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Abstract

Recent advancements in PET instrumentation have made the non-invasive assessment
of cardiovascular function in small animals a reality. The majority of small animal PET
systems use stationary detector gantries, thus affording high temporal resolution
imaging of cardiac function. Systems designed to maximize spatial resolution and
detection sensitivity employing rotating gantry designs are suboptimal when high
temporal resolution imaging is needed. To overcome this limitation, the current work
developed a novel view-sharing data analysis scheme suitable for dynamic cardiac
PET imaging using 18F-NaF as the tracer and tracer kinetic model analysis. This
scheme was tested in a rat model of cardiovascular function where the relationship
between direct transonic flow measures of cardiac output were highly correlated
(f(x) = 1.0216x − 24.233, R = 0.9158, p < 0.001) with the new model. Similarly, derived
measures of stroke volume were also highly correlated (f(x) = 0.9655x − 0.0428, R = 0.9453,
p < 0.001) with the current approach. Administration of xylazine caused a statistically
significant increase in stroke volume (0.32 ± 0.07 ml, p = 0.003, n = 4) and a significant
decrease in both heart rate (−155 ± 7.1 beats/min, p< 0.001, n= 4) and cardiac output
(−75.9 ± 23.0 ml/kg min, p= 0.01, n = 4). These findings suggest that the new sinogram
binning and kinetic modeling methods produce reliable cardiac function measures
suitable for longitudinal monitoring of cardiovascular function.
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Introduction
Determination of cardiovascular function in small animals has been well characterized

using a number of in vivo model systems. In particular, the application of the direct

Fick principle [1], employing electromagnetic flow meters [2], indicator dilution [3],

and thermal [4] dilution methods have been used with great success. The invasive na-

ture of these techniques makes them better suited for acute rather than longitudinal

measurements of function. To overcome this limitation, non-invasive small animal

quantitative PET methods have been developed for both rats [5–10] and mice [11]. Pri-

mary challenges in quantifying cardiac function via small animal PET include limited

spatial resolution and suboptimal detection sensitivity of these devices. Currently, a

majority of the small animal PET scanners in use have a fixed ring geometry and yield
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a spatial resolution at the center of the field of view (CFOV) in the range of 1.3–

1.7 mm full width at half-maximum (FWHM) and a overall system sensitivity of 3–5 %

[7, 12–14]. Kreissl et al. [11] acquired cardiac PET data in listmode and reconstructed

the images into short-duration frames (0.3 s/frame) in order to measure the first pass

kinetics of the radiotracer through the heart. In order to gain greater spatial resolution

and system sensitivity, small animal PET scanners, like IndyPET3, have been developed

with a slip-ring geometry which encodes all events spatially as the gantry rotates in

order to increase spatial sampling by using 12 coincidence banks, thus yielding reso-

lution at CFOV of <1 mm while simultaneously maximizing sensitivity (>7 %) with long

detector crystal lengths [15]. Although these advances provide substantial benefit for

cardiac PET imaging, the use of high temporal resolution frame rates [11] with a rotat-

ing gantry configuration will eliminate the resolution gain provided by the unique

spatial sampling schemes employed in these systems. The objective of the current study

was to develop a novel sinogram binning and data processing scheme that enables

rapid cardiac function studies to be performed while maintaining the improved spatial

resolution produced by small animal PET systems that incorporate a rotating gantry.

To test this approach, we developed an animal model that enabled simultaneous meas-

urement of cardiac function with a transonic flow meter and PET determination of

function using tracer kinetic models which utilizes the sinogram binning.

Materials and methods
Experimental design

All procedures were approved by the Indiana University School of Medicine Animal

Care and Use Committee prior to the start of the study and were conducted in accord-

ance with NIH guidelines on animal care and use [16]. Four adult Sprague-Dawley male

rats were anesthetized using isoflurane (3–4 % isoflurane), balanced with medial grade

oxygen at a flow rate of 2 l/h. Once anesthetized, animals were placed on custom car-

bon fiber bed and maintained at 1.5–2 % isoflurane during surgical preparation of the

abdomen. A small incision was made over the midline, the skin retracted, and abdom-

inal contents displaced laterally and sterile saline soaked gauze was placed over con-

tents to ensure hydration. Using blunt dissection, the abdominal aorta was isolated

from the surrounding nerve and vena cava, and a transonic flow probe (TFP;Transonic,

Model # PRB3313) was placed as described previously [2, 17]. Abdominal contents

were replaced into the cavity and the skin was closed. Animals were quickly transported

to the imaging suite and positioned for the imaging studies (imaging bed mounted, flow

probe, and ECG leads connected). Isoflurane (1–3 % isoflurane) anesthesia was main-

tained for the duration of the imaging session. Venous access was secured via tail vein

catheterization, and baseline readings of cardiac output and heart rate were collected in

triplicate. Immediately after starting PET data acquisition, animals were delivered a dose

of 18F-NaF (14.8 ± 0.48 MBq/kg, n = 4) IV, followed by repeat collection of heart rate and

cardiac output measurements in triplicate. 18F-NaF was selected due to its rapid vascular

clearance (facilitated by hydroxyapatite binding in the bone), minimizing the cross-talk

between the repeat 18F-NaF dose administrations. In all cases, dynamic PET images were

acquired in listmode using the IndyPET3 scanner [18] with a gantry rotation rate of

3 rpm. With this configuration, a minimum rotation angle of 60°, which requires
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minimum scan duration (MSD) of 3.33 s, is required for acquisition of a uniformly sam-

pled data set suitable for sorting into a high-resolution sinogram and application of ana-

lytical image reconstruction algorithms. Following the baseline scan, cardiac output was

manipulated by administering the α2-agonist xylazine via constant rate infusion at

13.8 mg/kg min [19]. Once at steady state, animals were administered a second dose of
18F-NaF (15.5 ± 0.1.7 MBq/kg, n = 4) IV, followed by repeat collection of cardiac output

and heart rate in triplicate. Dynamic listmode data (15 min/treatment) were reconstructed

into 80 × 100 mm volumes using filtered back projection (FBP). In order to maintain the

high intrinsic spatial resolution of the IndyPET3 system, with signal-to-noise ratios (SNR)

yielding acceptable image quality, while capturing rapid tracer kinetic changes in the car-

diac LV chamber, listmode data were binned using a temporal overlap design with 9 s

(3*MSD) duration frames offset by 1 s. Using this schema, frames 1, 2, 3, through “n”

would yield the following [start, stop] frame integration times: [0, 8], [1, 9], [2, 10],

and [n, n + 8], respectively. The result is a 4D series with 89 % view-sharing per frame

(see Fig. 1). In all cases, images were corrected for decay, random coincidence events,

and dead-time loss [20]. Animal beds were transferred to the EVS R9 microCT, and

images were acquired center over the heart using 80 kVp, 1000 mA, 200 ms/°, 1.08°/

step, and reconstructed into an 40 × 65 mm volumes using vendor-supplied FBP re-

construction algorithm.

Image analysis

PET and CT images were imported, reoriented, and registered using a normalized en-

tropy algorithm [21]. Using registered CT images, the left ventricular cavities were

manually segmented avoiding the apex, septum, and free walls to limit the ventricular

spillover. Regions of interest were then extracted from the PET time series, and a tracer

kinetic model describing 18F-NaF kinetics in LV blood and myocardial tissue (Fig. 2a)

was fit to the data. The 18F-NaF concentration measured in the LV VOI was described

by the following equation.

A B

Fig. 1 Visual representations of ultra-short contiguous (non-overlapping) frame reconstruction [11] (a) and
view-sharing (89 % overlapping) frame reconstruction (b) used with stationary and rotating gantry PET
systems, respectively
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CPET t ið Þð Þ ¼ 1
t2 ið Þ−t1 ið Þð Þ 1−Fbvð Þ

Z t2 ið Þ

t1 ið Þ
CM τð Þdτ þ Fbv

Z t2 ið Þ

t1 ið Þ
CA τð Þdτ ð1Þ

where CPET(t(i)) is the measured 18F-NaF concentration in the LV VOI, CM(t(i)) is the

myocardial tissue 18F-NaF concentration (Fig. 2b. marker 4, Eq. 5), CA(t(i)) is the arterial

blood 18F-NaF concentration (Fig. 2b. marker 1, Eqs. 2, 3, and 4), Fbv, is the fractional blood

volume, and “i” represents the temporal frame number, respectively. The pulmonary artery

CPA(t) (Fig. 2b. marker 2, Eq. 3) input to the LV and the LV response function (LVrf(t))

(Fig. 2b. marker 3, Eq. 4) determine the arterial blood concentration (Eq. 2)

CA tð Þ ¼ CPA tð Þ⊗LVrf tð Þ ð2Þ

CPA tð Þ ¼ Ae
− t−t0ð Þ2

2σ2
ð3Þ

LVrf tð Þ ¼
_Q
Vlv

e−ð
_Q
Vlv
Þt ð4Þ

CM tð Þ ¼ K 1CA tð Þ⊗e−k2t ð5Þ
_Q ¼ SVf h ð6Þ

where A, t0, σ, _Q: , SV, fh, Vlv, K1, and k2 are the input amplitude, time offset, input

width, total cardiac output (ml/g min), stroke volume (ml), heart rate (beats/min), left

ventricular volume (ml), tissue perfusion times extraction fraction (ml/g min), and back

flux rate constant (1/min), respectively. For Eqs. 2 and 5, ⊗ represents the convolution

operator. As indicated in Eq. 1, each image frame (i) is constructed by integrating over

the interval [t1(i), t2(i)]. For this study, t2(i) = t1(i) + 8.

Statistics

Statistical analysis was performed on direct measures of TFP and tracer kinetic model

estimates of stroke volume (SV) and cardiac output (CO) parameters, where heart rates

Fig. 2 a Schematic diagram of the 1 compartment 3 parameter tracer kinetic model. b Heart diagram
indicating the points of reference as described in Eqns. 1–6 (reproduced with permission from Pearson
Education Inc.)
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(HR) were collected simultaneously for both measures. Correlation analysis was per-

formed on all measures of SV and CO using Pearson-product moment correlation

analysis. Statistical analysis was performed as two-tailed paired T test pre- and

post xylazine in fusion, where significance (*) was taken at p ≤ 0.05.

Results
Images acquired over the first 60-s post 18F-NaF administration and reconstructed

using the 89 % temporal view-sharing scheme, as described in Fig. 1, are shown in

Fig. 3a-b. Segmentation of the PET/CT images produced dose normalized TACs con-

sistent with the baseline and xylazine treatments (see Fig. 3c, d). These time courses

when fit with the kinetic model described by Eqs. 1–6 yielded estimates of the left ven-

tricular SV and total CO at baseline and following xylazine administration. To determine

the relationship between the TFP measures and PET kinetically derived parameters,

correlation analysis was performed for SV (Fig. 4a) and CO (Fig. 4b). The relationship

between TFM measurements and PET estimated SV can be described by f(x) =

0.9655x − 0.0428, with a correlation coefficient of R = 0.9453 (p < 0.001, n = 4, groups = 2).

Similarly, the correlation coefficient between TFM measurements and PET estimates was

R = 0.9158 (p < 0.001, n = 4, groups = 2) and can be described by f(x) = 1.0216x − 24.233.

When analyzed by treatment, SV significantly increased from 0.30 ± 0.05 ml to 0.62 ±

0.06 ml (p = 0.003, n = 4, groups = 2) when measured via TFM, while PET estimates

yielded a similar increase from 0.30 ± 0.04 ml to 0.54 ± 0.04 ml (p = 0.003, n = 4,

groups = 2). As expected, the infusion of xylazine resulted in a significant decrease in

CO by (75.9 ± 23.0 ml/kg min (p = 0.017, n = 4, groups = 2) as measured by TFM, with

PET showing a similar reduction over this same interval 84.1 ± 18.1 ml/kg min (p = 0.007,

n = 4, groups = 2). Concomitantly, HR over this same interval decreased by 155 ± 7.1

beats/min (p < 0.001, n = 4, groups = 2)

Discussion
Over the past decade, there is an emerging interest in dynamic cardiac PET as a tool to

assess small animal cardiovascular function [5–11]. Spatial and temporal resolution

A

C

B

D

Fig. 3 Fused 18F-NaF PET/CT view-sharing reconstructed images with time of the heart prior to (a) and
post (b)-xylazine infusion at 13.8 mg/kg min, where the corresponding kinetic time courses pre (c) and
post (d) are shown below each image series, where solid line represent the fit of the described model.
Reconstructions utilized a 9-s frame duration with a 1 s offset as described in Fig. 1
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presents a key challenge for quantifying cardiac function in rodents. Currently, the ma-

jority of the small animal PET scanners rely on a fixed ring geometry which yields a

spatial resolution at CFOV of 1.3–1.7 mm FWHM and an overall system sensitivity of

3–5 % [7, 12–14]. Taking advantage of this fixed geometry, Kreissl et al. [11] acquired

cardiac PET data in listmode and reconstructed these into short frame durations (0.3 s/

frame), thereby permitting quantification of the first pass of the radiotracer through the

heart. An important consideration of fixed ring geometry systems is that they cannot

achieve the inherent spatial resolution of the PET detectors when employing traditional

FBP algorithms due to limited spatial sampling constraints. Advancement in scanner

design which employ a slip-ring geometry along with spatial encoding of events as the

gantry rotates, resulting in resolution and sensitivity at CFOV of <1 mm and >7 % [15],

respectively. These advances provide substantial benefit for small animal cardiac PET

imaging; however, the use of high temporal resolution PET techniques as previously de-

scribed [11] (i.e., 0.3 s/frame) will sacrifice the spatial resolution gain achieved through

the rotating gantry design. Therefore, the current study builds upon the prior advance-

ments in instrumentation and reconstruction [11] approaches and develops a novel

view-sharing sinogram binning scheme that provides high temporal sampling of images

for rotating gantry PET systems and while maintaining the spatial resolution advantages

of a rotating gantry design.

This novel sinogram binning approach when used with listmode acquisitions provides

high temporal resolution by overlapping the image frames, where the image projection

content is a fixed proportion from prior and newly acquired projection data (Fig. 1b).

Although this overlapping scheme permits high temporal resolution while maintaining

high spatial resolution, the resulting image frames can be described as the convolution

of the image series with a boxcar function specified by the overlap length. This result-

ing tissue VOIs curves are fit with a tracer kinetic model (Eqs. 1, 2, 3, 4, and 6) using

Fig. 4 Comparison of flow meter and tracer kinetically modeled a stroke volume and b cardiac output at
baseline and postxylazine infusion at 13.8 mg/kg min [19]. The equation in each chart represents the linear
relationship between the measures, while the measure of fit is provided by the Pearson product-moment
correlation coefficient (R). In all cases, unique colors represent individual animals at baseline (open symbols)
and post xylazine (filled symbols) treatment

Table 1 Tracer kinetic modeling statistics prior to and post xylazine. Data are presented as mean
± SEM

Group K1 (ml/g.min) SEM k2 (1/min) SEM n

Baseline 3.67 1.16 0.975 0.597 4

Xylazine 6.45 2.84 1.431 0.576 4
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integration limits [t1(i), t2(i)] that are consistent with the data binning process. To test

this reconstruction and analysis approach, we developed an animal model that enabled

PET-based cardiac function estimates to be validated against a transonic flow meter.

Estimates of SV and CO prior to and postxylazine infusion could be reliably estimated

using the view-sharing PET methodology, as demonstrated by the strong correlation

with the TFP measurements (Table 1). Our results were consistent with prior literature

reports using the direct Fick method [1], thermal/indicator dilution [3, 4], and TFM [2]

measures.

These data show for the first time that high temporal sampling of PET images, view-

sharing sinogram binning scheme, and tracer kinetic analysis of PET series are feasible

for monitoring dynamic cardiac functional changes in a rotating gantry PET scanner.

Moreover, we demonstrated that over a broad range in SV and CO changes, the current

method provides a rapid assessment of the heart function not previously possible with

rotating gantry PET scanners. When coupled to a scanner with high sensitivity and

spatial resolution [15], this approach provides a key opportunity to leverage the system

features along with high temporal resolution imaging for assessment of cardiovascular

function in small animals.
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