four tracks to originate from a common
vertex, and the two muons forming the J=c are con-
strained to have an invariant mass equal to the world
average J=c mass [13]. In a similar way we also recon-
struct B0

s ! J=c� candidates using pairs of tracks of
opposite charge assumed to be kaons and having an invari-
ant mass between 1.009 and 1:029 GeV=c2. During the
reconstruction we place minimal requirements on the track
quality, the quality of the kinematic fit, and the transverse
momentum of the B0

s candidate to ensure high-quality
measurements of properties for each candidate. For the
branching fraction measurement we add a requirement
which aims at removing a large fraction of short-lived
background. We require the decay time of the B0

s candidate

in its own rest frame, the proper decay time, to be larger
than 3 times its uncertainty. This criterion is not imposed
in the lifetime analysis since it would bias the lifetime
distribution. The proper decay time is determined by the
expression

t ¼ Lxy 	mðB0
sÞ

c 	 pT

(8)

where Lxy is the flight distance projected onto the B0
s

momentum in the plane transverse to the beamline, pT is
the transverse momentum of the given candidate, and
mðB0

sÞ is the reconstructed mass of the B0
s candidate. The

uncertainty on the proper decay time t is estimated for each
candidate by propagating track parameter and primary
vertex uncertainties into an uncertainty on Lxy. The proper

decay time resolution is typically of the order of 0.1 ps.

B. Selection

The selection is performed using a neural network based
on the NEUROBAYES package [33,34]. The neural network
combines several input variables to form a single output
variable on which the selection is performed. The trans-
formation from the multidimensional space of input vari-
ables to the single output variable is chosen during a
training phase such that it maximizes the separation be-
tween signal and background distributions. For each of the
two measurements presented in this paper we use a speci-
alized neural network. For the training we need two sets of
events with a known classification of signal or background.
For the signal sample we use simulated events. We gen-
erate the kinematic distributions of B0

s mesons according to
the measured b-hadron momentum distribution. The decay
of the generated B0

s particles into the J=c f0 final state is
simulated using the EVTGEN package [35]. Each event is
passed through the standard CDF II detector simulation,
based on the GEANT3 package [36,37]. The simulated
events are reconstructed with the same reconstruction soft-
ware as real data events. The background sample is taken
from data using candidates with the J=c�þ�� invariant
mass above the B0

s signal peak, where only combinatorial
background events contribute. Because the requirement on
the proper decay time significance efficiently suppresses
background events in the branching ratio measurement, we
use an enlarged sideband region of 5.45 to 5:55 GeV=c2 in
this analysis, compared to an invariant mass range from
5.45 to 5:475 GeV=c2 for the lifetime measurement.
For the branching fraction measurement, the inputs to

the neural network, ordered by the importance of their
contribution to the discrimination power, are the transverse
momentum of the f0, the �

2 of the kinematic fit of the B0
s

candidate using information in the plane transverse to the
beam line, the proper decay time of the B0

s candidate, the
quality of the kinematic fit of the B0

s candidate, the helicity
angle of the positive pion, the transverse momentum of the
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B0
s candidate, the quality of the kinematic fit of the two

pions with a common vertex constraint, the helicity angle
of the positive muon, and the quality of the kinematic fit of
the two muons with common vertex constraint. The helic-
ity angle of the muon (pion) is defined as the angle between
the three momenta of the muon (pion) and B0

s candidate
measured in the rest frame of the J=c (f0). For the selec-
tion of B0

s ! J=c� decays we use the same neural net-
work without retraining and simply replace f0 variables by
� variables and pions by kaons.

For the lifetime measurement we modify the list of
inputs by removing the proper decay time. We also do
not use the helicity angles as they provide almost no addi-
tional separation power on the selected sample. Since we
are not concerned about a precise efficiency determination
for the lifetime measurement, we add the following inputs:
the invariant mass of the two pions, the likelihood-based
identification information for muons [38], and the invariant
mass of the muon pair. The muon identification is based on
the matching of tracks from the tracking system to track
segments in the muon system, energy deposition in the
electromagnetic and hadronic calorimeters, and isolation
of the track. The isolation is defined as the transverse
momentum carried by the muon candidate over the scalar

sum of transverse momenta of all tracks in a cone of �R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p
< 0:4, where �� (��) is the difference

in azimuthal angle (pseudorapidity) of the muon candidate
and the track. There is no significant change in the impor-
tance ordering of the inputs. The invariant mass of the pion
pair becomes the second most important input, the
likelihood-based identification of the two muon candidates
is ranked fourth and sixth in the importance list, and the
muon pair invariant mass is the least important input.

For the branching fraction measurement we select the
threshold on the neural network output by maximizing
	=ð2:5þ ffiffiffiffiffiffi

Nb

p Þ [39], where 	 is the reconstruction effi-
ciency for B0

s ! J=c f0 decays and Nb is the number of

background events estimated from the J=c�þ�� mass
sideband. The invariant mass distributions of selected
B0
s ! J=c f0 and B0

s ! J=c� candidates are shown in
Figs. 1 and 2. A clear signal at around 5:36 GeV=c2 is
visible in both mass distributions.
For the lifetime measurement we use simulated experi-

ments to determine the optimal neural network output
requirement. We select a value that minimizes the statisti-
cal uncertainty of the measured lifetime. We scan a wide
range of neural network output values and for each require-
ment we simulate an ensemble of experiments with a B0

s

lifetime of 1.63 ps, where the number of signal and back-
ground events as well as the background distributions are
simulated according to data. For a broad range of selection
requirements we observe the same uncertainty within a few
percent. Our final requirement on the network output is
chosen from the central region of this broad range of
equivalent options.

C. Physics backgrounds

We study possible physics backgrounds using simulated
events with all b-hadrons produced and decayed inclu-
sively to final states containing a J=c . For this study we
use the selection from the branching fraction measurement.
While several physics backgrounds appear in the
J=c�þ�� mass spectrum, none contributes significantly
under the B0

s peak. The most prominent physics back-
grounds are B0 ! J=cK�0 with K�0 ! Kþ��, where
K�0 stands for K�ð892Þ0, and B0 ! J=c�þ��. In the first
case the kaon is misreconstructed as a pion and gives rise to
a large fraction of the structure seen below 5:22 GeV=c2,
while the second one is correctly reconstructed and pro-
duces the narrow peak at approximately 5:28 GeV=c2.
Another possible physics type of background would con-
sist of properly reconstructed Bþ combined with a random
track. This type of background would contribute only to
higher masses with a threshold above the B0

s signal. As we
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FIG. 1. The invariant mass distribution of B0
s ! J=c f0 can-

didates selected for the branching fraction measurement.
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FIG. 2. The invariant mass distribution of B0
s ! J=c� candi-

dates selected for the branching fraction measurement.
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do not find evidence of such background in Ref. [40] which
is more sensitive we conclude that this kind of background
is also negligible here. The stacked histogram of physics
backgrounds derived from simulation is shown in Fig. 3.
From this study we conclude that the main physics back-
ground that has to be included as a separate component in a
fit to the mass spectrum above 5:26 GeV=c2 stems from
decays of B0 ! J=c�þ��. It is properly reconstructed
and therefore simple to parametrize. All other physics
backgrounds are negligible.

IV. BRANCHING FRACTION MEASUREMENT

In this section we describe details of the branching
fraction measurement. These involve the maximum like-
lihood fit to extract the number of signal events, the
efficiency estimation, and the systematic uncertainties.
We conclude this section with the result for the ratio
Rf0=� of branching fractions between B0

s ! J=c f0 and

B0
s ! J=c� decays.

A. Fit description

We use an unbinned extended maximum likelihood fit of
the invariant mass to extract the number of B0

s decays in our
samples. In order to avoid the need for modeling most of
the physics background, we restrict the fit to the mass range
from 5:26 GeV=c2 to 5:5 GeV=c2. The likelihood is

L ¼ YN
i¼1

½Ns 	 PsðmiÞ þ Ncb 	 PcbðmiÞ þ fpb 	 Ns 	 PpbðmiÞ

þ NB0 	 PB0ðmiÞ� 	 e�ðNsþNcbþNs	fpbþN
B0
Þ; (9)

wheremi is the invariant mass of the ith candidate and N is
the total number of candidates in the sample. The fit
components are denoted by the subscripts s for signal, cb

for combinatorial background, pb for physics background,
and B0 for B0 ! J=c�þ�� background. The yields of
the components are given by Ns, Ncb, Ns 	 fpb, and NB0 ,

and their probability density functions (PDFs) by
Ps;cb;pb;B0ðmiÞ, respectively. The physics background yield

is parametrized relative to the signal yield via the ratio fpb
to allow constraining it by other measurements in the
B0
s ! J=c� fit.
The signal PDF PsðmiÞ is parametrized by a sum of two

Gaussian functions with a common mean. The relative size
of the two Gaussians and their widths are determined from
simulated events. Approximately 82% of the B0

s ! J=c f0
decays are contained in a narrower Gaussian with width of
9:4 MeV=c2. The broader Gaussian has width of
18:4 MeV=c2. In the case of B0

s ! J=c�, the narrow
Gaussian with a width of 7:2 MeV=c2 accounts for 79%
of the signal, with the rest of the events having a width of
13:3 MeV=c2. To take into account possible differences
between simulation and data, we multiply all widths by a
scaling parameter Sm. Because of kinematic differences
between f0 ! �þ�� and � ! KþK� we use indepen-
dent scale factors for both modes. In the fits all parameters
of the PDF are fixed except for the scaling parameter Sm. In
addition the mean of the Gaussians is allowed to float in the
J=cKþK� fit. Doing so we obtain a value that is consis-
tent with the world average B0

s mass [13]. For the
J=c�þ�� fit we fix the position of the signal to the value
determined in the fit to the J=cKþK� candidates.
The combinatorial background PDF PcbðmiÞ is parame-

trized using a linear function. In both fits we leave its slope
floating. In each of the two fits there is one physics back-
ground. In the case of the J=c�þ�� spectrum, the physics
background describes properly reconstructed B0 !
J=c�þ�� decays using a shape identical to the B0

s signal
and position fixed to the world average B0 mass [13]. The
number of B0 events NB0 is left free in the fit. For the
J=cKþK� fit, we have a contribution from B0 ! J=cK�0
decays where the pion from the K�0 decay is misrecon-
structed as a kaon. This contribution peaks at a mass of
approximately 5:36 GeV=c2 with an asymmetric tail to-
wards larger masses. The shape itself is parametrized by a
sum of a Gaussian function and an exponential function
convolved with a Gaussian. The parameters are derived
from simulated B0 ! J=cK�0 events. The normalization
of this component relative to the signal is fixed to fpb ¼
ð3:04� 0:99Þ � 10�2, which is derived from the CDF Run
I measurement of the ratio of cross section times branching
fraction for B0

s ! J=c� and B0 ! J=cK�0 decays [41],
the world average branching fractions for � and K�0 [13],
and the ratio of reconstruction efficiencies obtained from
simulation.
The fit determines a yield of 502� 37 B0

s ! J=c f0
events and 2302� 49 B0

s ! J=c� events, where the un-
certainties are statistical only. The number of B0 back-
ground events in the J=c�þ�� fit is 160� 30.
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B. Efficiency

To extract the ratio of branching fractions we need to
estimate the relative efficiency for reconstruction of B0

s !
J=c f0 with f0 ! �þ�� and B0

s ! J=c� with � !
KþK� decays, 	rel ¼ 	ðB0

s ! J=c�Þ=	ðB0
s ! J=c f0Þ.

We estimate the efficiency using simulated events in which
we generate a single B0

s meson per event. The B0
s meson

then decays with equal probabilities to B0
s ! J=c f0 or

B0
s ! J=c� final states with exclusive J=c ! �þ��,

� ! KþK�, and f0 ! �þ��. Generated events are
then processed through a detailed detector simulation and
the offline reconstruction software used to reconstruct data.
In both cases angular and decay time distributions are
generated assuming no CP violation and parameters taken
from the preliminary result of the angular distributions
analysis [12]: � ¼ 1:529� 0:028 ps, �� ¼ 0:075�
0:036 ps�1, jA0j2 ¼ 0:524� 0:020, and jAjjj2 ¼ 0:231�
0:021. As a strong phase between A0 and Ajj is not mea-

sured we use the world average value from B0 ! J=cK�0
decays of �jj ¼ �2:86� 0:11 [13] as a reasonable ap-

proximation [42]. An additional peculiarity of the B0
s !

J=c f0 decay is the unusual mass shape of the f0 meson. It
is modeled using a Flatté distribution [43] with input
parameters measured by the BES experiment [44] to be
m0 ¼ 965� 8� 6 MeV=c2, g�¼165�10�15MeV=c2,
and gK=g� ¼ 4:21� 0:25� 0:21, where the errors are
statistical and systematic, respectively. The � meson
mass distribution is modeled using a relativistic Breit-
Wigner distribution with world average values for its pa-
rameters [13]. With these inputs to the simulation we find
	rel ¼ 1:178, which accounts for the � and f0 mass win-
dow selection requirements.

C. Systematic uncertainties

We investigate several sources of systematic uncertain-
ties. They can be broadly separated into two classes: one
dealing with assumptions made in the fits that may affect
yields, and the other related to assumptions in the effi-
ciency estimation. In the first class we estimate uncertain-
ties by refitting data with a modified assumption and taking
the difference with respect to the original value as an
uncertainty. For the second class we recalculate the effi-
ciency with a modified assumption and take the difference
with respect to the default efficiency as an uncertainty
unless specified otherwise. The summary of assigned un-
certainties is given in Table I.

For the yield of B0
s ! J=c� we investigate the effect of

the assumption on the combinatorial background shape,
the limited knowledge of misreconstructed B0 ! J=cK�0
decays and the shape of the signal PDF. The uncertainty
due to the shape of combinatorial background is estimated
by changing from the first-order polynomial to a constant
or a second-order polynomial. For the physics background
we vary the normalization of the component in the fit
and use an alternative shape determined by varying the

momentum distribution and the decay amplitudes of B0 !
J=cK�0 in simulation. Finally, to estimate the effect of the
signal PDF parametrization we use an alternative model
with a single Gaussian rather than two Gaussian functions
and an alternative shape from simulation, where we vary
the momentum distribution of the produced B0

s mesons and
the decay amplitudes of the B0

s ! J=c� decay.
To estimate the uncertainty on the B0

s ! J=c f0 yield
we follow a procedure similar to that for B0

s ! J=c�
and conservatively treat the systematic effects as inde-
pendent between the two modes in the calculation of
Rf0=�. For the sensitivity to the parametrization of the

combinatorial background we switch to a second-order
polynomial or a constant as alternative parametrization.
For the shape of the signal PDF we use two alternatives,
one with a single Gaussian function instead of two and
another one with two Gaussians, but varying the momen-
tum distribution in simulation. We also vary the position
of the B0

s signal within the uncertainty determined in the
J=cKþK� fit.
The systematic uncertainty on the relative efficiency

stems from the statistics of simulation, an imperfect knowl-
edge of the momentum distribution, physics parameters of
decays like lifetimes or decay amplitudes, and differences
in the efficiencies of the online selection of events. To
estimate the effect of the imperfect knowledge of the
momentum distribution we vary the momentum distribu-
tion of B0

s mesons in the simulation. The physics parame-
ters entering the simulation are grouped into three
categories, those defining the f0 mass shape, the ones
determining decay amplitudes in B0

s ! J=c� decays,
and those affecting the lifetimes of the two B0

s mass eigen-
states. In the first two cases we vary each parameter inde-
pendently and add all changes in the efficiency in
quadrature. For the last case we vary the mean lifetime �
and the decay width difference �� simultaneously and
take the largest variation as the uncertainty. We add the
uncertainty from the third class in quadrature with all
others to obtain the uncertainty due to the parameters
describing the particle decays. The last effect deals with

TABLE I. The summary of assigned systematic uncertainties
for the branching fraction measurement.

Source J=c� yield J=c f0 yield 	rel

Combinatorial bckg. 34 16 	 	 	
Physics bckg. 13 	 	 	 	 	 	
Mass resolution 32 7.9 	 	 	
B0
s mass 	 	 	 0.1 	 	 	

Total 49 18 	 	 	
MC statistics 	 	 	 	 	 	 0.012

Momentum distribution 	 	 	 	 	 	 0.011

Decay parameters 	 	 	 	 	 	 0.033

Trigger composition 	 	 	 	 	 	 0.016

Total 	 	 	 	 	 	 0.040
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how events are selected during data taking. The CDF
trigger has several different sets of requirements for the
selection of events. The ones used in this analysis can be
broadly sorted into three classes depending on momentum
thresholds and which subdetectors detected muons. The
fraction of events for each different class varies depending
on the instantaneous luminosity, which is not simulated. To
estimate the size of a possible effect we calculate the
efficiency for each class separately and take half of the
largest difference as the uncertainty.

To obtain the total uncertainty we add all partial uncer-
tainties in quadrature. In total we assigned 49 events
(2.1%) as the systematic uncertainty on the B0

s ! J=c�
yield, 18 events (3.6%) on the B0

s ! J=c f0 yield, and
0.040 (3.4%) on the relative efficiency 	rel. A summary
of the systematic uncertainties in the branching ratio is
provided in Table I.

D. Branching fraction result

From the fit we find 502� 37ðstatÞ � 18ðsystÞ B0
s !

J=c f0 signal events and 2302� 49ðstatÞ � 49ðsystÞ B0
s !

J=c� events. The projections of the fits for B0
s ! J=c f0

and B0
s ! J=c� are shown in Fig. 4 and 5, respectively.

In order to check our interpretation of the signal in the
J=c�þ�� distribution being due to the B0

s ! J=c f0
decays we show the invariant mass distribution of the
pions for B0

s signal data in Fig. 6. To obtain the distribution
of B0

s signal we fit the J=c�þ�� mass distribution in the
range 5.26 to 5:45 GeV=c2 for each bin in �þ�� mass
and report the B0

s signal yield as a function of �
þ�� mass.

We fit the dipion mass distribution using the Flatté pa-
rametrization. The fit probability is 23.4% and the
obtained parameters, m0 ¼ 989:6� 9:9ðstatÞ MeV=c2,
g� ¼ 141� 19ðstatÞ MeV=c2, and gK=g� ¼ 2:3�
1:3ðstatÞ, are in reasonable agreement with the ones mea-
sured by the BES collaboration [44]. In Figs. 7 and 8 we

show the positive muon and pion helicity angle distribu-
tions, obtained in an analogous way to the invariant mass
distribution of pion pairs. Those are corrected for relative
efficiencies in the different helicity bins and compared to
the theoretical expectation for a B0

s ! J=c f0 signal. We
use a �2 test to evaluate the agreement between data and
theoretical expectation. For the distribution of cosð
�þÞ
we obtain �2=ndf ¼ 7:9=20, which corresponds to 99%
probability. Similarly for cosð
�þÞ the �2=ndf is 15=20,
giving 78% probability. Since the dipion mass as well as
the angular distributions are consistent with expectations,
we interpret our signal as coming solely from the B0

s !
J=c f0 decays. On the other hand, as we use a dipion mass
window from 0.85 to 1:2 GeV=c2, we cannot exclude
contributions from other higher mass states to our signal
with present statistics.

]2) [GeV/c-π+πψM(J/
5.30 5.35 5.40 5.45 5.50

2
C

an
di

da
te

s 
pe

r 
5 

M
eV

/c

0

20

40

60

80

100

120

140

160

180

200

FIG. 4 (color online). Projection of the fit of the B0
s ! J=c f0

decay mode. The dashed line (blue) shows the contribution from
combinatorial background.
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FIG. 6 (color online). The dipion invariant mass distribution
after sideband subtraction with fit projection overlaid. The fit
uses a Flatté distribution with all parameters floating.
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Finally, we obtain the ratio of branching fractions

Rf0=� ¼ BðB0
s ! J=c f0Þ

BðB0
s ! J=c�Þ

Bðf0 ! �þ��Þ
Bð� ! KþK�Þ

¼ 0:257� 0:020ðstatÞ � 0:014ðsystÞ; (10)

where corrections for events with an f0 or � mass outside
the ranges selected in this analysis are taken into account.

V. LIFETIME MEASUREMENT

In this section we discuss the details of the lifetime
measurement. We describe the maximum likelihood fit,
estimate the systematic uncertainties, and present the result
of the lifetime measurement.

A. Fit description

To extract the B0
s lifetime we use a maximum likelihood

fit. The fit uses three variables: the invariant mass mi, the
decay time ti, and the decay time uncertainty �ti of each
candidate. To exclude B0 ! J=c�þ�� decays we use
only candidates with an invariant mass greater than
5:3 GeV=c2 in the fit.
The components in the fit are B0

s signal and combinato-
rial background. The likelihood function has the form

L¼YN
i¼1

½fs 	Psðmi;ti;�tiÞþð1�fsÞ 	Pcbðmi;ti;�tiÞ�: (11)

The parameter fs denotes the fraction of signal B0
s !

J=c f0 decays and Ps and Pcb the probability density
function of signal and combinatorial background, respec-
tively. To enhance the signal-to-background ratio in the
selected sample, we use only B0

s candidates with decay
times larger than 0:2 mm=c ¼ 0:67 ps. This requirement
suppresses background by a factor of 40 and reduces the
prompt background component to a negligible level while
keeping about two thirds of the signal events.
The B0

s signal mass PDF is parametrized as for the
branching ratio measurement. The PDF in decay time is
parametrized with an exponential function convolved with
a Gaussian resolution function. The width of the Gaussian
is given by the candidate-specific estimated decay time
uncertainty �ti scaled by a common factor St which ac-
counts for possible discrepancies between estimated and
actual resolutions. The scaling factor St is determined in a
fit to data dominated by prompt background, selected by
requiring 0< t < 0:3 ps. In the final fit, St is a free pa-
rameter with a Gaussian constraint included as additional
factor in the likelihood in Eq. (11). The PDF in decay time
uncertainty is parametrized by an empirical function. We
use a log-normal distribution with parameters �, 
, and �
defined as

D ð�tij�; 
; �Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
�ð�ti ��Þ e

�ððlnð�ti��Þ�
Þ2=2�2Þ

(12)

for �ti > � and zero otherwise. Given the rather small
statistics of the B0

s signal we derive the parameters using
simulated B0

s ! J=c f0 events and Gaussian constrain the
values in the fit to data. The widths of the Gaussian con-
straints are chosen to cover possible differences between
simulation and data.
The combinatorial background is described by two com-

ponents, a long-lived part for the background from
b-hadron decays and a short-lived part for the tail from
misreconstructed prompt events. The mass PDF is com-
mon to both components and parametrized by a linear
function. The decay time PDF of each component is
described by an exponential convolved with the same
resolution function as used for signal. Both decay time
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FIG. 7 (color online). Normalized helicity angle distribution
for the positive muon corrected for relative efficiency. The line
shows the expectation for a B0

s ! J=c f0 decay.
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FIG. 8 (color online). Normalized helicity angle distribution
for the positive pion corrected for relative efficiency. The line
shows the expectation for a B0

s ! J=c f0 decay.
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uncertainty PDFs are again modeled using log-normal
distributions. The parameters of each log-normal distribu-
tion are independent of the distribution of the B0

s signal.
All parameters of the combinatorial background are

determined from the fit. The yield, the mass resolution
scale factor, and the lifetime of the B0

s signal are also left
to float freely. The decay time uncertainty parameters of
the signal and the resolution scale parameter are Gaussian
constrained. Using an ensemble of simulated experiments
we verify within 1% that the fit is unbiased and returns
proper uncertainties.

B. Systematic uncertainties

We investigate several possible sources of systematic
uncertainties. These are broadly separable into two
classes: the first dealing with the parametrization of the
PDFs and the second with possible biases in the selection
or reconstruction.

We first investigate our assumption of the mass shape of
combinatorial background. We determine the relative
change of the B0

s lifetime between a fit with a first- and a
third-order polynomial background mass model. For fits in
different invariant mass ranges, we find an average differ-
ence of 0.010 ps, which we assign as the systematic uncer-
tainty. The systematic uncertainty assigned to the signal
mass shape has contributions from the limited knowledge
of the mean position and from the assumed shape parame-
trization. Both effects are evaluated in the same way as for
the branching ratio measurement and yield a systematic
uncertainty of 0.005 ps. There are two assumptions made
for the decay time PDFs; one is the resolution scale factor,
St, which is known only with limited precision and
the other is the shape of the combinatorial background.
The uncertainty of the scale St is included directly in the
statistical uncertainty of the fit as the parameter is allowed
to vary within a Gaussian constraint. To quantify the size of
the contribution, we repeat the fit with St fixed to its central
value and find the quadratic difference in uncertainty to the
original fit to be 0.005 ps. To estimate the effect of the
assumed decay time PDF of combinatorial background, we
employ an alternative fit method which does not need a
decay time parametrization of the background. We split the
data into 20 decay time bins and simultaneously fit the
invariant mass distributions with independent parameters
for the background in each bin. The signal yield per bin is
given by the total signal yield times the integral of the
signal decay time PDF over the time bin, where the same
PDF parametrization as in the default fit is used. The
difference in the fit results is taken as a measure of the
systematic uncertainty due to the background decay time
PDF. To avoid possible statistical fluctuations in this esti-
mate we repeat the comparison for different selection
requirements and assign the average difference of
0.021 ps as systematic uncertainty. The third kind of sys-
tematic effect addresses the uncertainty of the �t PDFs.

The main effect is the distribution for signal derived from
simulated events. The uncertainty is already included in the
statistical error since the parameters are Gaussian con-
strained in the fit. The contribution due to modeling of
the decay time uncertainty distribution, estimated from a
comparison of fit results with fixed and constrained
parameters, is 0.015 ps.
For the second class, we verify that our candidate selec-

tion does not introduce any significant bias. A bias in the
mass distribution could artificially enhance or decrease the
amount of signal candidates while a bias in decay time
could directly affect the extracted lifetime. We verify on
a background-enriched sample selected by requiring
t < 0:01 cm=c that no artificial peak is observed for any
neural network output requirement. With a high statistics
sample of simulated events we check that the selection
does not bias the fitted lifetime. A possible lifetime bias
introduced by the trigger has been studied in a previous
CDF analysis [45] and is negligible in our measurement.
Finally the alignment of the tracking detectors is known
only with finite precision. Previous measurements found

TABLE II. Summary of assigned systematic uncertainties for
the lifetime measurement. The uncertainties in parentheses are
included in the statistical uncertainty via Gaussian constraints in
the fit.

Source Uncertainty [ps]

Background mass model 0.010

Signal mass model 0.005

Decay time uncertainty scale (0.005)

Background decay time model 0.021

Decay time uncertainty model (0.015)

SVX alignment 0.007

Total 0.03
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FIG. 9 (color online). Invariant mass distribution with fit pro-
jection overlaid.
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that the uncertainty on the lifetime due to a possible mis-
alignment is 0.007 ps [45].

All the contributions are added in quadrature and yield a
total systematic error on the lifetime of 0.03 ps (1.5%). A
summary of the systematic uncertainties on the lifetime is
provided in Table II.

C. Lifetime result

Performing the likelihood fit to the selected data we
extract the B0

s lifetime in B0
s ! J=c f0 decays

�ðB0
s ! J=c f0Þ ¼ 1:70þ0:12

�0:11ðstatÞ � 0:03ðsystÞ ps: (13)

In Figs. 9–11 we show the data together with the projection
of the fit.

VI. CONCLUSIONS

We confirm the observation of the B0
s ! J=c f0ð980Þ

decay from the LHCb [20] and Belle [21] experiments. The
observed signal is the world’s largest and we perform the
most precise measurement of the ratio of branching frac-
tions Rf0=� between B0

s ! J=c f0 and B0
s ! J=c�ð980Þ

decays

Rf0=� ¼ BðB0
s ! J=c f0ð980ÞÞ

BðB0
s ! J=c�Þ

Bðf0ð980Þ ! �þ��Þ
Bð� ! KþK�Þ

¼ 0:257� 0:020ðstatÞ � 0:014ðsystÞ: (14)

In this result we assume that the observed signal is solely
due to the decay B0

s ! J=c f0ð980Þ and correct for the
acceptance of the invariant mass selection of the pion pair.
Using the world average B0

s ! J=c� branching fraction
[13] Rf0=� can be converted into the product of branching

fractions of

BðB0
s ! J=c f0ð980ÞÞBðf0ð980Þ ! �þ��Þ
¼ ð1:63� 0:12� 0:09� 0:50Þ � 10�4; (15)

where the first uncertainty is statistical, the second is
systematic, and the third one is due to the uncertainty on
the B0

s ! J=c� and� ! KþK� branching fractions. The
measurement presented here agrees well with the previous
measurements of this quantity and with theoretical
predictions.
Moreover, our sample allows us to measure the B0

s life-
time in the B0

s ! J=c f0ð980Þ decay mode

�ðB0
s ! J=c f0ð980ÞÞ ¼ 1:70þ0:12

�0:11ðstatÞ � 0:03ðsystÞ ps:
(16)

This is the first measurement of the B0
s lifetime in a decay

to a pure CP eigenstate. In the context of the standard
model the lifetime measured in this decay mode to a
CP-odd final state can be interpreted as the lifetime of
the heavy B0

s eigenstate. The measured value agrees well
both with the standard model expectation as well as with
other experimental determinations.
While the precision of the lifetime measurement is still

limited by statistics, it provides an important cross-check
on the result determined in B0

s ! J=c� decays, which
relies on an angular separation of two CP eigenstates.
Furthermore, the measured lifetime can be used as an
external constraint in the B0

s ! J=c� analysis to improve
the determination of the CP-violating phase in the
B0
s ! J=c� decay. The lifetime measurement in B0

s !
J=c f0ð980Þ decays is also the next step towards a tagged
time dependent CP-violation measurement, which can
provide an independent constraint on the CP violation in
B0
s mixing.
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FIG. 10 (color online). Decay time distribution with fit pro-
jection overlaid.

) [cm]-π+πψ(J/tσc
0.005 0.010

mµ
ca

nd
id

at
es

 p
er

 1
.2

5 

1

10

210

310 Data
Fit projection
Signal
Long lived backgr.
Short lived backgr.

FIG. 11 (color online). Decay time uncertainty distribution
with fit projection overlaid.

MEASUREMENT OF BRANCHING RATIO AND B0
s . . . PHYSICAL REVIEW D 84, 052012 (2011)

052012-13



ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of
the participating institutions for their vital contributions.
This work was supported by the U.S. Department of
Energy and National Science Foundation; the Italian
Istituto Nazionale di Fisica Nucleare; the Ministry of
Education, Culture, Sports, Science and Technology of
Japan; the Natural Sciences and Engineering Research
Council of Canada; the National Science Council of the
Republic of China; the Swiss National Science Foundation;

the A. P. Sloan Foundation; the Bundesministerium für
Bildung und Forschung, Germany; the Korean World
Class University Program, the National Research
Foundation of Korea; the Science and Technology
Facilities Council and the Royal Society, UK; the Institut
National de Physique Nucleaire et Physique des Particules/
CNRS; the Russian Foundation for Basic Research; the
Ministerio de Ciencia e Innovación, and Programa
Consolider-Ingenio 2010, Spain; the Slovak R&D
Agency; and the Academy of Finland.

[1] A review of B mixing can, for example, be found in C.
Gay, Annu. Rev. Nucl. Part. Sci. 50, 577 (2000).

[2] A. Lenz and U. Nierste, J. High Energy Phys. 06 (2007)
072.

[3] U. Nierste and A. Lenz, arXiv:1102.4274.
[4] I. Dunietz, R. Fleischer, and U. Nierste, Phys. Rev. D 63,

114015 (2001).
[5] A. S. Dighe, I. Dunietz, H. J. Lipkin, and J. L. Rosner,

Phys. Lett. B 369, 144 (1996).
[6] S. Stone and L. Zhang, arXiv:0909.5442.
[7] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.

100, 161802 (2008).
[8] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett.

101, 241801 (2008).
[9] S. Stone and L. Zhang, Phys. Rev. D 79, 074024 (2009).
[10] S. Stone, Proc. Sci. FPCP2010 (2010) 011

[arXiv:1009.4939].
[11] F. Azfar et al., J. High Energy Phys. 11 (2010) 158.
[12] T. Aaltonen et al. (CDF Collaboration), CDF Public Note

Report No. 10206, 2010 (unpublished).
[13] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,

075021 (2010).
[14] D. Asner et al. (Heavy Flavor Averaging Group),

arXiv:1010.1589.
[15] K. Ecklund et al. (CLEO Collaboration), Phys. Rev. D 80,

052009 (2009).
[16] O. Leitner, J.-P. Dedonder, B. Loiseau, and B. El-Bennich,

Phys. Rev. D 82, 076006 (2010).
[17] P. Colangelo, F. De Fazio, and W. Wang, Phys. Rev. D 81,

074001 (2010).
[18] P. Colangelo, F. De Fazio, and W. Wang, Phys. Rev. D 83,

094027 (2011).
[19] R. Louvot, Proc. Sci. FPCP2010 (2010) 015

[arXiv:1009.2605].
[20] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 698,

115 (2011).
[21] J. Li et al. (Belle Collaboration), Phys. Rev. Lett. 106,

121802 (2011).
[22] R. Louvot, arXiv:0905.4345.
[23] D0 Collaboration, Conference Note Report No. 6152.
[24] D. E. Acosta et al. (CDF Collaboration), Phys. Rev. D 71,

032001 (2005).

[25] C. S. Hill, Nucl. Instrum. Methods Phys. Res., Sect. A 530,
1 (2004).

[26] A. A. Affolder et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 526, 249 (2004).

[27] L. Balka et al., Nucl. Instrum. Methods Phys. Res., Sect. A
267, 272 (1988).

[28] S. Bertolucci et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 267, 301 (1988).

[29] M.G. Albrow et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 480, 524 (2002).

[30] G. Apollinari, K. A. Goulianos, P. Melese, and M.
Lindgren, Nucl. Instrum. Methods Phys. Res., Sect. A
412, 515 (1998).

[31] G. Ascoli et al., Nucl. Instrum. Methods Phys. Res., Sect.
A 268, 33 (1988).

[32] E. J. Thomson et al., IEEE Trans. Nucl. Sci. 49, 1063
(2002).

[33] M. Feindt and U. Kerzel, Nucl. Instrum. Methods Phys.
Res., Sect. A 559, 190 (2006).

[34] M. Feindt, arXiv:0402093.
[35] D. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462,

152 (2001).
[36] R. Brun, R. Hagelberg, M. Hansroul, and J. Lassalle,

Report No. CERN-DD-78-2-REV, 1978 (unpublished).
[37] E. Gerchtein and M. Paulini, 2003 Computing in High

Energy and Nuclear Physics (CHEP03), La Jolla, CA,
USA, March 2003 econf C0303241, TUMT005
(2003).

[38] G. Giurgiu, Ph.D. thesis, Carnegie Mellon University,
Report No. FERMILAB-THESIS-2005-41, 2005.

[39] G. Punzi, PhyStat2003, Stanford, CA, USA, September
2003, econf C030908, MODT002 (2003).

[40] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83,
052012 (2011).

[41] F. Abe et al. (CDF Collaboration), Phys. Rev. D 54, 6596
(1996).

[42] M. Gronau and J. L. Rosner, Phys. Lett. B 669, 321 (2008).
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