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Abstract

Measurement results of continuous quantities are always more or less imprecise. This
imprecision is different from errors. The most suitable mathematical model to describe
imprecision is by special fuzzy subsets of the set of real numbers IR, called characterizing
functions. The statistical analysis of fuzzy measurement data is subject of this paper.
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1. Introduction
Usually the analysis of measurement uncertainty is done by stochastic models and statistical
methods. This is also realized in norms like DIN EN ISO 20988, VDI 4219(E), and GUM
EVN (1999).
More recent methods for the analysis of measurement results of continuous quantities are
using a combination of fuzzy models and stochastic models. The fuzziness of individual mea-
surement results is described by so-called fuzzy numbers, and the variability by stochastic
models. Based on that the analysis of repeated measurements is possible by suitably gener-
alized statistical methods.

2. Measurement uncertainty
Measurement results of continuous quantities are connected with unavoidable uncertainties.
The best one can do is to try keeping the uncertainty as small as possible, and to make
reasonable (reliable) assessments (estimates) for the considered quantities.
The most important measurement uncertainties are errors and the fuzziness of individual
measurement results. Errors are devided into systematic errors and random errors.
Usually measurement results of one-dimensional quantities are described by real numbers xi.
Moreover it is assumed that the measurement result xi is the sum of the so-called true value
x, a systematic error y, and a random error εi, i.e.

xi = x+ y + εi with xi ∈ IR.
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For multiple measurements εi is assumed to be the realisation of a one-dimensional stochastic
quantity with expectation 0.
The distribution of the stochastic quantity ε̃, which is modelling the random error, can be
estimated from repeated measurements of the observed quantity.
The analysis of the systematic error is more complicated and needs a deep scientific analysis
of the measurement procedure.
The above assumption that measurement results are real numbers is not realistic because
a real number is determined by all its infinitely many decimals which never can be known
(except in trivial cases). Therefore it turns out that measurement results are better described
by so-called fuzzy numbers.

3. Mathematical description of fuzziness
What is the result of an individual measurement of an one-dimensional continuous quantity
like length, time, concentration etc.? For digital measurement equipments the measurement
result x of an individual measurement is a decimal number with finitely many digits. Con-
cerning the missing infinitely many decimals almost nothing is known. Therefore all possible
digits from 1 to 9 are possible for the remaining decimals. In this case the measurement result
is an interval [x;x], where x is the real number which is generated if all unknown decimals of
x are assumed to be 0. The real number x is generated when all unknown decimals of x are
set to be 9.
Therefore the measurement result is an interval, i.e. a subset of the set of real numbers IR.
The analysis of multiple measurements of the same quantity is than a problem of interval
analysis.
The situation is more general in case of using an analog measurement equipment like mea-
surement rods, pointers, and imaging systems like oscilloscopes. In this case individual mea-
surement results are pictures, light points, functions or colour intensity pictures. In order to
describe mathematically this kind of measurement results so-called fuzzy numbers x?are used.
These are special fuzzy subsets of the set IR.
Coming back to the measurement result [x;x] in case of a digital measurement equipment,
this interval can be characterized logically equivalent by its indicator function I[x;x](·). The
indicator function is defined by its values

I[x;x](x) :=
{

1 for x ≤ x ≤ x
0 otherwise

}
∀ x ∈ IR.

Indicator functions can be identified with subsets of general sets M .
In reality the boundaries of subsets can be difficult. Therefore in 1951 K. Menger Menger
(2003) published a generalization of indicator functions describing generalized sets called en-
sembles flous. These generalized indicator functions where later called membership functions
ζ(·), which can assume all values from the unit interval [0; 1], i.e. ζ : M → [0; 1]. These
generalized sets where called fuzzy sets in a paper by L. Zadeh in 1965. Taking care of a
continuum of truth values mathematical methods connected with fuzzy sets are called fuzzy
logic.
If A? is a fuzzy subset of an arbitrary set M , having membership function ζ(·), for elements
x ∈M the value ζ(x) is called degree of membership of x in A?.
For the description of measurement results of one-dimensional quantities by analog measure-
ment equipments special fuzzy subsets of IR, so-called fuzzy numbers are most suitable. The
correspondig membership function ζ(·) must meet the following conditions:

(1) supp [ζ(·)] = {x ∈ IR : ζ(x) > 0} is a bounded subset of IR
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(2) ∀δ ∈ (0; 1] the so-called δ-cut Cδ [ζ(·)] := {x ∈ IR : ζ(x) ≥ δ} must be non-empty and a
finite union of compact intervals, i.e.

Cδ [ζ(·)] =
kδ⋃
j=1

[aδ,j ; bδ,j ] .

Membership functions obeying (1) und (2) are called characterizing functions.
Characterizing functions of fuzzy numbers will be denoted by ξ(·) in the following.
In figure 1 some characterizing functions are depicted.

Figure 1: Examples of characterizing functions

4. Analysis of fuzzy measurement results
Based on the description of measurement results in section 3 a measurement result is a fuzzy
number x?i , whose characterizing function ξi(·) in case of a colour intensity picture is a function
of the colour intensity h(x), x ∈ IR and its derivative h′(·). The values of the characterizing
function are obtained in the following way:

ξi(x) = |h′(x)|
sup { |h′(x)| : x ∈ IR} ∀ x ∈ IR

Considering errors we have x?i = x+ y + εi, which means, that at least one of the quantities
x, y, and εi is fuzzy. The systematic error is assumed to be a real number, therefore one of
the quantities x and εi must be fuzzy. Based on the standard statistical analysis εi is the
realization of a one-dimensional stochastic quantity. Therefore x must be fuzzy, which means
the so-called true value is a fuzzy number x?. It should be noted that the systematic error y
can practically only be determined as fuzzy number.
Assuming a measurement procedure has no systematic error, i.e.

x?i = x? + εi, i = 1(1)n,
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the determination, i.e. estimation of x? based on fuzzy data x?1, · · · , x?n is possible.
In generalization of the classical mean value the mean value (which has to be defined) of the
fuzzy observations has to be calculated:

x?n = 1
n

(x?1 ⊕ · · · ⊕ x?n).

The generalized addition operation ⊕ of fuzzy numbers is based on the so-called extension
principle from the theory of fuzzy sets. x?n is a fuzzy number whose characterizing function
ψ(·) can be calculated from the characterizing functions ξ1(·), · · · , ξn(·) of the fuzzy numbers
x?1, · · · , x?n. The fuzzy number x?n is the best information which can be obtained concerning
the true value x?, based on the fuzzy sample x?1, · · · , x?n.
In case of continuous quantities the unavoidable fuzziness of measurements x?i appears in the
estimation of x?.

5. Calculation of the characterizing function of the fuzzy sample mean
In order to determine the characterizing function ψ(·) of x?n it is necessary to combine the
fuzzy numbers x?1, · · · , x?n, having characterizing functions ξ1(·), · · · , ξn(·), into a so-called
fuzzy vector x? of the n-dimensional Euclidean space IRn, in order to apply the so-called
extension principle of the theory of fuzzy sets. This combination is done by the so-called
minimum-t-norm (compare Viertl and Hareter (2006)) in the following way.
A fuzzy vector x? is defined by its so-called vector-characterizing function ζ(·, · · · , ·), which
has to obey the following:

(1) ζ : IRn −→ [0; 1]

(2) supp
[
ζ(·, · · · , ·)

]
is a bounded subset of IRn

(3) ∀δ ∈ (0; 1] the δ-cut Cδ[ζ(·, · · · , ·)] := {x ∈ IRn : ζ(x) ≥ δ} has to be a non-empty, closed
and bounded subset of IRn, which is a finite union of simply connected sets.

In order to extend functions g : IRn −→ IR to the situation of fuzzy arguments x? , the
so-called extension principle is used.
Let M and N be arbitrary sets and g : M → N an arbitrary function. The function g(·) can
be extended to fuzzy argument values x? of M , where ζ(·) is the membership function of x?.
The value g(x?) is a fuzzy subset of N , whose membership function ψ(·) is defined in the
following way:

ψ(y) :=
{

sup {ζ(x) : x ∈M, g(x) = y if g−1({y}) 6= ∅
0 if g−1({y}) = ∅

}
∀ y ∈ N

In order to apply the extension principle to the function g(x1, · · · , xn) = 1
n

n∑
i=1

xi for fuzzy

numbers x?1, · · · , x?n these fuzzy numbers have to be combined into a n-dimensional fuzzy
vector. This is done by application of the minimum-t-norm, which determines the vector-
characterizing function ζ(·, · · · , ·) in the following way:

ζ(x1, · · · , xn) := min {ξ1(x1), · · · , ξn(xn)} ∀(x1, · · · , xn) ∈ IRn

The reason for using the minimum-t-norm is explained in the following proposition.
Proposition 1: Let n fuzzy numbers x?1, · · · , x?n be combined by the minimum-t-norm, then
the resulting function ζ: IRn → [0; 1] is a vector-characterizing function.
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Proof : Condition (1) is trivially fulfilled.
Condition (2) follows from the fact that all supports of ξi(·) are bounded and the following

holds: supp[ζ(·, · · · , ·)] = n×
i=1

supp[ξi(·)].

Condition (3) follows from the fact that the δ-cuts of ζ(·, · · · , ·) are the Cartesian products of
the δ-cuts of ξi(·).
Based on this combined fuzzy vector the characterizing function of the fuzzy arithmetic mean
of n fuzzy numbers can be determined.
Proposition 2: The arithmetic mean of n fuzzy numbers with corresponding characterizing
functions ξ1(·), · · · , ξn(·) is a fuzzy number, whose characterizing function ψ(·) is given by its
values ψ(x) ∀x ∈ IR in the following way:

ψ(x) = sup
{

min {ξ1(x1), · · · , ξn(xn)} : for 1
n

n∑
i=1

xi = x

}

The δ-cuts Cδ [ψ(·)] for all δ ∈ (0; 1] are finite unions of compact intervals given by

Cδ[ψ(·)] =
⋃

n∑
i=1

xi=x

{
x1 + · · ·+ xn

n
: xi ∈ Cδ [ξi(·)]

}
.

Proof : The δ-cuts of the combined fuzzy vector x? are finite unions of simply connected and
compact subsets of IRn. By the continuity of the function g(x1, · · · , xn) = 1

n

n∑
i=1

xi also the

δ-cuts of g(x? ) from the extension principle are finite unions of compact simply connected
subsets of IR, and therefore finite unions of compact intervals. By that reason the fuzzy mean
value is a fuzzy number. For the δ-cuts of the fuzzy mean value the following holds:

Cδ [ψ(·)] = g
(
Cδ [ξ1(·)] , · · · , Cδ [ξn(·)]

)
=
{

1
n

n∑
i=1

xi : xi ∈ Cδ [ξi(·)] ∀ i = 1(1)n
}

The result of measurements of continuous quantities are fuzzy numbers and the measurement
uncertainty of the calculated value is presented by the characterizing function of the fuzzy
mean value.
Example: Let 5 measurement results be given as fuzzy numbers with characterizing functions
ξ1(·), · · · , ξ5(·) which are depicted in figure 2. Then the characterizing function ψ(·) of the
fuzzy arithmetic mean is determined with the help of δ-cuts.
The characterizing function ψ(·) of the arithmetic mean of the fuzzy observations is depicted
in figure 3.
Remark: The characterizing function ψ(·) is the most realistic information concerning the
measured quantiy. The area under the function ψ(·) is characteristic for the measurement
uncertainty.
It is possible to analyse the dispersion of the fuzzy measurements. In order to do that the
generalized sample spread of the fuzzy measurement results can be calculated. This is the
fuzzy quantity s?n, whose characterizing function can be calculated by application of the
extension principle to the classical sample spread

sn =
[

1
n− 1

n∑
i=1

(xi − xn)2
]1/2

.

For this the extension principle is applied to the function

g(x1, · · · , xn) =
[

1
n− 1

n∑
i=1

(xi − xn)2
]1/2

.
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Figure 2: Fuzzy measurement results

Figure 3: Fuzzy arithmetic mean
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The δ-cuts Cδ [s?n] of the generalized (fuzzy) estimate s?n of the generalized standard deviation
can be obtained by the following equation:

Cδ [s?n]=
[

min
(x1,···,xn)∈Cδ[x?1]×···×Cδ[x?n]

g(x1, · · · , xn); max
(x1,···,xn)∈Cδ[x?1]×···×Cδ[x?n]

g(x1, · · · , xn)
]

The characterizing function ϕ(·) of s?n can be obtained by the so-called characterization lemma
for characterizing functions (compare Viertl (2011)):

ϕ(x) = max
{
δ · 1⊥Cδ[s?n](x) : δ ∈ [0; 1]

}
∀ x ∈ IR.

For the fuzzy sample x?1, · · · , x?5 from figure 2 the characterizing function of the fuzzy estimate
s?n of the generalized standard deviation is depicted in figure 4.

Figure 4: Fuzzy sample standard deviation

Details on the algorithmic realisation of the calculation of s?n are given in Viertl and Hareter
(2006).

6. Summary and Outlook

In the paper the mathematical description of measurement results of one-dimensional con-
tinuous quantities is explained. This is possible by so-called fuzzy numbers. Repeating the
measruement yields a finite sequence of observations in form of fuzzy numbers x?1, · · · , x?n
with corresponding characterizing functions ξ1(·), · · · , ξn(·). The generalization of averaging
the sample is explained, and a generalized fuzzy estimator for the standard deviation of the
quantity is given. For multivariate continuous quantities the measurement results are also
more or less imprecise. The results could be modelled by so-called k-dimensional fuzzy vec-
tors which are special fuzzy subsets of the k-dimensional Euclidean space IRk. The statistical
analysis of multivariate fuzzy data is an interesting topic for future research.
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