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Measurement of Energy Expenditure in Elite Athletes
Using MEMS-Based Triaxial Accelerometers

Andrew J. Wixted, Student Member, IEEE, David V. Thiel, Senior Member, IEEE, Allan G. Hahn,
Christopher J. Gore, David B. Pyne, and Daniel A. James, Senior Member, IEEE

Abstract—Fitness development and performance assessment
of elite athletes requires an understanding of many physiological
factors, many of these are direct and indirect measures of athlete
energy expenditure. Many methods are physiological factor as-
sessments and require the athlete to be constrained by laboratory
equipment or periodic interruption of activity to take measure-
ments such as blood samples are required to be taken. This paper
presents a method that is entirely ambulatory and noninvasive,
using microelectromechanical systems (MEMS) accelerometers.
The commonly used output of commercial accelerometer-based
devices (known as “counts”) cannot discriminate activity intensity
for the activities of interest. This, in conjunction with variability
in output from different systems and lack of commonality across
manufacturers, limits the usefulness of commercial devices.
This paper identifies anthropometric and kinematic sources of
inter-athlete variability in accelerometer output, leading to an
alternate energy expenditure estimator based mainly on step
frequency modified by anthropometric measures. This energy
expenditure estimator is more robust and not influenced by many
sources of variability that affect the currently used estimator.
In this system, low-power signal processing was implemented
to extract both the energy estimator and other information of
physiological and statistical interest.

Index Terms—Accelerometer, biomechanics, energy expendi-
ture, gait analysis, signal processing, sports engineering.

I. INTRODUCTION

SPORTS scientists monitoring the energy usage of elite
athletes during training rely predominately on athlete

self-monitoring augmented by monitored training sessions and
traditional physiological measures such as heart rate and blood
lactate concentration. Self-monitoring relies on the athlete
recording their activities in a diary [1] and using a reference
table to estimate energy expenditure [2]. Estimating athlete
energy use during competition in field sports can be labor
intensive and involves video monitoring and manual activity
categorization. The availability of microelectronics devices
and microelectromechanical systems (MEMS), particularly
accelerometers provides an alternative, noninvasive method of
automatic monitoring activity.
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The purpose of this study was to establish methods for the es-
timating of energy use of football (rugby) players in training and
competition. MEMS accelerometers were chosen as the sensor
platform because they are unobtrusive, have wide bandwidth,
and can provide information pertaining to various activities of
interest such as walking, running, athlete orientation, and im-
pact contacts between athletes.

In most football codes, there is a high intensity of activity
in the general proximity of the ball, although the dynamic and
often chaotic nature of the play makes it difficult to easily char-
acterize player movements. For the majority of the game time,
most players are involved in relatively low intensity activity.
This low intensity activity is interspersed with short bursts of
high intensity activity followed by a recovery interval of variable
duration. The predominant movement activities are: stationary,
walking, jogging, running, sprinting, contacts (tackles, hit-ups,
and other challenges). For physiological monitoring, both the
duration at a particular intensity level and the temporal relation-
ship between activities are important determinants of the overall
physical load.

Due to the nature of competitive football, it is imperative
that any monitoring device is as small and unobtrusive as pos-
sible. With the current state of microelectronics and MEMS de-
velopment, the limiting factor on size and mass is the power
source. By characterizing and interpreting the biomechanical
activity as it relates to estimated energy expenditure, appropriate
low-power signal processing algorithms have been developed.
Simplified signal processing has reduced the processor load en-
abling a reduction in battery size.

A. Accelerometers as Energy Estimators

In 1960, Coates and Meade [3] correlated an individual’s
walking energy expenditure with the vertical distance of the
trunk movement. There was a high correlation ( )
between volume of oxygen (VO ) consumed and a factor
consisting of the vertical displacement, the step frequency,
and the subject’s mass. In 1978, Reswick et al., [4] using
a head mounted accelerometer, found that during walking,
the integral of the vertical acceleration correlated with the
lift per step and subsequently with VO . Montoye et al. [5]
(1983) developed a small portable uniaxial accelerometer
and undertook a comparison between the accelerometer, VO
and mercury switches. Subjects randomly worked through
a series of physical activities chosen for their similarity to
daily activities. The accelerometer output proved to be highly
reproducible and, across the combined activities had moderate
to high individual and group correlations with VO ( ,
individual – , mean , group ).

1530-437X/$25.00 © 2007 IEEE



482 IEEE SENSORS JOURNAL, VOL. 7, NO. 4, APRIL 2007

Commercial devices became available in the 1990s and
from this time onwards, the vertically mounted uniaxial ac-
celerometer was widely used in studies of energy expenditure
in free-living subjects. The more recent appearance of triaxial
accelerometers has resulted in a range of studies comparing tri-
and uniaxial accelerometers and various electronic pedometers,
to evaluate their effectiveness as valid and reliable measures
of energy expenditure [6]. The output of these commercial
devices is a form of the integral of the vertical acceleration
measured over a period of time and is commonly referred to as
“counts.” The counts output is not directly comparable across
manufacturers [6], the counts output varies depending on the
device location [7], and there can be considerable variation
in counts from devices from the same manufacturer when
tested on a testbed [8] or in the field [9]. Manufacturers may
provide a conversion factor to convert from counts to calories
or kilojoules.

For elite athletes and many recreational athletes, fitness
training is graduated but traditional monitoring systems are
often unable to discern the various levels of intensity outside
of laboratory testing. Activities from a slow jog to sprinting
may erroneously return the same accelerometry output leading
to counts above a particular threshold simply being labeled
“vigorous” (see [10]).

While various commercial uniaxial and triaxial accelerom-
etry devices are available and group results may exhibit some
correlation with energy expenditure, individual results can vary
widely. For this research, it was originally hypothesized that
the energy efficiency of a runner’s technique may be discern-
able in the kinematic data from a triaxial accelerometer plat-
form. Through experiments and analysis, we sought to estab-
lish whether variations in technique factor are responsible for
the inter-subject variability shown in the acceleration integral.

II. EXPERIMENTAL DESIGN

Two separate treadmill studies were conducted in this
project. First, ten male Australian football players walked
and ran using their natural cadence at ten speeds on a mo-
torized treadmill. These athletes were monitored by a triaxial
accelerometer system fixed into a semi-elastic belt, fastened
around the subject’s waist. This placement ensured that the
sensor was pressed into the L4–L5 medial lumbar vertebra
region of the runner, a site approximating the subject’s center
of mass. The accelerometer axes were aligned with the vertical,
mediolateral, and anterior–posterior axes of the subject. The
second study involved ten mixed gender recreational athletes
and was conducted in a similar manner to the first. In this study,
the athletes were also monitored continuously during exercise
for oxygen consumption (VO ) using respiratory gas analysis
from an open-circuit calometric system. Mass, height, and leg
length of the athletes were recorded at the time of the tests.

A. Hardware

Two dual axis, MEMS analog devices accelerometers
(ADXL202E [11]), tested as having an overload in excess of

, were mounted to the surface of a data acquisition module
and aligned perpendicular to each other thereby creating a

Fig. 1. Data acquisition system components.

triaxial accelerometer system. These devices were chosen for
their availability, small dimensions (5 5 2 mm die-size
packaging) and long-term stability, requiring only a single
calibration. Calibration of offset and sensitivity of the triaxial
accelerometer system was performed using an inertial refer-
ence calibration technique proposed by Lai et al. [12]. The
accelerometers formed part of a general-purpose sealed athlete
monitoring system. This system comprised of a Hitachi H8
microcontroller based acquisition board running a low-power
real-time operating system [13], Infrared (IR) communications
circuitry and a power board with inductive charging circuits
and batteries [14] (Fig. 1). The data acquisition board com-
prised of the minimal components necessary for the sampling
system, so as to minimize the mass of this subsystem and the
possible influence of this unit on the detected acceleration
signal. Accelerometers were sampled at 150 Hz using the
microcontroller’s 10-bit analog-to-digital converters and data
was logged to an internal 32-Mbyte flash memory card. At
this sampling rate, the memory was sufficient for 16 h of raw
data or approximately 48 h of compressed data. Up to ten
separate training or competition sessions were recorded prior to
downloading via the IR link. The motorized treadmill and the
respiratory gas open-circuit calometric system were in-house
custom built systems developed by the Physiology Department
at the Australian Institute of Sport (AIS).

III. ANALYSIS PHASES

Analysis of the collected data occurred in several distinctive
phases as the information was assimilated. Initial processing
was performed to collect basic data and to confirm the opera-
tion of the system when compared to results from other systems
in similar experiments. The second phase identified the ways
in which individual results varied, using both the processed re-
sults and the raw signal data. The final analysis phase identified
anthropometric or biomechanical correlates of the variation in
accelerometry output. The understanding of the biomechanical
contribution to the sensor data and its relationship to the phys-
iological effects on the athlete allowed for the simplification of
the signal processing necessary to extract the primary informa-
tion of interest.

A. Initial Processing

Post-processing of the logged raw data was used to: confirm
the functioning of the system, identify the factors that impacted
the accelerometer signal, and to exploit the signal subsequently
obtained. VO processing was performed as outlined in [15].
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Fig. 2. Dynamic ambulatory signal for athlete running at 13 kmh . The pre-
dominate signal is the vertical acceleration. Left–right asymmetry is apparent.
Traces are individual to an athlete.

Fig. 3. Accelerometer processing flow diagram showing key outputs for further
processing.

The raw triaxial acceleration signal was split into orientation
and ambulatory signals. The orientation of the sensor was ex-
tracted using a low-pass 0.9-Hz Hamming windowed finite-im-
pulse response (FIR-H) filter. After subtracting the orientation
signal, the remaining signal contained the dynamic ambulatory
signal (Fig. 2). Using the orientation signal as input to a rota-
tional tensor, the data was rotated to ensure the vertical axis
had an average vertical orientation. Fig. 3 shows the process
flow. Uniaxial energy estimators were generated for all three
axes using the integral of the square of the acceleration signals
(summing the square of the analog-to-digital converter output
after removing the device offset and gravity) while the triaxial
energy estimator used the integral of the sum of the squares of
the signals from the three accelerometers. The estimate of en-
ergy expenditure was taken as a 10-s average from a period of
steady-state walking or running at each speed. This energy esti-
mator is referred to as “Accelerometer Counts.” Step frequency
was automatically estimated using the interval between succes-
sive positive zero crossings in the vertical acceleration. Step fre-
quency was also manually calculated by counting the cycles in
the vertical acceleration in the 10-s segment used for the above
process. During walking at the lower speeds, for some athletes
there was no clearly defined acceleration cycle. In these cases,
steps were counted from a digital video recording of the test ses-
sion.

1) System Confirmation Results: Results from this pro-
cessing were similar to results from other studies such as
[16], which combined high-speed treadmill running with
uniaxial accelerometer and VO analysis. Some aspects of
[6] were also comparable, this study compared a variety of
accelerometer-based devices against VO but speeds only went
to approximately 13 kmh .

Fig. 4. Step frequency versus speed for trial one.

Regression analysis of speed against energy estimates from
VO (corrected for the subject’s mass), gave a correlation coef-
ficient of ( in [16] and in [6]). Tri-
axial and vertical-uniaxial accelerometer counts correlated with
walking speed ( , ). Uniaxial accelerom-
eter counts at running speeds varied widely between individuals
and gave no useful correlation with speed Fig. 5(a). During run-
ning, the standard deviations shown in Fig. 5(a) were approx-
imately 22% of the mean for uniaxial counts and 15% of the
mean for triaxial counts. The lowest individual uniaxial result
over the running speeds 11–21 km was 50% lower than the
highest (approximately 2500 versus 5000 counts). For uniaxial
counts—only one athlete recorded peak counts at 21 kmh ,
most peaked at 15–17 kmh . The uniaxial result of Fig. 5(a) is
graphically similar to that of [16].

Triaxial accelerometer counts at running speeds gave a range
of individual correlations with substantial inter-subject variation
(Fig. 5(a) & (b)). Triaxial counts were higher than the corre-
sponding uniaxial counts and tended to give a more linear indi-
vidual running response. The increased counts appeared to be
due to capturing more of the athlete’s activity, while the linear
response appeared to be due to recapturing of vertical accel-
eration signal—otherwise lost as a result of biomechanical ac-
tivity tilting the sensors and robbing signal from the vertical ac-
celerometer.

Across both trials, step frequency had strong correlation with
speed ( , in [16]), with walking having
a stronger step-frequency to speed correlation ( )
than running ( ). Individual results with running and
walking treated separately were in the range – .
Walking and running gave two distinctly different step-fre-
quency to speed responses (Fig. 4).

For individuals, step-frequency correlated highly with mass-
adjusted VO energy estimates ( – ). In contrast,
however, the group results were far weaker ( ).

2) Experimental Observations: During this process, these
observations were noted.

1) Using an effectively unlimited sensor bandwidth, im-
pulse signals exceeded the limits of this device ( ).
These spikes, together with an unknown sensor re-
covery time, make accelerometer counts unreliable. The
high-amplitude signal was confirmed using higher rated
sensors. It is not known how, or if, this impulse signal
affected other accelerometer-based, monitoring devices
although this question is raised in [16], commenting
that the acceleration measured by force plates exceeded
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Fig. 5. (a) Vertical-uniaxial and triaxial accelerometer counts for walking and running with �1SD bars. (b) Individual results for athletes with the highest and
lowest triaxial accelerometer counts. Dashed trend lines are included in the figure. (c) Gait cycle normalized, multispeed, vertical acceleration signal for the four
athletes in (b) (left foot only).X-axis degrees indicate the proportion of stride cycle (complete left/right step~ combination= 360 degrees). For athletes 1 and 7,
the magnitude was consistent across all running speeds (with occasional outlying traces). For athletes 4 and 9, the magnitude consistently increased as running
speed increased. The arrows indicate the change in the acceleration as running speed increased (athletes 4 and 9 only) [17].

the rating of the accelerometer-based device used in that
testing. It is possible to use an infinite impulse response
(IIR) filter to remove the overload spike however this
form of filtering applies different attenuation factors
at different step frequencies, impacting the output of
the accelerometer count function. Other researchers
have attempted to overcome the effects of filtering by
applying step frequency-based correction factors [16].

2) Walking and running gave distinctly different signal sig-
natures.

3) For many athletes at very low walking speeds, the step
frequency was not discernable in either the time or the
frequency domains.

4) Accelerometer counts from the mediolateral channel
gave strong individual correlations with speed
( – , average , group ).
This did not appear to be recorded in the literature.
Although this appears useful, the horizontal plane ac-
celerometers are highly susceptible to misalignment
errors due to gravity.

B. Analysis of Accelerometer Results

From Fig. 5(b), individual variations in both slope and
magnitude were observed. As the predominant source of signal
power is the vertical accelerometer, the acceleration signal for
this channel was investigated. An FIR-H filter was used to re-
move signal above twice the step frequency, multiple left/right
step pairs were averaged at each speed and gait cycle normal-
ization was used to directly compare signals from different step
frequencies. The output of this processing Fig. 5(c), identified
characteristics of the vertical acceleration that corresponded
with the slope of the accelerometer counts of Fig. 5(b). The two
athletes of Fig. 5(b), with relatively flat accelerometer counts,
athletes 1 and 7, exhibited consistent vertical acceleration
across all running speeds in Fig. 5(c) whereas athletes 4 and
9, exhibited both increased vertical acceleration and increased
accelerometer counts as running speed increased. The slope
of the Fig. 5(b) regression lines was therefore an indicator of
this characteristic. It should be noted that while the change in
magnitude in vertical acceleration may account for the slope of

the triaxial accelerometer counts, the biomechanics of athletes
4 and 9 is such that the contribution of the medio-lateral and
anterior-posterior activity causes the triaxial counts of 4 and
9 to exceed those of athletes 1 and 7 even though the vertical
acceleration does not.

In the following analysis of running data, 9 kmh was used
as a reference point as all athletes were using a running action
by this speed.

Fourier analysis of the running signal identified that for most
test subjects, almost the entire signal from the vertical channel
was located at the step frequency. Assuming the signal was si-
nusoidal, the following equations applied:

(1)

(2)

where is the maximum amplitude of the signal, is the step
frequency, is the displacement as a function of time, and
is the acceleration as a function of time.

Based on this assumption, acceleration and accelerometer
counts were functionally related to the physical displacement
of the athlete’s body and the step frequency. Normalizing 9
kmh accelerometer counts by the average 9 kmh step
frequency using (3) gave an estimated relative displacement
factor Fig. 6(a). Referring to this factor as displacement was
a matter of convenience and no separate measure was per-
formed to confirm this estimate. This result did indicate that
the acceleration counts were proportional to a factor other than
step-frequency. A comparison of the average magnitude of the
9–21 kmh triaxial accelerometer counts of Fig. 5(b) to the
9 kmh step-frequency appears in Fig. 6(d). This indicated a
strong relationship between the 9 kmh step frequency and
the overall magnitude of the accelerometer count results

RD (3)

All values are for the designated speed (9 kmh ). RD is
the relative displacement of athlete “ ,” is the step frequency
for athlete “ .” The step-frequency factor used the power of
as acceleration (2) used the square of the frequency and counts,
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Fig. 6. Scatter plots and regression analysis for (a) relative estimated vertical displacements at 9 kmh (after normalizing for step frequency) versus accelerom-
eter counts; (b) step frequency at 9 kmh versus leg-length; (c) relative vertical displacement at 9 kmh (after normalizing for step frequency) versus leg-length;
and (d) step frequency at 9 kmh versus average running accelerometer counts [17].

as used in this analysis, used the square of acceleration over a
second.

1) Summary of Accelerometer Data Analysis: Accelerometer
counts for running speeds were affected by the following:

1) initial running step frequency,
2) physical displacement (assumed),
3) an individual biomechanical factor, estimated by the slope

of the accelerometer counts versus speed regression line.

C. Anthropometric and Biomechanical Analysis

The relationship between submaximal energy expenditure,
speed, and the mass of an athlete is well understood with regres-
sion analysis returning correlation coefficients similar to those
observed in this study ( ). This phase of the investiga-
tion analyzed the effect of anthropometric factors of leg-length
and mass on the step-frequency and relative displacement of the
athlete.

From regression analysis, body mass did not appear to affect
the initial step frequency, the 9 kmh relative displacement,
or the slope of the accelerometer count regression line. How-
ever, mass did affect the slope of the individual’s step-frequency
versus speed regression lines with a correlation coefficient of

.
Leg length had a negative correlation to 9 kmh step fre-

quency ( , Fig. 6(b)) and to the slope of the accelerom-
eter count regression line for running ( ). Conversely,
leg length had a positive correlation to estimated 9 kmh rel-
ative displacement ( , Fig. 6(c)). The combined effect
of a negative correlation of leg length on step-frequency and
a positive correlation to displacement is confounding. Presum-
ably, longer legs tend to reduce step-frequency and at the same
time increase displacement. Applying these results to Fig. 5(c),
the relatively consistent amplitude of the vertical acceleration
signals of athletes 1 and 7, was attributable to their longer legs.
The steadily increasing acceleration of athletes 4 and 9 may be
attributable to their shorter legs. The overall magnitude of the
triaxial acceleration counts of Fig. 5(b) appeared to be primarily
governed by initial step-frequency.

Considering the influence of leg length on various biome-
chanical factors with the effect of mass on step-frequency and
energy, various predictor equations were tested. A simple linear
predictor incorporating leg length, step-frequency, and mass re-
sulted in a strong group correlation with the energy estimated

Fig. 7. Normalized leg-length adjusted step-frequency versus normalized mass
adjusted energy, with trend lines and correlation coefficients [17].

from VO . This predictor gave a group correlation coefficient
for running of (Fig. 7), a large improvement from

. It should be noted that leaving mass out of the pre-
dictor gave a step-frequency, leg length, and VO energy esti-
mate correlation of .

D. Summary of Physiological, Biomechanical, Anthropometric,
and Accelerometer Signal Analysis

For ambulatory activity, leg-length, mass, and natural step-
frequency combined to generate a good submaximal energy es-
timator. As two of these factors are constants, signal processing
only needs to determine step-frequency. Since accelerometer
counts have been shown to give a linear response at walking
speeds and for low-intensity activities, a combined approach is
possible. Table I indicates a software table-based approach to
the processing required.

IV. EMBEDDED SYSTEM SIGNAL PROCESSING

While the foregoing discussion deals specifically with ex-
tracting the energy estimator, the total system incorporates ad-
ditional functionality such as contact/tackle and orientation in-
formation. For this analysis, orientation was derived using a
comparison of the output of the 0.9-Hz low-pass filter and the
“steady-state” orientation. Athlete contacts appear as a band of
intensity of accelerometer counts above the running band. The
necessary processing is a small extension of the table driven ap-
proach and is indicated in Table I. High-intensity accelerometer
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TABLE I
ENERGY ESTIMATION AND ACTIVITY CLASSIFICATION [17]

counts indicate activities such as jumping, high intensity in con-
junction with off-normal angle indicates hard contact, near-hor-
izontal angle and low-intensity activity indicates the player is
down on the ground.

A. Signal Processing Simplifications

The largest contributors to the processing cost of this system
were sample rate, the triaxial processing, and the FIR-H filter.
Previously collected 150-Hz data sets were reprocessed using
sample rates of 30, 25, 20, and 15 Hz in conjunction with dif-
ferent approaches to filtering. The system outputs were ana-
lyzed to ascertain if the results were consistent with the original
system. Where possible, calculations were performed as integer
calculations with the sample data, after offset removal, handled
as 8-bit data.

Required Outputs:
• Accelerometer Counts
• Step Frequency
• Instantaneous and Steady State Orientation
In addition to the FIR-H filter, reprocessing was performed

using two other systems. In the first case, the FIR-H orienta-
tion filter was replaced using a first-order lag calculation. In
the second case, the FIR-H filter was replaced with a rectan-
gular FIR (rolling average) filter (FIR-R) to extract the orienta-
tion signal. To minimize RAM memory requirements, the FIR-R
filter length was of approximately 2–s duration. This filter had
a very low processing cost compared to the FIR-H filter. A long
duration first-order lag was used to estimate steady-state orien-
tation.

B. Results From Simplified Processing

In all cases, regression analysis gave a worst case (15-Hz)
correlation coefficient for triaxial accelerometer counts versus
walking of . Higher sampling rates improved this re-
sult. Uniaxial results gave a worst case (15-Hz) correlation co-
efficient of . In each reprocessing test, the 3 kmh
uniaxial accelerometer counts were tightly clustered with the
results spreading as speed increased to 7 kmh . Clearly distin-
guishable thresholds between stationary, walking, running, and
impacts were still evident.

Step-frequency resolution decreased significantly as sample
rate decreased. This limitation could be partly resolved by aver-
aging the frequency estimate of successive steps. The original

algorithm estimated step-frequency using the integer count of
samples between successive positive zero crossings. As an alter-
native to averaging, the zero-crossing detection algorithm was
modified to provide a linear interpolation of the zero-crossing
point. The separation between successive zero crossings was
then reported with a fractional component. At 15-Hz sampling,
the modified algorithm gave step-frequency estimates very
closely approximating the original 150-Hz results. As sprint
step frequencies are higher than those of the running speeds
tested, a sample rate of 24 Hz was seen as a more appropriate
sample rate. A beneficial effect of reduced sample rates was the
ability to simplify step-detection processing.

Orientation estimations from the alternate filters degenerated
with reduced maximum angle values and increased noise. This
was not a serious limitation and the noise value did not approach
any decision threshold. The reduced maximum values still ex-
ceeded the appropriate decision threshold. As a negative side
effect of the lower quality output of the orientation filter, the ac-
celerometer counts output increased considerably during con-
tact and during significant changes in orientation.

Processing in both the FIR-R and first-order lag-based sys-
tems saw a reduction in the overlap between accelerometer
counts and orientation angle during player contacts. This makes
the differentiation between high-intensity activities such as
jumping and contact less precise.

Compared to uniaxial, triaxial accelerometer counts give im-
proved results, although this may not necessarily translate into
better system results. The vertical accelerometer is the main
signal source, the source of the step-frequency information and,
while the athlete is upright, includes the 9.8 ms signal due
to gravity. Almost all the required information can be derived
from the vertical accelerometer alone; however, in the absence
of the FIR-H filter the additional cost of triaxial processing is
not a concern.

C. Complete Embedded Processing System

The complete energy expenditure estimate signal processing,
comprises three accelerometers sampled at 24 Hz with data
stored in a 44 byte by three-channel circular buffer. The buffer
holds approximately 1.9 s of data and forms the basis of an
FIR-R orientation filter. The oldest value in the buffer is sub-
tracted from a rolling average calculator prior to overwriting it
with the latest sensor value. All subsequent processing occurs
with an built-in 0.9-s latency using the 23rd sample back from
the newest sample.

The above triaxial sample value is used to generate or detect:
1) steady-state triaxial orientation using a long duration first-
order lag, 2) current dynamic acceleration by subtracting the
orientation filter value, 3) triaxial accelerometer counts, and 4)
negative to positive zero crossings on the vertical axis.

Accelerometer counts are summed in 0.25-s blocks (six sam-
ples) and 1-s blocks and compared to threshold values stored
in a table. Angle is monitored on the vertical channel by com-
paring the FIR-R output to the steady-state first-order lag output.
Angles are only calculated if the accelerometer counts or the
vertical orientation signal exceeds preset thresholds. Step-fre-
quency is calculated if indicated by the triaxial accelerometer
counts.



WIXTED et al.: MEASUREMENT OF ENERGY EXPENDITURE IN ELITE ATHLETES USING MEMS-BASED TRIAXIAL ACCELEROMETERS 487

D. Results

With no comparable system performing the same analysis, re-
sults have been assessed using comparisons to video data, phys-
iological and biomechanical data from treadmill and track run-
ning, as well as comparison to manually categorized football
data.

Generated step-frequencies from different activities matched
those calculated manually. Discrepancies existed between the
system output and the manually categorized data. This was iden-
tified and attributed to operator delay, operator error, and oper-
ator choices, for instance; short duration changes of athlete ac-
tivity tended to be ignored by the operator.

This signal processing is considerably less intensive than the
original system allowing the operating frequency of the micro-
processor to be dropped to a few hundred kilohertz with a sub-
sequent reduction in current draw.

Note that this system is designed for open field sports, it is
not suitable for monitoring court-based sports such as basketball
and tennis, where run lengths are short and there is high lateral
acceleration and strenuous upper body activity. Thus, properly
calibrated for individual athletes the techniques and instrumen-
tation described provide a reliable means of determining athlete
energy

V. CONCLUSION

The investigation and analysis of the variance of accelerom-
eter-count based energy estimates identified mechanical, biome-
chanical, and anthropometrical influences. By modifying the
signal processing, a combined counts and step-frequency en-
ergy estimator can be extracted which has a higher immunity to
detrimental influences and which, when combined with anthro-
pometric measures, greatly improve the energy estimates gath-
ered for core athlete activity.
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