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Measurement of charged current deep inelastic scattering cross
sections with a longitudinally polarised electron beam at HERA

The ZEUS Collaboration
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Abstract Measurements of the cross sections for charged

current deep inelastic scattering in e−p collisions with

longitudinally polarised electron beams are presented. The

measurements are based on a data sample with an integrated

luminosity of 175 pb−1 collected with the ZEUS detector

at HERA at a centre-of-mass energy of 318 GeV. The total

cross section is given for positively and negatively polarised

electron beams. The differential cross-sections dσ/dQ2,

dσ/dx and dσ/dy are presented for Q2 > 200 GeV2.

The double-differential cross-section d2σ/dxdQ2 is pre-

sented in the kinematic range 280 < Q2 < 30 000 GeV2 and
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0.015 < x < 0.65. The measured cross sections are com-
pared with the predictions of the Standard Model.

1 Introduction

Deep inelastic scattering (DIS) of leptons off nucleons has
proved to be a key process in the understanding of the
structure of the proton and testing of the Standard Model
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(SM). Neutral current (NC) DIS is mediated by photons and
Z bosons and is sensitive to all quark flavours. However,
at leading order only up-type quarks and down-type anti-
quarks contribute to e−p charged current (CC) DIS. Thus
this process is a powerful probe of flavour-specific parton
distribution functions (PDFs). Due to the chiral nature of
the weak interaction, the SM predicts a linear dependence
of the CC cross section on the degree of longitudinal polari-
sation of the electron beam. The cross section is expected to
be zero for a right-handed electron beam.

The HERA ep collider allowed the exploration of CC
DIS [1–12] up to much higher Q2 than previously possi-
ble in fixed-target experiments [13–16]. This paper presents
measurements of the cross sections for e−p CC DIS with
longitudinally polarised electron beams. The measured cross
sections are compared to SM predictions and previous
ZEUS measurements of e+p CC DIS with longitudinally
polarised positron beams [17]. Similar results in e+p CC
DIS have been published by the H1 Collaboration [18].

2 Kinematic variables and cross sections

Deep inelastic lepton-proton scattering can be described in
terms of the kinematic variables x, y and Q2. The variable
Q2 is defined as Q2 = −q2 = −(k − k′)2 where k and k′ are
the four-momenta of the incoming and scattered lepton, re-
spectively. Bjorken x is defined by x = Q2/2P · q where P

is the four-momentum of the incoming proton. The variable
y is defined by y = P ·q/P ·k. The variables x, y and Q2 are
related by Q2 = sxy, where s = 4EeEp is the square of the
lepton-proton centre-of-mass energy (neglecting the masses
of the incoming particles) and Ee and Ep are the energies of
the incoming electron and proton, respectively.

The longitudinal polarisation of the electron beam, Pe , is
defined as

Pe =
NR − NL

NR + NL

,

where NR and NL are the numbers of right- and left-handed
electrons in the beam. The electroweak Born-level cross sec-
tion for the CC reaction, e−p → νeX, with longitudinally
polarised electron beams, can be expressed as [19]

d2σ CC(e−p)

dxdQ2
= (1 − Pe)

G2
F

4πx

(

M2
W

M2
W + Q2

)2

×
[

Y+F CC
2 (x,Q2) + Y−xF CC

3 (x,Q2)

− y2FL(x,Q2)

]

,

where GF is the Fermi constant, MW is the mass of the W

boson and Y± = 1 ± (1 − y)2. The longitudinal structure

function gives a negligible contribution to the cross section,
except at values of y close to 1. Within the framework of the
quark-parton model, the structure functions F CC

2 and xF CC
3

for e−p collisions can be written in terms of sums and dif-
ferences of quark and anti-quark PDFs as follows:

F CC
2 = x

[

u(x,Q2) + c(x,Q2) + d̄(x,Q2) + s̄(x,Q2)
]

,

xF CC
3 = x

[

u(x,Q2) + c(x,Q2) − d̄(x,Q2) − s̄(x,Q2)
]

,

where, for example, the PDF u(x,Q2) gives the number
density of up quarks with momentum-fraction x at a given
Q2. Since the top-quark mass is large and the off-diagonal
elements of the CKM matrix are small [20], the contribution
from third-generation quarks may be ignored [21].

3 Experimental apparatus

A detailed description of the ZEUS detector can be found
elsewhere [22]. A brief outline of the components most rel-
evant for this analysis is given below.

Charged particles were tracked in the central tracking de-
tector (CTD) [23–25], which operated in a magnetic field
of 1.43 T provided by a thin superconducting solenoid. The
CTD consisted of 72 cylindrical drift chamber layers, or-
ganised in nine superlayers covering the polar-angle1 region
15◦ < θ < 164◦. A silicon microvertex detector (MVD) [26]
was installed between the beampipe and the inner radius of
the CTD. The MVD was organised into a barrel with three
cylindrical layers and a forward section with four planar lay-
ers perpendicular to the HERA beam direction. Charged-
particle tracks were reconstructed using information from
the CTD and MVD.

The high-resolution uranium–scintillator calorimeter
(CAL) [27–30] consisted of three parts: the forward (FCAL),
the barrel (BCAL) and the rear (RCAL) calorimeter, cov-
ering 99.7% of the solid angle around the nominal inter-
action point. Each part was subdivided transversely into
towers and longitudinally into one electromagnetic sec-
tion (EMC) and either one (in RCAL) or two (in BCAL
and FCAL) hadronic sections (HAC). The smallest sub-
division of the calorimeter was called a cell. The CAL
relative energy resolutions, as measured under test-beam
conditions, were σ(E)/E = 0.18/

√
E for electrons and

σ(E)/E = 0.35/
√

E for hadrons, with E in GeV. The tim-
ing resolution of the CAL was better than 1 ns for energy
deposits exceeding 4.5 GeV.

1The ZEUS coordinate system is a right-handed Cartesian system, with
the Z axis pointing in the proton beam direction, referred to as the
“forward direction”, and the X axis pointing left towards the centre of
HERA. The polar angle, θ , is measured with respect to the proton beam
direction. The coordinate origin is at the nominal interaction point.
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An iron structure that surrounded the CAL was instru-
mented as a backing calorimeter (BAC) [31] to measure
energy leakage from the CAL. Muon chambers in the for-
ward, barrel and rear [32] regions were used in this analysis
to veto background events induced by cosmic-ray or beam-
halo muons.

The luminosity was measured using the Bethe-Heitler re-
action ep → eγp with the luminosity detector which con-
sisted of two independent systems, a photon calorimeter and
a magnetic spectrometer.

The lepton beam in HERA became naturally trans-
versely polarised through the Sokolov-Ternov effect [33,
34]. The characteristic build-up time for the HERA acceler-
ator was approximately 40 minutes. Spin rotators on either
side of the ZEUS detector changed the transverse polari-
sation of the beam into longitudinal polarisation and back
again. The electron beam polarisation was measured using
two independent polarimeters, the transverse polarimeter
(TPOL) [35] and the longitudinal polarimeter (LPOL) [36].
Both devices exploited the spin-dependent cross section for
Compton scattering of circularly polarised photons off elec-
trons to measure the beam polarisation. The luminosity and
polarisation measurements were made over times that were
much shorter than the polarisation build-up time.

The measurements are based on data samples collected
with the ZEUS detector from 2004 to 2006 when HERA
collided protons of energy 920 GeV with electrons of energy

Fig. 1 The integrated luminosity collected as a function of the longi-
tudinal polarisation of the electron beam

27.5 GeV, yielding collisions at a centre-of-mass energy of
318 GeV. The integrated luminosities of the data samples
were 104 pb−1 and 71 pb−1 at mean luminosity weighted
polarisations of −0.27 and +0.30, respectively. Figure 1
shows the luminosity collected as a function of the longi-
tudinal polarisation of the electron beam.

4 Monte Carlo simulation

Monte Carlo (MC) simulations were used to determine the
efficiency for selecting events and the accuracy of kinematic
reconstruction, to estimate the background rates from ep

processes other than CC DIS and to extract cross sections for
the full kinematic region. A sufficient number of events was
generated to ensure that the statistical uncertainties arising
from the MC simulation were negligible compared to those
of the data. The MC samples were normalised to the total
integrated luminosity of the data.

Charged current DIS events, including electroweak radia-
tive effects, were simulated using the HERACLES 4.6.3 [37,
38] program with the DJANGOH 1.3 [39] interface to the MC
generators that provide the hadronisation. Initial-state radi-
ation, vertex and propagator corrections and two-boson ex-
change are included in HERACLES. The parameters of the
SM were set to the PDG [20] values. The events were gen-
erated using the CTEQ5D [40] PDFs. The colour-dipole
model of ARIADNE 4.10 [41] was used to simulate O(αS)

plus leading-logarithmic corrections to the result of the
quark-parton model. This program uses the Lund string
model of JETSET 7.4 [42–44] for the hadronisation. A set
of NC DIS events generated with DJANGOH was used to es-
timate the NC contamination in the CC sample. Photopro-
duction background was estimated using events simulated
with HERWIG 5.9 [45]. The background from W produc-
tion was estimated using the EPVEC 1.0 [46] generator, and
the background from production of charged-lepton pairs was
generated with the GRAPE 1.1 [47] program.

The vertex distribution in data is a crucial input to the MC
simulation for the correct evaluation of the event-selection
efficiency. Therefore, the Z-vertex distribution used in the
MC simulation was determined from a sample of NC DIS
events in which the event-selection efficiency was indepen-
dent of Z.

The ZEUS detector response was simulated with a pro-
gram based on GEANT 3.21 [48]. The simulated events were
subjected to the same trigger requirements as the data, and
processed by the same reconstruction programs.

5 Reconstruction of kinematic variables

The principal signature of CC DIS at HERA is large miss-
ing transverse momentum, PT ,miss, arising from the ener-
getic final-state neutrino which escapes detection. PT ,miss is
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related to the total hadronic momentum, PT , by P 2
T ,miss =

(−−→
P T )2, where

(
−→
P T )2 =

(

∑

i

Ei sin θi cosφi

)2

+
(

∑

i

Ei sin θi sinφi

)2

.

The sums run over all CAL energy deposits, Ei and θi and φi

are the polar and azimuthal angles. The calorimeter energy
deposits are clustered cell energies corrected for energy loss
in inactive material and reconstruction deficiencies [49]. The
polar angle of the hadronic system, γh, is defined by

cosγh = ((
−→
P T )2 − δ2)/((

−→
P T )2 + δ2),

where δ =
∑

i Ei(1 − cos θi) =
∑

i(E − PZ)i . In the naive
quark-parton model, γh is the angle of the scattered quark.
Finally, the total transverse energy, ET , is given by ET =
∑

i Ei sin θi .
The ratio of the parallel, VP , and anti-parallel, VAP , com-

ponents of the hadronic transverse momentum can be used
to distinguish CC DIS from photoproduction events. These
variables are defined as

VP =
∑

i

−→
P T ,i · −→n PT

for
−→
P T ,i · −→n PT

> 0,

VAP = −
∑

i

−→
P T ,i · −→n PT

for
−→
P T ,i · −→n PT

< 0,

where the sums are performed over all calorimeter cells and
−→n PT

= −→
P T /PT .

The kinematic variables were reconstructed using the
Jacquet-Blondel method [50]. The estimators of y, Q2 and
x are: yJB = δ/(2Ee), Q2

JB = P 2
T /(1 − yJB), and xJB =

Q2
JB/(syJB).
The resolution in Q2 is about 20%. The resolution in x

improves from about 20% at x = 0.01 to about 5% at x =
0.5. The resolution in y ranges from about 14% at y = 0.05
to about 8% at y = 0.83.

6 Event selection

Charged current DIS candidates were selected by requiring
a large PT ,miss. The main sources of background came from
NC DIS and high-ET photoproduction in which the finite
energy resolution of the CAL or energy that escapes de-
tection can lead to significant measured missing transverse
momentum. Non-ep events such as beam-gas interactions,
beam-halo muons or cosmic rays can also cause substantial
imbalance in the measured transverse momentum and con-
stitute additional sources of background. The selection cri-
teria described below were imposed to separate CC events
from all backgrounds.

6.1 Trigger selection

ZEUS had a three-level trigger system [22, 51, 52]. At the
first level, only coarse calorimeter and tracking information
was available. Events were selected using criteria based on
the energy, transverse energy and missing transverse mo-
mentum measured in the calorimeter. Generally, events were
triggered with low thresholds on these quantities if a coin-
cidence with CTD tracks from the event vertex occurred,
while higher thresholds were required for events with no
CTD tracks.

At the second level, timing information from the calorime-
ter was used to reject events inconsistent with the bunch-
crossing time. In addition, the topology of the CAL energy
deposits was used to reject background events. In particular,
a tighter cut was made on missing transverse momentum,
since the resolution in this variable was better at the second
level than at the first level.

At the third level, full track reconstruction and vertex
finding were performed and used to reject candidate events
with a vertex inconsistent with an ep interaction. Cuts were
applied to calorimeter quantities and reconstructed tracks to
further reduce beam-gas contamination.

6.2 Offline selection

When γh is large, charged-particle tracks can be used to
reconstruct the event vertex, strongly suppressing non-ep
backgrounds. For CC events with small γh, the charged par-
ticles of the hadronic final state are often outside the ac-
ceptance of the tracking detectors. Such events populate
the high-x region of the kinematic plane. The events were
classified according to γ0, the value of γh measured with
respect to the nominal interaction point. For events with
large γ0 the kinematic quantities were recalculated using
the Z-coordinate of the event vertex (Zvtx) determined from
charged-particle tracks.

In events with γ0 > 0.4 rad a reconstructed vertex was re-
quired. Additional requirements for event selection are given
below.

• selection of CC events:
– |Zvtx| < 50 cm;
– PT ,miss > 12 GeV;

• rejection of beam-gas events:
– P ′

T ,miss > 10 GeV and P ′′
T ,miss > 8 GeV where P ′

T ,miss
is the missing transverse momentum calculated exclud-
ing the ring of FCAL towers closest to the beam pipe
and P ′′

T ,miss is the corresponding quantity calculated
excluding the two rings of FCAL towers closest to
the beam pipe. These requirements strongly suppress
beam-gas events while maintaining high efficiency for
CC events;
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Fig. 2 Comparison of the e−p

CC data sample with the
expectations of the MC
simulation as described in
Sect. 4 of the text. The
distributions of (a) PT ,miss,
(b) Q2

JB, (c) xJB, (d) yJB,
(e) VAP/VP and (f) Zvtx are
shown

– tracks associated with the event vertex with transverse
momentum in excess of 0.2 GeV and a polar angle in
the range 15◦ to 164◦ were defined as “good” tracks.
In order to remove beam-gas background, at least one
such track was required and a cut was also applied in
two dimensions on the number of good tracks versus
the total number of tracks. This cut was NGoodTrks >

0.3(̇NTrks − 20);
• rejection of photoproduction:

– VAP /VP < 0.4 was required for events with PT ,miss <

30 GeV. For events with PT ,miss < 20 GeV this cut
was tightened to VAP /VP < 0.23. This selected events
with a collimated energy flow, as expected from a sin-
gle scattered quark;

– for charged current events, there is a correlation be-
tween the direction of the PT ,miss vector calculated us-

ing tracks and that obtained using the CAL. The dif-
ference between these quantities was required to be
less than 0.5 radians for PT ,miss < 45 GeV. As less
background is expected for high PT ,miss this require-
ment was loosened to less than 1.0 radian for PT ,miss ≥
45 GeV;

• rejection of NC DIS: NC DIS events in which the energies
of the scattered electron or the jet are poorly measured can
have a considerable apparent missing transverse momen-
tum. To identify such events, a search for candidate elec-
trons was made using isolated electromagnetic clusters
in the CAL [53, 54] for events with PT ,miss < 30 GeV.
Candidate electron clusters within the tracking accep-
tance were required to have an energy above 4 GeV and
a matching track. Clusters with θ > 164◦ were required
to have a transverse momentum exceeding 2 GeV. Events
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with a candidate electron satisfying the above criteria and
δ > 30 GeV were rejected, since for fully contained NC
events, δ peaks at 2Ee = 55 GeV;

• rejection of non-ep background: muon-finding algorithms
based on CAL energy deposits or muon-chamber signals
were used to reject events produced by cosmic rays or
muons in the beam halo.

In events with γ0 < 0.4 rad some requirements were
tightened to compensate for the relaxation of the track re-
quirements. Additional requirements for event selection are
given below.

• missing transverse momentum: events were required to
satisfy PT ,miss > 14 GeV and P ′

T ,miss > 12 GeV;
• rejection of non-ep background: A class of background

events arose from beam-halo muons that produced a
shower inside the FCAL. To reduce this background, in
addition to the muon-rejection cuts described above, topo-
logical cuts on the transverse and longitudinal shower
shape were imposed. These cuts rejected events in which
the energy deposits were more collimated than for typical
hadronic jets.

The kinematic region was restricted to Q2
JB > 200 GeV2

and yJB < 0.9 to ensure good resolution.
A total of 7198 events satisfied these criteria. A back-

ground contamination from ep processes of 0.5%, domi-
nated by the photoproduction component, is predicted. Fig-
ure 2 compares the distributions of data events entering the
final CC sample with the MC expectation for the sum of the
CC signal and ep background events. The MC simulations
give a reasonable description of the data.

7 Cross-section determination

and systematic uncertainties

The measured cross section in a particular kinematic bin, for
example for d2σ/dxdQ2, was determined from

d2σ

dxdQ2
=

Ndata − Nbg

NMC
·
d2σ SM

Born

dxdQ2
,

where Ndata is the number of data events, Nbg is the num-
ber of background events estimated from the MC simula-
tion and NMC is the number of signal MC events. The cross-

section
d2σSM

Born
dxdQ2 is the Standard Model prediction evaluated in

the on-shell scheme [55] using the PDG values for the elec-
troweak parameters and the CTEQ5D PDFs [40]. A similar
procedure was used for dσ/dQ2, dσ/dx and dσ/dy. Con-
sequently, the acceptance, as well as the bin-centring and ra-
diative corrections were all taken from the MC simulation.
The cross-sections dσ/dQ2 and dσ/dx were extrapolated

to the full y range using the SM predictions calculated with
the CTEQ5D PDFs.

The systematic uncertainties in the measured cross sec-
tions were determined by changing the analysis procedure
in turn and repeating the extraction of the cross sections.

• calorimeter energy scale: the relative uncertainty of the
hadronic energy scale was 2%. Varying the energy scale
of the calorimeter by this amount in the detector simu-
lation induces small shifts of the Jacquet-Blondel estima-
tors of the kinematic variables. The variation of the energy
scale for each of the calorimeters simultaneously up or
down by this amount gave the systematic uncertainty on
the total measured energy in the calorimeter. The result-
ing systematic shifts in the measured cross sections were
typically within ±5%, but increased to ±(20–30)% in the
highest Q2 and x bins of the single-differential cross sec-
tions and reached ±45% in the double-differential cross
section;

• reconstruction: an alternative analysis [56] was performed
using jets to reconstruct the kinematic quantities and re-
ject background. The difference between the nominal and
jet analyses was taken as an estimate of the systematic un-
certainity on the reconstruction and background rejection.
The difference was found to be typically within ±10%,
but increased up to ±(20–25)% in the highest Q2 and x

bins of the cross sections;
• background subtraction: the uncertainty in the small con-

tribution from photoproduction was estimated by varying
the normalisation by ±60%, resulting [57, 58] in modifi-
cations of the cross sections within ±2%;

• selection criteria: in order to estimate the bias introduced
into the measurements from an imperfect description of
the data by the MC simulation, the efficiencies for each of
the selection criteria were measured using the hadronic fi-
nal state in NC DIS data. Using the measured efficiencies
to extract the cross sections instead of the CC MC gave
changes in the cross sections that were typically within
±2%, except for the two-dimensional tracking cut which
gave an effect of 10% at high Q2;

• the uncertainties associated with the trigger, choice of
PDFs in the MC and the measurement of the vertex po-
sitions were negligible.

The individual uncertainties were added in quadrature sepa-
rately for the positive and negative deviations from the nom-
inal cross-section values to obtain the total systematic uncer-
tainties. The O(α) electroweak corrections to CC DIS have
been discussed by several authors [59, 60]. Various theoret-
ical approximations and computer codes gave differences in
the CC cross sections of typically ±(1–2)% or less. How-
ever, the differences can be as large as ±(3–8)% at high x

and high y. No uncertainty was included in the measured
cross sections from this source.
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The relative uncertainty in the measured polarisation was
3.6% using the LPOL and 4.2% using the TPOL. The choice
of polarimeter measurement was made on a run-by-run ba-
sis. The LPOL measurement was used when available, oth-
erwise the TPOL measurement was used. The uncertainty of
2.6% on the measured total luminosity was not included in
the differential cross-section figures or the tables.

8 Results

The total cross section, corrected to the Born level of the
electroweak interaction, for e−p CC DIS in the kinematic
region Q2 > 200 GeV2 was measured to be

σ CC(Pe = +0.30 ± 0.01) = 47.1 ± 1.1 (stat.)

± 2.2 (syst.) pb,

σ CC(Pe = −0.27 ± 0.01) = 83.1 ± 1.2 (stat.)

± 3.3 (syst.) pb.

The uncertainty in the measured luminosity is included in
the systematic uncertainty. The total cross section is shown
as a function of the longitudinal polarisation of the lep-
ton beam in Fig. 3, including previous ZEUS measure-

Fig. 3 The total cross sections for e−p and e+p CC DIS as a function
of the longitudinal polarisation of the lepton beam. The lines show the
predictions of the SM evaluated using the ZEUS-JETS, CTEQ6D and
MRST04 PDFs. The shaded bands show the experimental uncertainty
from the ZEUS-JETS fit

ments from both e−p and e+p data [11, 12, 17]. Fig-
ure 4 shows only the e−p data, with a finer binning to em-
phasise the dependence on the lepton beam polarisation.2

The data are compared to the SM predictions evaluated at
next-to-leading-order in QCD using the ZEUS-JETS [61],
CTEQ6D [62] and MRST04 [63] PDFs which describe the
data well.

The single-differential cross-sections dσ/dQ2, dσ/dx

and dσ/dy for CC DIS are shown in Figs. 5, 6 and 7.
The measurements for positive and negative longitudinal po-
larisation differ by a constant factor which is independent
of the kinematic variables. The effects are well described
by the SM evaluated using the ZEUS-JETS, CTEQ6D and
MRST04 PDFs. The precision of the data is comparable to
the uncertainties in the SM predictions, therefore these data
have the potential to further constrain the PDFs.

The reduced double-differential cross section, σ̃ , is de-
fined as

σ̃ =
[

G2
F

2πx

(

M2
W

M2
W + Q2

)2]−1
d2σ

dx dQ2
.

Fig. 4 The total cross sections for e−p CC DIS as a function of the
longitudinal polarisation of the electron beam. The lines show the pre-
dictions of the SM evaluated using the ZEUS-JETS, CTEQ6D and
MRST04 PDFs. The shaded band shows the experimental uncertainty
from the ZEUS-JETS fit

2All measured cross-section values are given in the DESY preprint.
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Fig. 5 (a) The e−p CC DIS
cross-section dσ/dQ2 for data
and the Standard Model
expectation evaluated using the
ZEUS-JETS PDFs. The positive
(negative) polarisation data are
shown as the filled (open)
points, the statistical
uncertainties are indicated by
the inner error bars (delimited
by horizontal lines) and the full
error bars show the total
uncertainty obtained by adding
the statistical and systematic
contributions in quadrature.
(b) The ratio of the measured
cross section, dσ/dQ2, to the
Standard Model expectation
evaluated using the ZEUS-JETS
fit. The shaded band shows the
experimental uncertainty from
the ZEUS-JETS fit

Fig. 6 (a) The e−p CC DIS
cross-section dσ/dx for data
and the Standard Model
expectation evaluated using the
ZEUS-JETS PDFs. The positive
(negative) polarisation data are
shown as the filled (open)
points, the statistical
uncertainties are indicated by
the inner error bars (delimited
by horizontal lines) and the full
error bars show the total
uncertainty obtained by adding
the statistical and systematic
contributions in quadrature.
(b) The ratio of the measured
cross section, dσ/dx, to the
Standard Model expectation
evaluated using the ZEUS-JETS
fit. The shaded band shows the
experimental uncertainty from
the ZEUS-JETS fit
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Fig. 7 (a) The e−p CC DIS
cross-section dσ/dy for data
and the Standard Model
expectation evaluated using the
ZEUS-JETS PDFs. The positive
(negative) polarisation data are
shown as the filled (open)
points, the statistical
uncertainties are indicated by
the inner error bars (delimited
by horizontal lines) and the full
error bars show the total
uncertainty obtained by adding
the statistical and systematic
contributions in quadrature.
(b) The ratio of the measured
cross section, dσ/dy, to the
Standard Model expectation
evaluated using the ZEUS-JETS
fit. The shaded band shows the
experimental uncertainty from
the ZEUS-JETS fit

Fig. 8 The e−p CC DIS
reduced cross section plotted as
a function of x for fixed Q2.
The circles represent the data
points and the curves show the
predictions of the SM evaluated
using the ZEUS-JETS,
CTEQ6D and MRST04 PDFs.
The dashed and dotted lines

show the contributions of the
PDF combinations x(u + c) and
(1 − y)2x(d̄ + s̄), respectively
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Fig. 9 The e−p CC DIS
reduced cross section plotted as
a function of (1 − y)2 for
fixed x. The circles represent
the data points and the curves

show the predictions of the SM
evaluated using the
ZEUS-JETS, CTEQ6D and
MRST04 PDFs. The dashed

lines show the contributions of
the PDF combination x(u + c)

and the shaded band shows the
experimental uncertainty from
the ZEUS-JETS fit

At leading order in QCD, σ̃ (e−p → νeX) depends on the
quark momentum distributions as follows:

σ̃ (e−p → νeX) = x
[

u + c + (1 − y)2(d̄ + s̄)
]

.

The reduced cross section was measured in the kinematic
range 280 < Q2 < 30 000 GeV2 and 0.015 < x < 0.65 and
is shown as a function of x, at fixed values of Q2 in Fig. 8.
The data points were corrected to Pe = 0 using the SM
prediction. The predictions of the SM evaluated using the
ZEUS-JETS, CTEQ6D and MRST04 PDFs give a good de-
scription of the data. The contributions from the PDF com-
binations (u + c) and (d̄ + s̄), obtained in the MS scheme
from the ZEUS-JETS fit, are shown separately.

The W boson couples only to left-handed fermions and
right-handed anti-fermions. Therefore, the angular distribu-
tion of the scattered quark in e−q CC DIS will be flat in the
electron-quark centre-of-mass scattering angle, θ∗, while it
will exhibit a (1 + cos θ∗)2 distribution in e−q̄ scattering.
Since (1 − y)2 ∝ (1 + cos θ∗)2, the helicity structure of
CC interactions can be illustrated by plotting the reduced
double-differential cross section versus (1 − y)2 in bins of
x. This is shown in Fig. 9. In the region of approximate scal-
ing, i.e. x ∼ 0.1, this yields a straight line. At leading order

in QCD, the intercept of this line gives the (u + c) contribu-
tion, while the slope gives the (d̄ + s̄) contribution.

9 Summary

The cross sections for charged current deep inelastic scatter-
ing in e−p collisions with longitudinally polarised electron
beams have been measured. The measurements are based
on a data sample with an integrated luminosity of 175 pb−1

collected with the ZEUS detector at HERA at a centre-of-
mass energy of 318 GeV. The total cross section is given
for positive and negative values of the longitudinal polarisa-
tion of the electron beam. In addition, the differential cross-
sections dσ/dQ2, dσ/dx and dσ/dy for Q2 > 200 GeV2

and d2σ/dxdQ2 are presented in the kinematic range 280 <

Q2 < 30 000 GeV2 and 0.015 < x < 0.65. Overall the mea-
sured cross sections are well described by the predictions of
the Standard Model.
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