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Abstract The TOTEM experiment at the CERN LHC has
measured elastic proton–proton scattering at the centre-of-
mass energy

√
s = 8 TeV and four-momentum transfers
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squared, |t |, from 6 × 10−4 to 0.2 GeV2. Near the lower
end of the t-interval the differential cross-section is sen-
sitive to the interference between the hadronic and the
electromagnetic scattering amplitudes. This article presents
the elastic cross-section measurement and the constraints it
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imposes on the functional forms of the modulus and phase
of the hadronic elastic amplitude. The data exclude the tradi-
tional Simplified West and Yennie interference formula that
requires a constant phase and a purely exponential modu-
lus of the hadronic amplitude. For parametrisations of the
hadronic modulus with second- or third-order polynomials
in the exponent, the data are compatible with hadronic phase
functions giving either central or peripheral behaviour in the
impact parameter picture of elastic scattering. In both cases,
the ρ-parameter is found to be 0.12 ± 0.03. The results for
the total hadronic cross-section are σtot = (102.9 ± 2.3)mb
and (103.0 ± 2.3)mb for central and peripheral phase for-
mulations, respectively. Both are consistent with previous
TOTEM measurements.

1 Introduction

Elastic scattering of protons is a process mediated by the
strong and the electromagnetic interactions – the weak inter-
action is commonly neglected since its carriers are heavy
compared to the small momentum transfers, |t |, typical of
elastic scattering. In this context, the strong interaction is
traditionally called ‘nuclear’ or ‘hadronic’ and the electro-
magnetic one ‘Coulomb’. In quantum-theory description,
each of these interactions is described by a scattering ampli-
tude, nuclear AN(t) and Coulomb AC(t). Moreover, the
combined scattering amplitude receives a third contribution
reflecting Feynman diagrams with both strong and electro-
magnetic exchanges. This term, together with the complex
character of the scattering amplitudes, describes the effects
of Coulomb–nuclear interference (CNI) in the differential
cross-section. Since the Coulomb amplitude is known, mea-
suring the CNI gives access to the phase of the nuclear
amplitude, which is necessary for a complete understand-
ing of the interaction but not directly observable in the
pure hadronic differential cross-section. The CNI effect is
most pronounced in the t-region where the two amplitudes
have similar magnitudes, i.e. – for typical LHC centre-of-
mass energies of a few TeV – near |t | ∼ 5 × 10−4 GeV2.
Thus the experimental sensitivity to the nuclear phase,
argAN(t), is limited to a region at very small |t |, mak-
ing difficult any conclusions on the functional form of the
phase.

In the analyses of past experiments – see e.g. [1–8] (ISR),
[9,10] (Sp̄pS), [11] (Tevatron) – a simplified interference
formula was used. This so-called simplified West–Yennie
(SWY) formula [12] is based on restrictive assumptions on
the hadronic amplitude, implying in particular a purely expo-
nential modulus and a constant phase for all t (see the discus-
sion in Sect. 6.1.4). As a representative quantity, the phase
value at t = 0, or equivalently

ρ ≡ cot argAN(0) =
ℜAN(0)

ℑAN(0)
(1)

was traditionally quoted. An interesting aspect of ρ is its
predictive power in extrapolating the total cross-section to
higher centre-of-mass energies via dispersion relations [13].

The present article discusses the first measurement of
elastic scattering in the CNI region at the CERN LHC by
the TOTEM experiment. The data have been collected at√

s = 8 TeV with a special beam optics (β∗ = 1000 m) and
cover a |t |-interval from 6×10−4 to 0.2 GeV2, extending well
into the interference region. In order to strengthen the statisti-
cal power and thus enable a cleaner identification of the inter-
ference effects, the analysis also exploits another, comple-
mentary data set with higher statistics [14], taken at the same
energy, but with different beam optics (β∗ = 90 m), and thus
covering a different |t |-range: 0.027 < |t | < 0.2 GeV2. The
isolated analysis of the latter data set has excluded a purely
exponential behaviour of the observed elastic cross-section
with more than 7 σ confidence. The new data in the CNI
region allow to study the source of the non-exponentiality:
nuclear component, CNI effects or both. In order to explore
the full spectrum of possibilities, an interference formula
without the limitations of SWY is needed. In the present
study the more general and complex interference formulae
of Cahn [15] and Kundrát–Lokajíček (KL) [16] are used,
offering much more freedom for the choice of the theoret-
ically unknown functional forms of the hadronic modulus
and phase. Since the data cannot unambiguously determine
all functional forms and their parameters, the results of this
study, still representatively expressed in terms of ρ, become
conditional to the choice of the model describing the hadronic
amplitude. This choice has implications on the behaviour of
the interaction in impact parameter space. In particular, the
functional form of the hadronic phase at small |t | determines
whether elastic collisions occur predominantly at small or
large impact parameters (centrality vs. peripherality). It will
be shown that both options are compatible with the data, thus
the central picture still prevalent in theoretical models is not
a necessity.

Section 2 of this article outlines the experimental setup
used for the measurement. The properties of the special beam
optics are described in Sect. 3. Section 4 gives details of the
data-taking conditions. The data analysis and reconstruction
of the differential cross-section are described in Sect. 5. Sec-
tion 6 presents the study of the Coulomb–nuclear interference
together with the functional form of the hadronic amplitude.
The values of ρ and σtot are determined.

2 Experimental apparatus

The TOTEM experiment, located at the LHC Interaction
Point (IP) 5 together with the CMS experiment, is dedi-
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Fig. 1 Left: Schematic view of the RP stations on both sides of IP5
with two proton tracks from an elastic event. Right: Schematic view of
the silicon detector positions in an RP station with a track traversing the

overlap zone between top and horizontal detectors, providing detector
alignment information

cated to the measurement of the total cross-section, elastic
scattering and diffractive processes. The experimental appa-
ratus, symmetric with respect to the IP, is composed of a
forward proton spectrometer (Roman Pots, RPs) and the for-
ward tracking telescopes T1 and T2. A complete description
of the TOTEM detector instrumentation and its performance
is given in [17,18]. The data analysed here come from the
RPs only. An RP is a movable beam-pipe insertion capable of
approaching the LHC beam to a distance of less than a mil-
limetre, in order to detect protons with scattering angles of
only a few microradians. The proton spectrometer is organ-
ised in two RP stations: one on the left side of the IP (LHC
sector 45) and one on the right (LHC sector 56), see Fig. 1
(left). Each RP station, located between 215 and 220 m from
the IP, is composed of two units: “near” (215 m from the IP)
and “far” (220 m). A unit consists of 3 RPs, one approaching
the outgoing beam from the top, one from the bottom, and one
horizontally. Each RP houses a stack of 5 “U” and 5 “V” sili-
con strip detectors, where “U” and “V” refer to two mutually
perpendicular strip orientations. The sensors were designed
with the specific objective of reducing the insensitive area
at the edge facing the beam to only a few tens of microm-
eters. Due to the 5 m long lever arm between the near and
the far RP units the local track angles can be reconstructed
with a precision of about 10 µrad. A high trigger efficiency
(>99%) is achieved by using all RPs independently. Since
elastic scattering events consist of two collinear protons emit-
ted in opposite directions, the detected events can have two
topologies, called diagonals: 45 bottom–56 top and 45 top–
56 bottom.

This article uses a reference frame where x denotes the
horizontal axis (pointing out of the LHC ring), y the vertical
axis (pointing against gravity) and z the beam axis (in the
clockwise direction).

3 Beam optics

The beam optics relates the proton kinematical states at the
IP and at the RP location. A proton emerging from the inter-
action vertex (x∗, y∗) at the angle (θ∗

x , θ∗
y ) (relative to the z

axis) and with momentum p (1 + ξ), where p is the nominal
initial-state proton momentum, is transported along the out-

going beam through the LHC magnets. It arrives at the RPs
in the transverse position

x(zRP) = Lx (zRP) θ∗
x + vx (zRP) x∗ + Dx (zRP) ξ,

y(zRP) = L y(zRP) θ∗
y + vy(zRP) y∗ + Dy(zRP) ξ (2)

relative to the beam centre. This position is determined by
the optical functions, characterising the transport of protons
in the beam line and controlled via the LHC magnet cur-
rents. The effective length Lx,y(z), magnification vx,y(z) and
dispersion Dx,y(z) quantify the sensitivity of the measured
proton position to the scattering angle, vertex position and
momentum loss, respectively. Note that for elastic collisions
the dispersion terms D ξ can be ignored because the protons
do not lose any momentum. The values of ξ only account
for the initial state momentum offset and variations, see Sec-
tion 4 in [14]. Due to the collinearity of the two elastically
scattered protons and the symmetry of the optics, the impact
of D ξ on the reconstructed scattering angles is negligible
compared to other uncertainties.

The data for the analysis presented here have been taken
with a new, special optics, conventionally labelled by the
value of the β-function at the interaction point, β∗ = 1000 m,
and specifically developed for measuring low-|t | elastic scat-
tering. It maximises the vertical effective length L y at the
RP position z = 220 m and minimises the vertical magni-
fication |vy | at z = 220 m (Table 1). This configuration is
called “parallel-to-point focussing” because all protons with
the same angle in the IP are focussed on one point in the RP
at 220 m. It optimises the sensitivity to the vertical projection
of the scattering angle – and hence to |t | – while minimising
the influence of the vertex position. In the horizontal projec-
tion the parallel-to-point focussing condition is not fulfilled,

Table 1 Optical functions for elastic proton transport for the β∗ =
1000 m optics. The values refer to the right arm, for the left one they
are very similar

RP unit Lx (m) vx L y (m) vy

Near 59.37 −0.867 255.87 0.003

Far 45.89 −0.761 284.62 −0.017
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Fig. 2 Trigger rates as a function of time from the beginning of the run (24 October 2012, 23:00 hours). The T2 rate (blue) is roughly proportional
to luminosity, while the RP rate (red) is in addition sensitive to beam-halo level. The grey bands represent periods of uninterrupted data taking

but – unlike in the β∗ = 90 m optics used for previous mea-
surements [19–22] – the effective length Lx at z = 220 m
is non-zero, which reduces the uncertainty in the horizontal
component of the scattering angle.

4 Data taking

The results reported here are based on data taken in October
2012 during a dedicated LHC proton fill (3216) with the
special beam properties described in the previous section.

The vertical RPs approached the beam centre to only 3
times the beam width, σy , resulting in an acceptance for |t |-
values down to 6 × 10−4 GeV2. The exceptionally close dis-
tance was possible due to the low beam intensity in this spe-
cial beam operation: each beam contained only two colliding
bunches and one non-colliding bunch for background mon-
itoring, each with 1011 protons. A novel collimation strat-
egy was applied to keep the beam halo background under
control. As a first step, the primary collimators (TCP) in
the LHC betatron cleaning insertion (point 7) scraped the
beam down to 2σy ; then the collimators were retracted to
2.5σy , thus creating a 0.5σy gap between the beam edge and
the collimator jaws. With the halo strongly suppressed and
no collimator producing showers by touching the beam, the
RPs at 3 σy were operated in a background-depleted envi-
ronment for about 1 h until the beam-to-collimator gap was
refilled by diffusion, as diagnosed by the increasing RP trig-
ger rate (Fig. 2). When the background conditions had dete-
riorated to an unacceptable level, the beam cleaning pro-
cedure was repeated, again followed by a quiet data-taking
period. The beam cleaning at 1.5 h from the beginning of the
run employed only vertical collimators and led to a quickly
increasing background rate, see Fig. 2. Therefore, the fol-
lowing beam cleaning operations were also performed in
the horizontal plane. Altogether there were 6 beam clean-
ing interventions until the luminosity had decreased from
initially 1.8 × 1027 to 0.4 × 1027 cm−2 s−1 at which point

the data yield was considered as too low. During the 9 h long
fill, an integrated luminosity of 20 µb−1 was accumulated in
6 data sets corresponding to the calm periods between the
cleaning operations.

Due to an anti-collision protection system, the top and the
bottom pots of a vertical RP unit could not approach each
other close enough to be both at a distance of 3 σy = 780 µm
from the beam centre. Therefore a configuration with one
RP diagonal (45 top–56 bottom) at 3 σy (“close diagonal”)
and the other (45 bottom–56 top) at 10 σy (“distant diago-
nal”) was chosen. The distant diagonal provides a systematic
comparison at larger |t |-values. The horizontal RPs were only
needed for the data-based alignment and therefore placed at
a safe distance of 10 σx ≈ 7.5 mm, close enough to have an
overlap with the vertical RPs (Fig. 1, right).

The events collected were triggered by a logical OR of:
inelastic trigger (at least one charged particle in either arm of
T2), double-arm proton trigger (coincidence of any RP left
of IP5 and any RP right of IP5) and zero-bias trigger (random
bunch crossings) for calibration purposes.

In the close and distant diagonals a total of 190 and 162 k
elastic event candidates have been tagged, respectively.

5 Differential cross-section

The analysis method is very similar to the previously pub-
lished one [14]. Section 5.1 covers all aspects related to the
reconstruction of a single event. Section 5.2 describes the
steps of transforming a raw t-distribution into the differen-
tial cross-section. The t-distributions for the two diagonals
are analysed separately. After comparison (Sect. 5.3) they
are finally merged (Sect. 5.4).

5.1 Event analysis

The event kinematics are determined from the coordinates of
track hits in the RPs after proper alignment (see Sect. 5.1.2)
using the LHC optics (see Sect. 5.1.3).
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5.1.1 Kinematics reconstruction

For each event candidate the scattering angles and vertex
positions of both protons (one per arm) are first determined
separately by inverting the proton transport equation (2),
assuming ξ = 0:

θ∗L,R
x =

vN
x xF − vF

x xN

vN
x LF

x − vF
x LN

x

, θ∗L,R
y =

1

2

(

yN

LN
y

+
yF

LF
y

)

,

x∗L,R =
LN

x xF − LF
x xN

LN
x vF

x − LF
xvN

x

, (3)

where the N and F superscripts refer to the near and far units,
L and R to the left and right arm, respectively. This one-arm
reconstruction is used for tagging elastic events, where the
left and right arm protons are compared.

Once a proton pair has been selected, all four RPs are
used to reconstruct the kinematics of the event, optimising
the angular resolution (see Sect. 5.1.4):

θ∗
x =

∑

vi
x

2 ∑

L i
x x i −

∑

L i
xv

i
x

∑

vi
x x i

∑

vi
x

2 ∑

L i
x

2 −
∑

L i
xv

i
x

∑

vi
x L i

x

,

θ∗
y =

1

4

∑ yi

L i
y

, (4)

where the sums run over the superscript i representing the
four RPs of a diagonal.

Eventually, the scattering angle, θ∗, and the four-
momentum transfer squared, t , are calculated:

θ∗ =
√

θ∗
x

2 + θ∗
y

2, t = −p2(θ∗
x

2 + θ∗
y

2
), (5)

where p denotes the beam momentum.

5.1.2 Alignment

TOTEM’s usual three-stage procedure [18] for correcting
the detector positions and rotation angles has been applied:
a beam-based alignment prior to the run followed by two
offline methods. First, track-based alignment for relative
positions among RPs, and second, alignment with elastic
events for absolute position with respect to the beam –
repeated in 15 min time intervals to check for possible beam
movements.

The offline procedure has been extended further to
improve the vertical alignment. The new steps exploit the
fact that elastic events with their two collinear protons relate
the alignments in the left and right arm with an uncertainty
of 20 µm. Furthermore, the horizontal RPs in the right arm
recorded a hit distribution usable for vertical alignment in
addition to the standard technique based on the vertical RPs,
see Fig. 3.
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Fig. 3 Hit scatter plot in the right-far unit, corresponding to a period
of 15 min. The black dots represent track hits in the vertical and hor-
izontal RPs. Track hits close to the sensor edges are removed because
of possible bias due to acceptance effects. The green histogram shows
the horizontal profile of hits in the vertical RPs, the dashed green line

interpolates the profiles between the top and bottom RPs. Similarly,
the red histogram gives the vertical profile of the hits in the horizontal
RP and the dashed red line its extrapolation to the beam region. The
blue dashed line indicates the vertical centre of symmetry of the hits in
the vertical RPs (see [18] for more details). The crossing of the dashed

lines represents the position the beam centre (the two vertical-alignment
results are averaged)

Exploiting all the methods, the alignment uncertainties
have been estimated to 30 µm (horizontal shift), 70 µm (ver-
tical shift) and 2 mrad (rotation about the beam axis). Prop-
agating them through Eq. (4) to reconstructed scattering
angles yields 0.28 µrad (0.19 µrad) for the horizontal (ver-
tical) angle. RP rotations induce a bias in the reconstructed
horizontal scattering angle:

θ∗
x → θ∗

x + cθ∗
y , (6)

where the proportionality constant c has a mean of 0 and a
standard deviation of 0.005.

5.1.3 Optics

It is crucial to know with high precision the LHC beam optics
between IP5 and the RPs, i.e. the behaviour of the spectrom-
eter composed of the various magnetic elements. The optics
calibration has been applied as described in [23]. This method
uses RP observables to determine fine corrections to the opti-
cal functions presented in Eq. (2).

The residual errors induce a bias in the reconstructed scat-
tering angles:

θ∗
x → (1 + dx ) θ∗

x , θ∗
y → (1 + dy) θ∗

y . (7)

For the two-arm reconstruction, Eq. (4), the biases dx and
dy have uncertainties of 0.34 and 0.25%, respectively, and
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a correlation factor of −0.89. These estimates include the
effects of magnet harmonics. To evaluate the impact on the
t-distribution, it is convenient to decompose the correlated
biases dx and dy into eigenvectors of the covariance matrix:
(

dx

dy

)

= η1

(

+0.338%
−0.234%

)

︸ ︷︷ ︸

mode 1

+ η2

(

−0.053%
−0.076%

)

︸ ︷︷ ︸

mode 2

(8)

normalised such that the factors η1,2 have unit variance.

5.1.4 Resolution

Statistical fluctuations in θ∗
y are mostly due to the beam diver-

gence and can be studied by comparing the angles recon-
structed from the left and right arm. As illustrated in Fig. 4,
the distributions show only minimal deviations from a Gaus-
sian shape. By dividing their standard deviation by a factor of
2, one can estimate the resolution of the two-arm reconstruc-
tion (Eq. (4)) of elastic events, see Fig. 5, bottom. Moreover,
measurements of beam emittances [24] indicate that the ver-
tical divergences of the two beams can be considered as equal
with a tolerance of about 25%. Exploiting this fact, one can
de-convolute the distribution of θ∗R

y − θ∗L
y in order to obtain

the beam-divergence distribution, used for the acceptance
corrections discussed in Sect. 5.2.3.

In the horizontal projection, a more complex procedure
is used since the one-arm reconstruction, Eq. (3), is strongly
influenced by the detector resolution. First, the horizontal
beam divergence is estimated from the standard deviation of
reconstructed vertices, σ(x∗):

σ bd(θ∗
x ) =

σ(x∗)
√

2

β∗ . (9)

It increases from 0.75 to 0.9 µrad over the time of the fill.
Subtracting this component from the standard deviation of
θ∗R

x − θ∗L
x , one determines the (mean) spatial resolution of
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Fig. 5 Angular resolution for the two-arm reconstruction, Eq. (4), as
a function of time (from the beginning of the run). The blue (red) dots

correspond to the diagonal 45 bottom–56 top (45 top–56 bottom). The
grey bands indicate regions of uninterrupted data-taking, whereas in
the remaining periods the beam cleaning procedure described in Sect. 4
was performed

the sensors in each diagonal: 10.7 µm (45 top–56 bottom)
and 12.1 µm (45 bottom–56 top). These results have been
verified to be time independent. Finally, the beam divergence
and sensor resolution components can be propagated through
Eq. (4) to estimate the θ∗

x resolution for elastic events, as
plotted in Fig. 5, top.

5.2 Differential cross-section reconstruction

For a given t bin, the differential cross-section is evaluated
by selecting and counting elastic events:

dσ

dt
(bin) = NU(bin)B

1

�t

∑

t ∈ bin

A(θ∗, θ∗
y ) E(θ∗

y ), (10)

where �t is the width of the bin,N is a normalisation factor
and the other symbols stand for various correction factors:
U for unfolding of resolution effects,B for background sub-
traction,A for acceptance correction and E for detection and
reconstruction efficiency.

5.2.1 Event tagging

The cuts used to select the elastic events are summarised
in Table 2. Cuts 1 and 2 require the reconstructed-track
collinearity between the left and right arm. Cut 3 ensures
that the protons come from the same vertex (horizontally).
The correlation plots corresponding to these cuts are shown in
Fig. 6. Thanks to the very low beam divergence, the collinear-
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Table 2 The elastic selection cuts. The superscripts R and L refer to the
right and left arm. The αθ∗

x term in cut 3 absorbs the effects of residual
optics imperfections, α is of the order of 0.1 µm/µrad. The right-most
column gives a typical RMS of the cut distribution

Number Cut RMS (≡ 1σ )

1 θ∗R
x − θ∗L

x 3.9 µrad

2 θ∗R
y − θ∗L

y 1.0 µrad

3 x∗R − x∗L − αθ∗
x 250 µm

ity cuts are very powerful, and consequently other conceiv-
able cuts (cf. Table 2 in [20]) bring no significant improve-
ment.

Since a Monte-Carlo study shows that applying the three
cuts at the 3 σ level would lead to a loss of about 0.5% of the
elastic events, the cut threshold is set to 4 σ .

The tagging efficiency has been studied by applying the
cuts also at the 5 σ -level. This selection has yielded 0.3%
more events in every |t |-bin. This kind of inefficiency only
contributes to a global scale factor, which is irrelevant for this
analysis because the normalisation is taken from a different
data set (cf. Sect. 5.2.6).

5.2.2 Background

As the RPs were very close to the beam, one may expect
an enhanced background from coincidence of beam halo
protons hitting detectors in the two arms. Other background
sources (pertinent to any elastic analysis) are: central diffrac-
tion and pile-up of two single diffraction events.

The background rate (i.e. impurity of the elastic tagging)
is estimated in two steps, both based on distributions of dis-
criminators from Table 2 plotted in various situations, see an
example in Fig. 7. In the first step, diagonal data are studied
under several cut combinations. While the central part (sig-
nal) remains essentially constant, the tails (background) are
strongly suppressed when the number of cuts is increased.
In the second step, the background distribution is interpo-
lated from the tails into the signal region. The form of the
interpolation is inferred from non-diagonal RP track config-
urations (45 bottom–56 bottom or 45 top–56 top), artificially
treated like diagonal signatures by inverting the coordinate
signs in the arm 45; see the dashed distributions in the fig-
ure. These non-diagonal configurations cannot contain any
elastic signal and hence consist purely of background which
is expected to be similar in the diagonal and non-diagonal
configurations. This expectation is supported by the agree-
ment of the tails of the blue solid and dashed curves in the
figure. Since the non-diagonal distributions are flat, the com-
parison of the signal-peak size to the amount of interpolated
background yields the estimate 1 − B < 10−4.
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Fig. 6 Correlation plots for the event selection cuts presented in
Table 2, showing events with diagonal topology 45 top–56 bottom. The
solid black lines delimit the signal region within ±4 σ

5.2.3 Acceptance correction

The acceptance of elastic protons is limited by two factors:
sensor coverage (relevant for low |θ∗

y |) and LHC beam aper-
ture (at |θ∗

y | ≈ 100 µrad). Moreover, there is a region in the
kinematic parameter space where elastic protons may inter-
act with the horizontal RPs leading to uncertain detection

123



661 Page 8 of 21 Eur. Phys. J. C (2016) 76 :661

100

101

102

103

104

105

ev
en
ts
p
er
b
in

−100 −50 0 50 100

θ R
x − θ L

x (µrad)

no cuts

cuts 2

cuts 2, 3

45 top – 56 bottom cuts 2, 3:
45 bottom –

– 56 bottom
45 top –

– 56 top

∗ ∗

Fig. 7 Distributions of discriminator 1, i.e. the difference between the
horizontal scattering angle reconstructed from the right and the left arm.
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in Table 2). Dashed curves: data from anti-diagonal RP configurations,
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dashed lines represent the boundaries of the signal region (±4 σ )
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Fig. 8 Distribution of scattering angle projections θ∗
y vs. θ∗

x . The upper

(lower) part comes from the diagonal 45 bottom–56 top (45 top–56 bot-
tom). The red horizontal lines represent cuts due to the LHC apertures,
the blue horizontal lines cuts due to the sensor edges. The vertical

magenta lines delimit the fiducial region with detection efficiency not
affected by the horizontal RPs. The dotted circles show contours of
constant scattering angle θ∗ as indicated in the middle of the plot (val-
ues in micro-radians). The parts of the contours within acceptance are
emphasized in thick black

efficiency. To avoid this region, an additional fiducial cut has
been adopted: −50 < θ∗

x < 80 µrad. In the far vertical RPs,
this restriction corresponds to about −2.3 < x < 3.7 mm.
All acceptance related cuts are visualised in Fig. 8.

The correction for the above limitations includes two con-
tributions – a geometrical correction Ageom reflecting the
fraction of the phase space within the acceptance and a com-
ponent Afluct correcting for fluctuations around the vertical
acceptance limitations:
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o
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cut: |θy | > 6 µrad
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cut: |θy | < 100 µrad

∗
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∗

Fig. 9 Full acceptance correction,A, for diagonal 45 bottom–56 top.
The points give the mean value per bin, the error bars indicate the stan-
dard deviation. The abrupt changes in the shape correspond to accep-
tance cuts as indicated by the arrows

A(θ∗, θ∗
y ) = Ageom(θ∗)Afluct(θ

∗
y ). (11)

The fiducial cuts in θ∗
x have been given sufficient margin from

the region with uncertain efficiency to render the respective
fluctuation correction negligible.

The calculation of the geometrical correction Ageom is
based on the azimuthal symmetry of elastic scattering, exper-
imentally verified for the data within acceptance. As shown
in Fig. 8, for a given value of θ∗ the correction is given by:

Ageom(θ∗) =
full circumference

arc length within acceptance
. (12)

The correction Afluct is calculated analytically from the
probability that any of the two elastic protons leaves the
region of acceptance due to the vertical beam divergence.
The beam divergence distribution is modelled as a Gaus-
sian with the spread determined by the method described in
Sect. 5.1.4. This contribution is sizeable only close to the
acceptance limitations. Data from regions with corrections
larger than 2.5 are discarded. The uncertainties are related to
the resolution parameters. For the lowest |t | bin their relative
values are: vertical beam divergence: 2%, left-right asymme-
try: 1%, and non-Gaussian shape: 1%.

Figure 9 shows an example of the t-dependence of the
acceptance correction for the diagonal reaching lower |t |-
values. Since a single diagonal cannot cover more than half
of the phase space, the minimum value of the correction is
2. The very low |t | data points with the full correction larger
than 10 are discarded to avoid biases. At the high-|t | end all
data points are kept.
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5.2.4 Inefficiency corrections

Since the overall normalisation will be determined from
another dataset (see Sect. 5.2.6), any inefficiency correction
that does not alter the t-distribution shape does not need to be
considered in this analysis (trigger, data acquisition and pile-
up inefficiency discussed in [20,22]). The remaining inef-
ficiencies are related to the inability of a RP to resolve the
elastic proton track.

One such case is when a single RP does not detect and/or
reconstruct a proton track, with no correlation to other RPs.
This type of inefficiency, I3/4, is evaluated by removing
the RP from the tagging cuts (Table 2), repeating the event
selection and calculating the fraction of recovered events. A
typical example is given in Fig. 10, showing that the effi-
ciency decreases gently with the vertical scattering angle.
This dependence originates from the fact that protons with
larger |θ∗

y | hit the RPs further from their edge and therefore
the potentially created secondary particles have more chance
to induce additional signal. Since the RP detectors cannot
resolve multiple tracks (non-unique association between “U”
and “V” track candidates), a secondary particle track prevents
from using the affected RP in the analysis.

Another source of inefficiency are proton interactions in
a near RP affecting simultaneously the far RP downstream.
The contribution from these near-far correlated inefficien-
cies, I2/4, is determined by evaluating the rate of events
with high track multiplicity (�5) in both near and far RPs.
Events with high track multiplicity simultaneously in a near
top and near bottom RP are discarded as such a shower is
likely to have started upstream from the RP station and thus
be unrelated to the elastic proton interacting with detectors.
The outcome, I2/4 ≈ 1.5%, is compatible between left/right

arms and top/bottom RP pairs and compares well to Monte-
Carlo simulations (e.g. Section 7.5 in [25]).

The full correction is calculated as

E(θ∗
y ) =

1

1 −
(

∑

i∈RPs
Ii

3/4(θ
∗
y ) + 2I2/4

) . (13)

The first term in the parentheses sums the contributions from
the four RPs of a diagonal and increases from about 16 to 18%
from the lowest to the highest |θ∗

y |. These values are higher
than in the previous analyses (e.g. Section 5.2.4 in [14]) due
the contribution from the far RPs in the left arm. The recon-
struction efficiency in these pots is decreased by showers ini-
tiated by beam halo protons in the horizontal RPs upstream
(closer to the beam in the left arm than in the right one).

5.2.5 Unfolding of resolution effects

Due to the very small beam divergence, the correction for
resolution effects can be safely determined by the following
iterative procedure.

1. The differential cross-section data are fitted by a smooth
curve.

2. The fit is used in a numerical-integration calculation of
the smeared t-distribution (using the resolution param-
eters determined in Sect. 5.1.4). The ratio between the
smeared and the non-smeared t-distributions gives a set
of per-bin correction factors.

3. The corrections are applied to the observed (yet uncor-
rected) differential cross-section yielding a better esti-
mate of the true t-distribution.

4. The corrected differential cross-section is fed back to
step 1.

As the estimate of the true t-distribution improves, the dif-
ference between the correction factors obtained in two suc-
cessive iterations decreases. When the difference becomes
negligible, the iteration stops. This is typically achieved after
the second iteration.

The final correction is negligible (U ≈ 1) for all bins
except at very low |t | where the rapid cross-section growth
occurs, see Fig. 11.

For the uncertainty estimate, the uncertainties of the θ∗
x

and θ∗
y resolutions (accommodating the full time variation)

as well as fit-model dependence have been considered, each
contribution giving a few per-mille for the lowest-|t | bin.

5.2.6 Normalisation

The normalisation N is determined by requiring the same
cross-section integral between |t | = 0.014 and 0.203 GeV2

as for dataset 1 published in [22]. This publication describes
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Fig. 11 Unfolding correction for the close diagonal (45 bottom–56
top). The vertical dashed line indicates the position of the acceptance
cut due to sensor edges

a measurement of elastic and inelastic rates at the same col-
lision energy of

√
s = 8 TeV. These rates can be combined

using the optical theorem in order to resolve the value of the
luminosity which consequently allows for normalisation of
the differential cross-section. The leading uncertainty of N ,
4.2%, comes from the rate uncertainties in [22].

5.2.7 Binning

At very low |t |, where the cross-section varies the fastest
(≈0.001 GeV2), a fine binning is used. In the middle of the
|t | range (≈0.03 GeV2), the bin width is chosen to give about
1% statistical uncertainty. This rule is abandoned at higher
|t | (above 0.07 GeV2) in favour of bins with a constant width
of 0.01 GeV2 to avoid excessively large bins.

5.2.8 Systematic uncertainties

Besides the systematic uncertainties mentioned at the above
analysis steps, the beam momentum uncertainty needs to be
considered when the scattering angles are translated to t , see
Eq. (5). The uncertainty was estimated to 0.1% in Section
5.2.8 in [14] which is further supported by a recent review
[26].

Two different methods are used to propagate the system-
atic effects into the t-distribution. The first is based on a
Monte-Carlo simulation which uses a fit of the final differ-
ential cross-section data to generate the true t-distribution.
In parallel, another t-distribution is built, introducing one of
the above mentioned systematic effects at 1 σ level. The dif-
ference between the two t-distributions gives the systematic
effect on the differential cross-section. The second method
is similar, however using numerical integration techniques

instead of Monte-Carlo simulations. Both methods are for-
mally equivalent to evaluating

δsq(t) ≡
∂(dσ/dt)

∂q
δq, (14)

where δq corresponds to a 1 σ bias in the quantity q respon-
sible for a given systematic effect.

The Monte-Carlo simulations show that the combined
effect of several systematic errors is well approximated
by linear combination of the individual contributions from
Eq. (14).

5.3 Systematic cross-checks

Compatible results have been obtained by analysing data sub-
sets of events from different bunches, different diagonals and
different time periods – in particular those right after and right
before the beam cleanings.

5.4 Final data merging

Finally, the differential cross-section histograms from both
diagonals are merged. This is accomplished by a per-bin
weighted average, with the weight given by inverse squared
statistical uncertainty. The statistical and systematic uncer-
tainties are propagated accordingly. For the systematic ones,
the correlation between the diagonals is taken into account.
For example the vertical (mis-)alignment of the RPs of one
unit is almost fully correlated; thus the effect on the differen-
tial cross-section is opposite for the two diagonals and con-
sequently its impact is strongly reduced once the diagonals
are merged.

The cross-section values can be found in Table 3 and visu-
alised in Fig. 12. The figure clearly shows a rapid cross-
section rise below |t | � 0.002 GeV2, which will later be
interpreted as an effect due to electromagnetic interaction.

The final systematic uncertainties, except the 4.2% com-
ing from the normalisation, are summarised in Fig. 13 where
their impact on the differential cross-section is shown. The
leading uncertainties include normalisation, optics imperfec-
tions, beam momentum offset and residual misalignment.
The vertical misalignment is the dominant systematic effect
in the very-low |t | region. The leading effects are quantified
in Table 3 and can be used to approximate the covariance
matrix of systematic uncertainties:

Vi j =
∑

q

δsq(i) δsq( j), (15)

where i and j are bin indices (row numbers in Table 3) and
the sum goes over the leading error contributions q (six right-
most columns in the table).

Let us emphasize that the systematic effects with lin-
ear t dependence (see Fig. 13) cannot alter the non-purely-
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Table 3 The elastic differential cross-section as determined in this anal-
ysis. The three left-most columns describe the bins in t . The represen-
tative point gives the t value suitable for fitting [27]. The other columns
are related to the differential cross-section. The six right-most columns

give the leading systematic biases in dσ/dt for 1σ -shifts in the respec-
tive quantities, δsq , see Eqs. (14) and (15). The two contributions due
to optics correspond to the two vectors in Eq. (8)

|t | bin (GeV2) dσ/dt (mb/GeV2)

Left edge Right
edge

Represent.
point

Value Statist.
uncert.

System.
uncert.

Normal.
N

Optics
mode 1

Optics
mode 2

Beam
momentum

Alignment
hor. shift

Alignment
vert. shift

0.000600 0.000916 0.000741 912.13 44.0 54.7 +36.3 +4.18 −0.151 +0.029 −0.791 −40.7
0.000916 0.001346 0.001110 665.09 21.0 30.4 +27.3 +1.66 +0.318 +0.579 +0.042 −13.5
0.001346 0.001930 0.001612 564.20 14.6 24.3 +23.8 +0.905 +0.500 +0.806 +0.065 −4.87
0.001930 0.002725 0.002298 529.76 11.3 22.4 +22.2 +0.663 +0.569 +0.895 +0.027 −1.99
0.002725 0.003806 0.003240 516.92 9.19 21.4 +21.4 +0.579 +0.585 +0.914 +0.004 −1.05
0.003806 0.005276 0.004525 502.29 6.24 20.8 +20.7 +0.587 +0.570 +0.891 −0.008 −0.216
0.005276 0.007276 0.006266 477.43 4.83 20.0 +20.0 +0.563 +0.536 +0.840 −0.010 −0.126
0.007276 0.009995 0.008628 454.13 3.86 19.1 +19.1 +0.534 +0.486 +0.763 −0.010 −0.089
0.009995 0.01369 0.01183 424.90 3.09 17.9 +17.9 +0.496 +0.421 +0.663 −0.004 −0.061
0.01369 0.01786 0.01576 398.49 2.75 16.5 +16.5 +0.447 +0.349 +0.552 −0.005 −0.048
0.01786 0.02255 0.02019 363.33 2.44 15.1 +15.1 +0.394 +0.279 +0.443 −0.002 −0.035
0.02255 0.02783 0.02517 327.03 2.15 13.7 +13.7 +0.338 +0.210 +0.337 −0.006 −0.031
0.02783 0.03378 0.03077 293.88 1.90 12.2 +12.2 +0.283 +0.147 +0.238 −0.005 −0.025
0.03378 0.04047 0.03709 257.86 1.67 10.8 +10.8 +0.229 +0.089 +0.148 −0.005 −0.020
0.04047 0.04801 0.04419 225.35 1.49 9.34 +9.34 +0.229 +0.036 +0.068 +0.088 −0.007
0.04801 0.05650 0.05220 193.69 1.35 7.98 +7.97 +0.261 −0.011 −0.000 +0.232 −0.006
0.05650 0.06606 0.06121 158.48 1.18 6.69 +6.68 +0.258 −0.047 −0.054 +0.306 −0.004
0.06606 0.07606 0.07098 130.78 1.06 5.54 +5.52 +0.239 −0.072 −0.094 +0.337 −0.003
0.07606 0.08606 0.08098 107.80 0.98 4.57 +4.55 +0.214 −0.087 −0.118 +0.340 −0.002
0.08606 0.09606 0.09098 89.71 0.90 3.77 +3.75 +0.188 −0.095 −0.131 +0.328 −0.001
0.09606 0.1061 0.1010 73.41 0.83 3.12 +3.10 +0.163 −0.097 −0.136 +0.306 −0.000
0.1061 0.1161 0.1110 61.78 0.79 2.58 +2.56 +0.214 −0.099 −0.136 +0.234 +0.001
0.1161 0.1261 0.1210 52.55 0.76 2.14 +2.11 +0.241 −0.097 −0.131 +0.179 +0.001
0.1261 0.1361 0.1310 41.52 0.70 1.78 +1.75 +0.246 −0.093 −0.125 +0.141 +0.001
0.1361 0.1461 0.1410 34.58 0.66 1.48 +1.44 +0.239 −0.087 −0.116 +0.113 +0.001
0.1461 0.1561 0.1510 28.69 0.61 1.23 +1.19 +0.227 −0.080 −0.107 +0.091 +0.000
0.1561 0.1661 0.1610 24.37 0.65 1.01 +0.99 +0.169 −0.072 −0.098 +0.095 +0.000
0.1661 0.1761 0.1710 18.95 0.68 0.84 +0.81 +0.117 −0.064 −0.088 +0.104 +0.000
0.1761 0.1861 0.1810 15.86 0.73 0.69 +0.67 +0.082 −0.056 −0.079 +0.111 +0.000
0.1861 0.1961 0.1910 12.59 0.77 0.58 +0.55 +0.054 −0.049 −0.071 +0.123 +0.000

exponential character of the data. This is the case for the
effects of normalisation, beam momentum and to a large
degree also of optics-mode 2. For the beam momentum,
this can also be understood analytically: changing the value
of p would yield a scaling of t , see Eq. (5), and con-
sequently also scaling of the bn parameters in Eq. (17).
However, the non-zero b2, b3 etc. parameters (reflecting the
non-exponentiality) cannot be brought to 0 (as in purely-
exponential case).

6 Coulomb–nuclear interference

The Coulomb–nuclear interference (CNI) can be used to
probe the nuclear component of the scattering amplitude.
Since the CNI effects are sensitive to the phase of the nuclear
amplitude, both modulus and phase can be tested.

For the modulus, a relevant question is whether the earlier
reported non-exponentiality of the differential cross-section
[14] can be attributed solely to the nuclear component or

whether Coulomb scattering gives a sizeable contribution.
Concerning the phase, several parametrisations with different
physics interpretations will be tested; for each of them the
ρ parameter (representative for the phase value at t = 0
according to Eq. (1)) will be determined.

Section 6.1 outlines the theoretical concepts needed to
describe the CNI effects. Section 6.2 provides details on fit-
ting procedures used to analyse the data. Sections 6.3 and
6.4 discuss the fit results for two relevant alternatives in the
description of the nuclear modulus: either exponential func-
tions with exponents linear in t (called “purely exponential”)
or exponential functions with higher-degree polynomials of
t in the exponent (called “non-exponential”).

6.1 Theoretical framework

The amplitude describing elastic scattering of protons may be
expected to receive three contributions, each corresponding
to one of the following sets of Feynman diagrams.
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Fig. 13 Impact of t-dependent systematic effects on the differential
cross-section. Each curve corresponds to a systematic error of 1 σ ,
cf. Eq. (14). The two contributions due to the optics correspond to

the two vectors in Eq. (8). The envelope is determined by summing all
shown contributions in quadrature for each |t | value

• Containing QED elements only. This amplitude can be
obtained by perturbative calculations, see Sect. 6.1.1.

• Containing QCD elements only. This amplitude is not
directly calculable from the QCD lagrangian, Sects. 6.1.2

and 6.1.3 will propose several phenomenologically moti-
ved parametrisations.

• Containing both QED and QCD elements. This con-
tribution can neither be directly calculated from the
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with the same value of ρ = 0.10. The peripheral example corresponds
to the parameter values in Eq. (22)

Lagrangians, nor can ad hoc parametrisations be used
– this amplitude is correlated with the previous two. Sec-
tion 6.1.4 will introduce several interference formulae
attempting to calculate the corresponding effects.

6.1.1 Coulomb amplitude

The Coulomb amplitude can be calculated from QED
(e.g. [28]), using empirical electric FE and magnetic FM

form factors of the proton. It can be shown (e.g. Section
1.3.1 in [29]) that, at low |t |, the effect of both form factors
can be described by a single function F :

dσC

dt
=

4πα2

t2
F

4, F 2 =
F 2

E + τF 2
M

1 + τ
, τ =

|t |
4m2

, (16)

where α is the fine-structure constant and m represents the
proton mass.

6.1.2 Nuclear amplitude—modulus

At |t | � 0.02 GeV2 the effects due to the Coulomb interac-
tion are not expected to be large (c.f. Fig. 15 or [30]). Thus, the
measured cross-section can be attributed – to a large extent –
to the nuclear component. Following Table 3 and our previous
publication [14] with high-precision data for |t | < 0.2 GeV2,
the nuclear modulus will be parametrised as

∣
∣
∣A

N(t)

∣
∣
∣ =

√

s

π

p

h̄c

√
a exp

⎛

⎝
1

2

Nb∑

n=1

bn tn

⎞

⎠ , (17)

where Nb is the number of free parameters in the exponent.
Consistently with [14]1, the parameter b1 gives the forward
diffractive slope and a the intercept of the differential cross-
section at t = 0. This parametrisation is also compatible with
a number of theoretical models (see e.g. [31]).

Since the calculation of CNI may, in principle, involve
integrations (e.g. Eq. (25)), it is necessary to extend the
nuclear amplitude meaningfully to |t | > 0.2 GeV2. There-
fore the parametrisation Eq. (17) is only used for |t | <

0.2 GeV2 while at |t | > 0.5 GeV2 the amplitude is fixed
to follow a preliminary cross-section derived from the same
data set as in [14] which features a dip-bump structure sim-
ilar to the one observed at

√
s = 7 TeV [32]. In order to

avoid numerical problems, the intermediate region 0.2 <

|t | < 0.5 GeV2 is modelled with a continuous and smooth
interpolation between the low and high-|t | parts. It will be
shown that altering the extended part of the nuclear ampli-
tude (|t | > 0.2 GeV2) within reasonable limits has negligible
impact on the results presented later on.

6.1.3 Nuclear amplitude—phase

The following phase parametrisations are considered.

(a) A constant phase is obviously the simplest choice:

argAN(t) =
π

2
− arctan ρ = const. (18)

It leads to a strict proportionality between the real and
the imaginary part of the amplitude at all t .

1 Please note that Eq. (15) in [14] contains a misprint: the exponent
should have read

∑Nb

i=1 bi |t |i .
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(b) The standard phase parametrisation,

argAN(t) =
π

2
− arctan ρ + arctan

(
|t | − |t0|

τ

)

− arctan

(
−|t0|

τ

)

, (19)

describes the main features of many theoretical models –
almost imaginary amplitude in the forward direction (ρ
small) while almost purely real at the diffraction dip. The
parameter values t0 = −0.50 GeV2 and τ = 0.1 GeV2

have been chosen such that the shape is similar to a num-
ber of model predictions, see Fig. 14.

(c) The parametrisation by Bailly et al. [33]:

argAN(t) =
π

2
− arctan

ρ

1 − t
td

(20)

where td ≈ −0.53 GeV2 gives the position of the diffrac-
tive minimum at 8 TeV (preliminary result derived from
the β∗ = 90 m data [14]). This phase has a behaviour
qualitatively similar to the model of Jenkovszky et al.,
see Fig. 14.

(d) Another parametrisation was proposed in [16]:

argAN(t) =
π

2
− arctan ρ − ζ1

(

−
t

1 GeV2

)κ

eνt .

(21)

As shown in Fig. 14, it features a peak at t = −κ/ν and
for asymptotically increasing |t | it returns to its value
at t = 0. Due to a potentially rapid variation at low
|t |, this functional form can yield an impact-parameter-
space behaviour that is qualitatively different from the
one obtained with the above parametrisations. In order to
ensure fit stability, the parameters

ζ1 = 800, κ = 2.311, ν = 8.161 GeV−2 (22)

have been fixed to example values maintaining the
desired impact-parameter behaviour at

√
s = 8 TeV,

using a method detailed in [34]. This parametrisation
with one free parameter will be denoted as peripheral

phase in what follows.

Figure 14 shows on the same plot a comparison of
phase predictions by several models to typical examples of
parametrisations proposed above.

It should be noted that the nuclear phase has a strong
influence on the amplitude behaviour in the space of impact
parameter b (for a detailed discussion see e.g. Section 3
in [35]). A particularly decisive feature is the rate of phase
variation at low |t |. Looking at Fig. 14 one can see that the
constant, standard and Bailly phases are essentially flat at

low |t |, thus leading to qualitatively similar pictures in the
impact parameter space: elastic collisions being more cen-
tral (preferring lower values of b) than the inelastic ones.
Conversely, the peripheral phase parametrisation can yield a
description with the opposite hierarchy, which is argued to
be more natural by some authors (e.g. Section 4 in [36]). An
impact-parameter study of the presented data will be given
at end of Sect. 6.4.

6.1.4 Coulomb–nuclear interference formulae

The simplified West–Yennie formula (SWY) [12] was
derived in the framework of perturbative quantum field the-
ory by evaluating the lowest-order Feynman diagrams that
comprise both nuclear and Coulomb interactions. In this
approach, the interference is reduced to an additional phase
between the Coulomb and nuclear amplitudes. Moreover,
several approximations were used in the derivation. First,
in order to avoid integrating over off-mass-shell contribu-
tions to the nuclear amplitude (essentially unknown), a very
slow variation of the nuclear amplitude phase was assumed:
argAN ≈ const. Then, in order to obtain a closed-form
expression, the exponential slope of the nuclear modulus was
assumed constant (i.e. only the b1 parameter is non-zero in
the parametrisation Eq. (17)) which is formally incompatible
with the existence of the diffractive minimum. The original
formula did not contain the electromagnetic form factor F ,
which was added later by hand:

dσ

dt

C+N

=
π(h̄c)2

sp2

∣
∣
∣

αs

t
F

2eiαΦ(t) +AN
∣
∣
∣

2
,

Φ(t) = −
(

log
b1|t |

2
+ γ

)

, (23)

where α is the fine-structure constant and γ
.= 0.577 the

Euler constant. Despite the many limitations, the formula has
been extensively used in past data analyses. For backward-
comparison reasons it is also considered in this report.

The approach of Cahn [15] uses an impact parameter for-
malism and is based on the additivity of eikonals. The first
part of his derivation does not impose any limit on the nuclear
amplitude, leading to the formula (Eq. (30) in [15]):

dσ

dt

C+N

=
π(h̄c)2

sp2

∣
∣
∣
∣
−

αs

q2
F

2 +AN [1 − iαG(−q2)]
∣
∣
∣
∣

2

,

G(−q2) = −
∞∫

0

dq ′2 log
q ′2

q2

d

dq ′2F
2(−q2)

+
1

π

∫

d2q ′F
2(−q ′2)

q ′2

[

AN
(

−[q − q′]2
)

AN(−q2)
− 1

]

,

(24)
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Fig. 15 Illustration of the effects due to the Coulomb interaction,
using the KL formula. With the Cahn formula the plot looks identi-
cal. For the SWY formula, the picture is similar, however it misses the
effects at |t | � 0.02 GeV2. The curves show a response of the inter-
ference formula to different nuclear phases with a purely exponential
nuclear modulus. The solid curves correspond to phases of the same

shape (constant) but different values of ρ: the maximal response can
be seen at |t | � 0.01 GeV2. Conversely, the dashed lines correspond
to phases with fixed ρ but various shapes (the same examples as in
Fig. 14): the response may be sizeable (e.g. in the peripheral case) also
at |t | � 0.02 GeV2

where t = −q2, q′ is a two-dimensional vector and q ′2 =
|q′|2. The second part of the article gives simplified formulae
for nuclear amplitudes with purely-exponential modulus and
constant phase and is, thus, of limited interest for the present
analysis.

Kundrát and Lokajíček (KL) [16] transformed the formula
of Cahn, Eq. (24), into a form better suited for practical appli-
cations and added the kinematic limits on the momentum
transfer:2

dσ

dt

C+N

=
π(h̄c)2

sp2

∣
∣
∣

αs

t
F

2 +AN [1 − iαG(t)]
∣
∣
∣

2
,

G(t) =
0∫

−4p2

dt ′ log
t ′

t

d

dt ′
F

2(t ′)

−
0∫

−4p2

dt ′
(
AN(t ′)

AN(t)
− 1

)
I (t, t ′)

2π
,

I (t, t ′) =
∫ 2π

0
dφ
F 2(t ′′)

t ′′
,

t ′′ = t + t ′ + 2
√

t t ′ cos φ. (25)

2 Note that some recent publications by the same authors (e.g. [30,
37]) contain a misprint: the wrong sign in front of the second term
contributing to G(t).

A slightly different variant proposed in Eq. (22) in [37] was
considered, too:

dσ

dt

C+N

=
π(h̄c)2

sp2

∣
∣
∣

αs

t
F

2 +AN e−iαG(t)
∣
∣
∣

2
. (26)

The interference formula by Cahn, Eq. (24), and the KL
formula, Eq. (25), are very similar by construction and there-
fore they give practically identical interference effects.

Since the quantities G in Eqs. (24) and (25) are complex,
the interference effects in these treatments are generally more
feature-rich than with the SWY formula, Eq. (23), where the
interference is reduced to a single additional phase Φ.

By analysing Eqs. (23), (24) and (25), one can conclude
that in the region where the nuclear amplitude dominates
(|t | � 0.003 GeV2), the effects due to the Coulomb interac-
tion are of the order ofα or the ratio |AC|/|AN|. In both cases,
the magnitude of the interference effects can be expected at
a percent level, as shown in Fig. 15. The figure also shows
that the effects at different |t | probe different parts of the
nuclear phase: maximum sensitivity to ρ lies at very low |t |
while at higher |t | the effects are sensitive to phase values at
slightly higher |t |. It can also be observed that for the con-
stant, standard and Bailly phase the effects are very similar
and rather mild at higher |t |. This can be understood from
a very limited variation of the phase at low |t |, which is the
region contributing most to the integral in Eq. (24) or (25).
On the contrary, the higher |t | response to peripheral phases
can have various forms, often similar to the deviation of the
reconstructed cross-section from pure-exponential, see the
top plots in Figs. 16 and 17.
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Fig. 16 Visualisation of the fit results from Table 4 obtained with
Nb = 1. The continuous (dashed) lines correspond to fits with Cahn
or KL (SWY) formula. Note that the fits with constant nuclear phase
largely overlap. Top: fits compared to differential cross-section data in

a relative reference frame, see the vertical axis label. The reference is
identical to the one in [14]. Bottom left: t-dependence of the nuclear
phase as extracted from the fits. Bottom right: the effects induced by
the Coulomb interaction for each of the fits

6.2 Analysis procedure

In addition to using the data from Table 3, one might consider
including the β∗ = 90 m data [14] which benefit from much
smaller uncertainties. However, due to the limited reach,
|t | � 0.03 GeV2, they have essentially no sensitivity to the
ρ parameter, cf. Fig. 15. Furthermore, due to possible sys-
tematic tensions between the data sets, the inclusion of the
β∗ = 90 m data may have a deteriorating impact on the
ρ determination. Therefore, the value of ρ was determined
from the β∗ = 1000 m data only. For other parameters to
which both data sets have non-negligible sensitivity (e.g. bi

in Eq. (17)), both data sets should give compatible results.
This was verified for all the fits that will be presented later on.

Since the β∗ = 90 m data yield much lower uncertainties,
both data sets have been used for determining all parameters
except ρ. In practice, a series of two fits was performed:

• Step 1: fit of β∗ = 1000 m data with ρ free,
• Step 2: fit of β∗ = 1000 and 90 m data with ρ fixed from

the preceding step.

The standard least-squares method was used for all the
fits. In particular, minimising

χ2 = �T
V

−1�, �i =
dσ

dt

∣
∣
∣
∣
bin i

−
dσC+N

dt

(

t
rep
bin i

)

,

V = Vstat + Vsyst, (27)

123



Eur. Phys. J. C (2016) 76 :661 Page 17 of 21 661

Fig. 17 Visualisation of the fit results from Table 5 obtained with Cahn
or KL formula and Nb = 3. The solid lines correspond to fits with differ-
ent nuclear phases. Top: fits compared to differential cross-section data
in a relative reference frame, see the vertical axis label. The reference

is identical to the one in [14]. Bottom left: t-dependence of the nuclear
phase as extracted from the fits. Bottom right: the effects induced by
the Coulomb interaction for each of the fits

where � is a vector of differences between the differential
cross-section data and a fit function dσC+N/dt evaluated
at the representative point t rep of each bin [27]. The min-
imisation is repeated several times, and the representative
points are updated between iterations. The CNI effects are
calculated using the computer code from [31]. The covari-
ance matrix V has two components. The diagonal of Vstat

contains the statistical uncertainty squared from Table 3 and
from the Table 3 in [14]. Vsyst includes all systematic uncer-
tainty contributions except the normalisation, see Eq. (15)
and Eq. (14) in [14]. For improved fit stability, the normali-
sation uncertainty is not included in theχ2 definition. Instead,
the uncertainty is propagated for each fit parameter. For this
purpose, the fit is repeated with −1 σ , 0 σ and +1 σ biases
independently in: global normalisation (1 σ = 4.2%), 90 m

data normalisation (0.08%) and 1000 m data normalisation
(0.25%). This gives a sample of 27 fit results, from which one
can estimate the propagated normalisation uncertainty of a
parameter as (max − min)/2, where “max” (“min”) is the
greatest (smallest) value in the sample. This normalisation
uncertainty is, at the end, added quadratically to the uncer-
tainty reported by the fit with no bias.

The fits have shown low sensitivity to several of the
choices presented above, summarised in the following list.

• Choice of the form factor in Eq. (16). The options con-
sidered in [31] have been tested, none of them giving any
significant difference with respect to the default choice
[38].

• Extension of the modulus of the nuclear amplitude to
the unobserved |t | region, see the last paragraph in
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Table 4 Fit results with
Nb = 1. Each column
corresponds to a fit with
different interference formula
and/or nuclear phase

SWY, constant Cahn/KL, constant Cahn/KL, peripheral

Step 1: χ2/ndf 48.0/27 = 1.78 48.1/27 = 1.78 27.7/27 = 1.03

Step 2: χ2/ndf 180.8/58 = 3.12 181.2/58 = 3.12 64.3/58 = 1.11

a (mb/GeV2) 533 ± 23 533 ± 23 551 ± 23

b1 (GeV−2) 19.42 ± 0.05 19.42 ± 0.05 19.74 ± 0.05

ρ 0.05 ± 0.02 0.05 ± 0.02 0.10 ± 0.02

ζ1 800

κ 2.311

ν (GeV−2) 8.161

σtot (mb) 102.0 ± 2.2 102.0 ± 2.2 103.4 ± 2.3

Sect. 6.1.2. No effect was observed when the high-|t | part
was altered (both shape and normalisation) nor when the
size of the transition region was changed.

• Use of the Cahn or KL formula. Only the latter will be
used in what follows to represent both of them.

• The two variants of the KL formula, Eqs. (25) and (26).
The latter will be used below.

• Fits with constant, standard and Bailly phase are practi-
cally indistinguishable. This can be expected from Fig. 15
showing that the corresponding CNI effects are very sim-
ilar. Therefore, in the remainder of this article, these
phases will be treated as a single family represented by
the constant phase.

One of the goals of this study is to probe the origin of the
differential cross-section non-exponentiality reported ear-
lier [14]. Therefore, the following two classes of fits were
considered.

• Section 6.3: fits with purely exponential nuclear modu-
lus, that is Nb = 1 in Eq. (17). In this case, the non-
exponentiality can come from the CNI effects only.

• Section 6.4: fits with nuclear modulus flexible enough to
describe the non-exponentiality without the CNI effects.
Here, the non-exponentiality may be due to the nuclear
modulus, CNI effects or both.

For each of these nuclear modulus cases, the following two
phase parametrisations were considered:

• constant phase, Eq. (18), as a representative of the central-
phases family,

• peripheral phase, Eq. (21) with parameters fixed to the
values in Eq. (22) to represent peripheral behaviour in
the impact parameter space.

In each case, the fit results are used to calculate the total
cross-section via the optical theorem:

σ 2
tot =

16π (h̄c)2

1 + ρ2
a. (28)

Note that unlike all previous total cross-section determina-
tions at LHC, in this article all the ingredients come consis-
tently from a single analysis.

6.3 Fits with purely exponential nuclear modulus

The goal of this section is to test whether the data are compat-
ible with a purely exponential nuclear modulus, i.e. Nb = 1
in Eq. (17). In other words, the non-exponentiality is forced
to originate from the Coulomb-induced effects. The fit results
obtained with the KL and (where applicable) SWY formulae
are summarised in Table 4 and graphically shown in Fig. 16.

Table 4 shows that both fits with constant phase are essen-
tially identical and have bad quality. The step-2 fit using both
β∗ = 1000 and 90 m data can be excluded with 7.6 σ sig-
nificance. Consequently, since the combination of Nb = 1
and constant phase is the only one compatible with the SWY
approach, that formula is experimentally excluded even on
the basis of only the low-|t | data set discussed here. This
result is complementary to the observation of a diffractive
minimum at

√
s = 8 TeV (to be published in a forthcoming

article) which also contradicts the assumptions of the SWY
formula.

Although the quality of the fit with the peripheral phase is
good, this option seems disfavoured from different perspec-
tives.

• There are several theoretical reasons for the nuclear com-
ponent not to be purely exponential, e.g. [39–42]. Indeed,
most elastic scattering models predict a non-exponential
nuclear modulus, see e.g. [31] and references therein.

• The value of ρ obtained in this fit may be regarded as an
outlier with respect to a consistent pattern of other fits
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Table 5 Fit results with Cahn or KL formula and Nb = 3

Cahn/KL, constant Cahn/KL, peripheral

Step 1: χ2/ndf 25.7/25 = 1.03 25.0/25 = 1.00

Step 2: χ2/ndf 57.5/56 = 1.03 57.6/56 = 1.03

a (mb/GeV2) 549 ± 24 549 ± 24

b1 (GeV−2) 20.47 ± 0.14 19.56 ± 0.13

b2 (GeV−4) 8.8 ± 1.6 −3.3 ± 1.5

b3 (GeV−6) 20 ± 6 −13 ± 5

ρ 0.12 ± 0.03 0.12 ± 0.03

ζ1 800

κ 2.311

ν (GeV−2) 8.161

σtot (mb) 102.9 ± 2.3 103.0 ± 2.3
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TOTEM indirect at = 7 TeV

this article, = 8 TeV

Fig. 18 Energy dependence of the ρ parameter. The blue (green) tri-

angles correspond to pp (p̄p) data from PDG [46] – note that most of
these points were determined with the help of the SWY formula, shown
to be inconsistent with the present data. The hollow red circle stands for
the earlier indirect determination by TOTEM [21]. The filled red circle

represents the two results from Table 5 which are numerically identical
within the resolution. The black curve gives the preferred pp model by
COMPETE [45], obtained without using LHC data

from this article and extrapolations from lower energies:
e.g. [43–45] and most models in [31].

Let us also recall that the good quality of this fit is possible
due to the more complex KL formula where the CNI effects
go beyond a simple additional phase in the traditional SWY
concept.

6.4 Fits with non-exponential nuclear modulus

The aim of this section is to discuss fits with enough flexibility
in the nuclear modulus to describe the non-exponentiality in
the data. Since a non-exponential hadronic modulus is used,
the only applicable interference formula is KL. Nb = 2 to 5

were considered. The optimal degree was chosen accord-
ing to two criteria: reasonable χ2/ndf and stability of fit
parameters (among which ρ is one of the most sensitive).
For instance, with constant phase the fit (step 1) with Nb = 2
yields χ2/ndf = 1.07 and ρ = 0.10 while the one with
Nb = 3 gives χ2/ndf = 1.03 and ρ = 0.12. Both fits have
the normalised χ2 reasonably close to 1, but the value of
ρ changes significantly between Nb = 2 and 3 which is
unexpected should Nb = 2 be sufficient. On the other hand
Nb = 4 gives χ2/ndf = 0.861 which is unreasonably low.
Therefore Nb = 3 was chosen.

As shown in Table 5, both fits have reasonable fit qual-
ity and remarkably consistent values of ρ (identical within
the resolution) which are compared to previous determina-
tions at lower energies in Fig. 18. Take note that the obtained
parameters for the nuclear amplitude (a and bi ) are consis-
tent between step 1 (β∗ = 1000 m data only) and step 2 (both
β∗ = 1000 and 90 m data) of the fitting procedure as already
mentioned in Sect. 6.2.

Fig. 17 shows that the level of Coulomb-induced effects
is very different in the fits. It is much stronger in the case
of the peripheral-phase, which can be expected as this phase
features a faster variation in the low-|t | region.

The total cross-section results from the two fits in Table 5
are well consistent with each other and also with previ-
ous measurements [14,22]. The slightly higher values with
respect to previous analyses neglecting the Coulomb interac-
tion are expected as long as ρ > 0. This gives negative inter-
ference at low |t | and when separated leads to an increase
of nuclear cross-section intercept a and thus also total cross-
section via Eq. (28).

It is interesting to study the fit behaviour in the impact-
parameter space. The scattering amplitude in this repre-
sentation (sometimes called profile function), P(b), can be
obtained from the nuclear amplitude by means of Fourier-
Bessel transformation (see e.g. [35]):

P(b) =
1

4p
√

s

0∫

−∞

dt J0

(
b
√

−t

h̄c

)

A
N(t),

normalised that σel = 8π

+∞∫

0

b db |P(b)|2, (29)

where σel is the integrated elastic cross-section. The pro-
file functions for the two fits from Table 5 are shown in
Fig. 19. The fit with constant nuclear phase gives a distri-
bution peaked at b = 0. It corresponds to a behaviour that
is more central than for the fit with peripheral phase, where
the amplitude modulus reaches maximum at b ≈ 1.2 fm.
These considerations can be extended to inelastic channels.
Following Section 3 in [35], one can calculate the mean val-
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Fig. 19 Square of the impact-parameter amplitude, P, as a function
of impact parameter, b. The two lines correspond to the fits in Table 5,
using the same colour code as in Fig. 17. The root-mean-squares of b

in the legend are calculated from Eq. (30)

ues of b2 for elastic (〈b2〉el), inelastic (〈b2〉inel) or all (〈b2〉tot)
collisions:

〈b2〉 j =
∫

b db b2 h j (b)
∫

b db h j (b)
, hel(b) = |P(b)|2

htot(b) = ℑP(b), hinel(b) = htot(b) − hel(b). (30)

Their values reproduced in Fig. 19 indicate that the fit with
constant nuclear phase leads to a picture with elastic colli-
sions more central than the inelastic ones. The hierarchy is
inverted for the fit with peripheral phase.

7 Summary and outlook

For the first time at LHC the differential cross-section of elas-
tic proton–proton scattering has been measured at |t |-values
down to the Coulomb–nuclear interference (CNI) region.
This was made possible by a special beam optics, a novel
collimation procedure and by moving the RPs to an unprece-
dented distance of only 3 σ from the centre of the circulating
beam.

To fit dσ/dt in the CNI region, several interference formu-
lae – Simplified West and Yennie (SWY), Cahn and Kundrát-
Lokajíček (KL) – were explored in conjunction with different
mathematical descriptions of the modulus and phase of the
nuclear amplitude as a function of t . The nuclear modulus was
parametrised as an exponential function with a polynomial of
degree Nb = 1 or 3 in the exponent. These two alternatives
allowed to test whether the nuclear modulus can be purely
exponential or more flexibility is required. For the phase
two options were considered, leading to different impact-
parameter distributions of elastic scattering events: a constant
phase implying a central behaviour, and another description

favouring peripheral collisions. The following conclusions
can be drawn.

• Purely exponential nuclear modulus (Nb = 1), constant
phase: excluded with more than 7 σ confidence. Since
this is the only combination compatible with the SWY
formula, the data exclude the usage of the formula.

• Purely exponential nuclear modulus (Nb = 1), peripheral
phase: the data do not exclude this option which, however,
is disfavoured from other perspectives.

• Non-exponential nuclear modulus (Nb = 3): both con-
stant and peripheral phases are well compatible with
the data, therefore the central impact-parameter pic-
ture prevalent in phenomenological descriptions is not
a necessity.

The ρ parameter was for the first time at LHC extracted
via the Coulomb–nuclear interference. In the preferred fits
(Nb = 3):

ρ = 0.12 ± 0.03. (31)

The new total cross-section determination is conceptually
more accurate than in all previous LHC publications since
the CNI effects are explicitly treated. Moreover, the value of
ρ comes from the same analysis, not from an external source,
which underlines consistency. The σtot values are very well
consistent among all non-excluded fits and compatible with
the previous measurements. As expected, the new determina-
tion yields slightly greater values relative to previous results
where the negative CNI was not taken into account. Also note
that if the SWY formula with purely exponential hadronic
modulus is used, the total cross-section is underestimated
by about 1 mb. A similar underestimation may occur if the
non-exponentiality is not taken into account [47].

For even stronger results in the future the key point is a
better distinction between the nuclear and CNI cross-section
components, which can be achieved from both theoretical and
experimental sides. New theory developments may narrow
down the range of allowed parametrisations of the nuclear
modulus and phase or better constrain the induced CNI
effects. The experimental improvements include increasing
statistics and reducing the lower |t | threshold. For the former,
TOTEM has already upgraded the RP mechanics such that
both vertical pots can be simultaneously placed very close
to the beam. For the latter, TOTEM foresees an optics with
extremely high β∗ ≈ 2500 m which would allow to reach the
CNI region even at Run II energies. Moreover, recent experi-
ence with the β∗ = 90 m optics at

√
s = 13 TeV shows that

very low beam emittances can be achieved, thus possibly
further reducing the RP distance from the beam.
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