MEASUREMENT OF FLOW RATE OF PARTICULATE SOLIDS IN SOLID-LIQUID MIXTURES*

MOMPEI SHIRATO, KEISHI GOTOH, KUNIHISA OSASA AND ISAO USAMI
Department of Chemical Engineering, Nagoya University, Nagoya

Abstract

Although N. Brook has mentioned in his research on flow measurements of particulate solid-liquid mixtures that the flow in vertical pipes should be modified by slip between the particles and the water, the slip effect has not been taken into account.

In this paper, theoretical and experimental methods are presented for measuring the flow rate of particulate solids in solid-liquid mixtures in view of the slip velocity by using vertical connected pipes of two different diameters. It is shown that the slip velocity can be calculated by measuring the difference between the transport concentrations of solids in two pipes resulted from the difference in the particle velocities in each pipe. The velocity of liquid is measured by an electro-magnetic flow meter and the flow rate of particulate solids is calculated theoretically. Reasonable coincidence between theories and experiments are reported.

Two phase flow of solid-liquid mixtures in pipes occurs on a universal scale especially in chemical industries. Most of previous works have been done on homogeneous slurries of extremely fine particles-liquid mixtures which present no special problems other than those associated with viscosities and densities. Although most of the published works on hydraulic conveying of particulate solids are concerned with flow in horizontal and inclined pipes ${ }^{47}$, Newitt et al. ${ }^{5)}$ have demonstrated that there are some features of vertical flow which are of theoretical and practical importance.

Small particulate solids, say, $0.1 \sim 3 \mathrm{~mm}$ in diameter, tend to form a heterogeneous mixture with water, but they can be hydraulically conveyed at an appropriate velocity ${ }^{1)}$. Although Brook ${ }^{11}$ has reported on flow measurement of particulate solid-liquid mixtures using a venturimeter of a non-standard type and a vertical counterflow meter and has mentioned that the flow in vertical pipes should be modified by slip between the particles and the water because the particles are usually denser than water, the slip effect has not been taken into account.

The authors are inclined to believe that particulate solidliquid flow is to be measured more preferably in a vertical pipe rather than in a horizontal pipe in order to avoid sedimentation and blockage at a feasible flow velocity. In this paper, theoretical and experimental methods are presented for obtaining the slip velocity by using vertical connected pipes of two different diameters. It is shown that the slip velocity can be calculated by measuring the difference between the solid concentrations in two pipes resulted from the difference in the particle velocities in each pipe, without taking the mixtures outside from the pipes. The velocity of liquid is measured by an electromagnetic flow meter and the flow rate of particulate solids is calculated. Reasonable coincidence between theories and experiments are reported.

Basic Concepts

Transport Concentrations in Vertical Connected Pipes of Two Different Diameters: Because particulate solids hydraulically conveyed in a vertical pipe tend to settle, they move with an average velocity u_{p}, which is lower than the velocity of water u. In view of the tendency of particles to settle, it is apparent that the transport concentration in a vertical pipe, C, is larger than the delivered concentration C_{d}, and that the velocity of water in the pipe, u, is also larger than the average velocity of the mixture, u_{m}.
In consideration of the slip velocity $u_{s}=u-u_{p}$ in hydraulic conveyance in a vertical pipe, the mass balances of solids and liquid can be written as

$$
\begin{align*}
& A C_{d} u_{m} \rho_{s}=A C u_{p} \rho_{s}=A C\left(u-u_{s}\right) \rho_{s} \tag{1}\\
& A\left(1-C_{d}\right) u_{m} \rho_{l}=A(1-C) u \rho_{l} \tag{2}
\end{align*}
$$

where A represents the cross sectional area of a pipe, u_{s} the slip velocity, ρ_{s} the true density of solids, ρ_{l} the density of liquid, and C and C_{d} are the volumetric concentrations. Combining the above equations leads to

$$
\begin{equation*}
C=\frac{C_{d}}{1-\left(1-C_{d}\right) \frac{u_{s}}{u}} \tag{3}
\end{equation*}
$$

In order to develop an expression which relates u_{s} to the transport concentrations in two vertical pipes of different diameters connected each other as shown in Fig. 1, the basic mass balance Eqs. (1) and (2) may be placed in the form

$$
\begin{align*}
& W_{s}=A_{1} C_{1} \rho_{s}\left(u_{1}-u_{s}\right)=A_{2} C_{2} \rho_{s}\left(u_{2}-u_{s}\right) \tag{4}\\
& W_{l}=A_{1}\left(1-C_{1}\right) \rho_{l} u_{1}=A_{2}\left(1-C_{2}\right) \rho_{l} u_{2} \tag{5}
\end{align*}
$$

for Lines I and II. In Eqs. (4) and (5), u_{s} in each line is assumed constant under a given condition, and W_{s} denotes the mass flow rate of solids, W_{l} the mass flow rate of liquid, and the subscripts 1 and 2 refer to Lines I and II, respectively. Substituting for u_{2} from Eq. (5) into Eq. (4) gives

$$
\begin{equation*}
u_{s}=\frac{m\left(C_{1}-C_{2}\right)}{\left(1-C_{2}\right)\left(m C_{1}-C_{2}\right)} u_{1} \tag{6}
\end{equation*}
$$

where m is the ratio defined by $m=A_{1} / A_{2}$. When the
values of C_{1}, C_{2} and u_{1} are known, the slip velocity u_{s} can be calculated from Eq. (6).

Total Pressure Difference along Vertical Pipe: It is well known that the electro-magnetic flow meter is available only for measuring the velocity of liquid u_{1} with no relation to the flow rate of solids in a solid-liquid mixture provided the solids in the mixture are not magnetically active ${ }^{2)}$. The transport concentrations, C_{1} and C_{2} in Eq. (6), can be obtained by measuring the pressure differences mentioned below, or by the methods based upon the electrical properties of a flowing mixture ${ }^{7 \text {) }}$ or a γ-ray densimeter.
When a solid-liquid mixture is flowing in a vertical pipe, the pressure difference Δp_{m} between two points of their distance L may consist of three terms, one of them being the pressure difference Δp_{n} due to the density of the mixture, one the pressure difference Δp_{w} due to the pipe-wall friction of liquid, and the other the difference Δp s due to the additional pressure loss consumed in conveying the particulate solids.

$$
\begin{equation*}
\Delta p_{m}=\Delta p_{n}+\Delta p_{w}+\Delta p_{s} \tag{7}
\end{equation*}
$$

It has been pointed out that the contributions of liquid and solids to the total pressure difference are not independent, since the presence of the solids is to modify the flow pattern ${ }^{5}$. In this paper, however, emphasis is placed on obtaining a mathematical tool without making the analysis unduly complex, and the assumption of an additive expression may be justified as a first approximation ${ }^{6)}$. In addition to the assumption mentioned above, the pressure loss due to the friction of solids is neglected in accordance with the previous works ${ }^{5}$) vertical conveyance in the flow regions of Allen (transition region) and Newton (turbulent region).

The energy E_{s} given to the solids which are hydraulically conveyed at an average velocity $u_{p}\left(=u-u_{s}\right)$ can be represented by

$$
\begin{equation*}
E_{s}=A L C \frac{g}{g_{c}}\left(\rho_{s}-\rho_{l}\right)\left(u-u_{s}\right) \tag{8}
\end{equation*}
$$

for a vertical distance L. By reference to the above definition of Δp_{s}, the energy consumption E_{l} of liquid having the average true velocity u due to the additional pressure loss is given by

$$
\begin{equation*}
E_{l}=A \cdot \Delta p_{s} \cdot u \tag{9}
\end{equation*}
$$

Equating E_{s} to E_{ι} gives

$$
\begin{equation*}
\Delta p_{s}=L C \frac{g}{g_{c}}\left(\rho_{s}-\rho_{l}\right)\left(1-\frac{u_{s}}{u}\right) \tag{10}
\end{equation*}
$$

The remaining terms in Eq. (7) may be conventionally written as

$$
\begin{align*}
\Delta p_{l} & =L C \frac{g}{g_{c}}\left(\rho_{s}-\rho_{l}\right) \tag{11}\\
\Delta p_{l} & =\lambda \frac{L}{D} \frac{\rho_{t u^{2}}}{2 g_{c}} \tag{12}
\end{align*}
$$

where λ is the Fanning's friction factor and D is the diameter of the pipe. Substituting Eqs. (10), (11) and (12) into Eq. (7), one obtains

$$
\begin{equation*}
\Delta p_{i s}=\lambda \frac{L}{D} \frac{\rho_{i} u^{2}}{2 g_{c}}+L C \frac{g}{g_{c}}\left(\rho_{s}-\rho_{t}\right)\left(2-\frac{u_{s}}{u}\right) \tag{13}
\end{equation*}
$$

Applying Eq. (13) to flow in Lines I and II and rearranging yields

$$
\begin{equation*}
C_{1}=\frac{\Delta p_{m 1}-\lambda \cdot \frac{L_{1}}{D_{1}} \cdot \frac{\rho_{i} u_{1}^{2}}{2 g_{c}}}{L_{1} \frac{g}{g_{\mathrm{c}}}\left(\rho_{s}-\rho_{l}\right)\left(2-\frac{u_{s}}{u_{1}}\right)} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2}=\frac{\Delta p_{m_{2} 2}-\lambda \cdot \frac{L_{2}}{D_{2}} \cdot \frac{\rho_{l u_{2}}^{2}}{2 g_{c}}}{L_{2} \frac{g}{g_{c}}\left(\rho_{s}-\rho_{l}\right)\left(2-\frac{u_{s}}{u_{2}}\right)} \tag{15}
\end{equation*}
$$

Eqs. (14) and (15) give the relationship between the transport concentration C and the total pressure difference Δp_{m} measured across the distance L. The values of $\Delta p_{m 1}, \Delta p_{m 2}, u_{1}$ and u_{2} being known, the slip velocity u_{s} can be calculated by substitution of Eqs. (14) and (15) into Eq. (6). The value u_{s} being known, the transport concentrations C_{1} and C_{2} can be determined on the basis of Eqs. (14) and (15), and the flow rate of particulate solids W_{s} can be obtained by calculation based upon Eq. (4).

Experimental Procedure and Results

Experimental Equipment The equipment of a close circuit unit schematically shown in Fig. 1 is used for this investigation. The solids-liquid mixture is fed to a centrifugal pump (2) specially designed for hydraulic conveyance of solids from a feed tank (1) with a stirrer. From the pump, it traverses control valves (3) and an electromagnetic flow meter (4) into measuring Lines, (5) and (6). The flow from the connected test pipes returns to the feed tank (1) via a head hopper (7).
The test line of two connected acrylic pipes is employed, one consisting of a 24.8 mm diameter pipe and the other of a 17.1 mm diameter pipe, the ratio $m\left(=A_{1} / A_{2}\right)$ being 2.17. The pressure measurements are performed at 1.6

Fig. 1
Schematic view of experimental apparatus
mm in diameter holes drilled in the walls of pipes fitted with traps for solids with two differential carbon tetra-chloride-water manometers. For excluding the acceleration effects, the pressure tapping in Line II is installed at a sufficient distance apart from the reducing area section of the test line.

In order to obtain the experimental values of flow rates of solids, the delivered concentrations are measured by diverting the return flow to the feed tank.

Accelerating Distance of Solids The particulate solids in Line I flow in Line Π at their final equilibrium velocity $u_{p 1}\left(=u_{1}-u_{s}\right)$. The acceleration distance S necessary for reaching 99.9% of the final equilibrium velocity $u_{p 2}\left(=m u_{1}-u_{s}\right)$ of solids in Line II can be calculated by solving the equation of motion of a particle vertically conveyed ${ }^{3)}$. Plots of S for various values of m are shown in Fig. 2 as a function of u_{1} / u_{s}.

In making the experiments for this study, the ratio m is 2.17 and the ratio u_{1} / u_{s} ranges from a little more than 1 to 4 . Whereas Fig. 2 indicates 30 cm of the maximum distance, the sufficient distance of 50 cm is used for the apparatus.

Particulate Materials for Experiments Silica sands (Soma Standard Sands) are separated into three classes by successive Tyler Stand. Sieves of $10 \#, 20 \#, 24 \#$ and $28 \#$. Three fractions and a mixture are used for this study. The properties of the solid materials and the concentra-

Fig. 2 Accelerating distance S vs. u_{1} / u_{s}

	Table 1 Experimental meterials			
	Soma St. Sands: $\rho_{s}=2.643 \quad\left[\mathrm{~g}-\mathrm{mass} / \mathrm{cm}^{3}\right]$			
Material	Tyler screen mesh	$d_{p} \cdot$ avg	Concentration	
$s-1$	$-\# 10$	$+\# 16$	1.28 mm	$0.0101 \sim 0.1198$
$s-2$	$-\# 16$	$+\# 20$	0.909 mm	$0.0261 \sim 0.1507$
$s-3$	$-\# 20$	$+\# 24$	0.764 mm	$0.0393 \sim 0.1605$
$s-4$	$-\# 10$	$+\# 16$,	$-\# 20 \# 24$	0.989 mm

tion of solids-water mixture investigated are tabulated in Table 1.

Experimental Results and Considerations In order to investigate the accuracy for predictions based upon Eqs. (14) and (15), the plots of transport concentrations C_{1} and C_{2} of Eqs. (14) and (15) based upon data obtained from pressure measurements are shown against C of Eq. (3) determined by direct measurements of delivered concentrations in Fig. 3.
Fig. 4 shows the actual results of conveyance and the flow rates of solids predicted by Eq. (4). Where the mean velocity of liquid is not so high compared to the slip velocity of solids, it is apparent that the conventional neglection of slip effects may lead to significant errors in

Fig. 3 Transport concentration C_{1} \& C_{2} vs. $(C)_{\text {exp }}$.

Fig. 4 Mass flow rate W_{s} vs. $\left(W_{s}\right)_{\text {exp }}$.
flow measurements. In view of the slip velocity in the connected pipes, it is possible to make accurate determinations (maximum deviation $\pm 3 \%$) of both the transport concentration and the flow rate of solids.

It should be noted that the accuracy of prediction on the basis of the method presented in this paper would mainly depend upon an appropriate choice of a value u_{1} / u_{s}. In Fig. 5 the transport concentration C_{2} in Line II is plotted against the ratio u_{1} / u_{s} at the transport concentration C_{1} in Line I of $0.03,0.07$ and 0.11 , and the ratio m of 2.5 . For increasing the accuracy in manometer readings, it could be definitely concluded that the ratio u_{1} / u_{s} should be about $1 \sim 4$ for m of 2.5 .
Furthermore, it should be emphasized that the analytical expressions presented in this paper rest on the assumption of approximate constancy of u_{s} values in Lines I and II. For a single particle hydraulically conveyed up a vertical pipe at low velocities, the slip velocity u_{s} will be approximately equal to the terminal falling velocity. Although one possible effect of the increased turbulence at higher velocities might be to cause additional slip between the liquid and the particle, Newitt ${ }^{5)}$ demonstrated by ciné-photographing that no significant slip occurred, the values of u_{s} being approximately constant. The other important effect of the difference between the transport concentrations C_{1} and C_{2} may result in unequal values of $u_{s}{ }^{6)}$ in each Line. For suspensions of moderate and low concentrations attempted in this paper, however, it can be concluded ${ }^{67}$ that no significant difference between u_{s} in Lines I and II may take place, the most different set of C_{1} and C_{2} being 0.1605 and 0.1358 , respectively. For thick suspensions, the second effect mentioned above may cause a substantial difference in the values of u_{s} and the assumption of approximate constancy of u_{s} may not hold.

Conclusion

In view of the slip velocity, a new method for determining the flow rates of solids hydraulically conveyed is presented. The main parts of the apparatus consist of vertical two pipes connected each other, an electro-magnetic flow meter and pressure manometers.

It has been shown that the flow rates of solids can be calculated theoretically on the basis of data obtained from pressure measurements of connected pipes. Reasonable coincidence (maximum deviation $\pm 3 \%$) between theories and experiments has been reported in the regions of moderate and low concentrations.

Notation

[^0]

Fig. $5 \quad C_{2}$ vs. $u_{1} / u_{s} \quad(m=2.5)$

$C_{d}=$ delivered concentration	[-m
D = pipe diameter	[m]
$d_{p}=$ particle diameter	[$\mathrm{ctn}^{\text {b }}$
$E_{t}=$ energy consumption defined by Eq. (9) [[g-force $\cdot \mathrm{cm} / \mathrm{sec}$]
$E_{s}=$ energy defined by Eq. (8) [[g-force $\cdot \mathrm{cm} / \mathrm{sec}$]
$g=$ acceleration of gravity	$\left[\mathrm{cm} / \mathrm{sec}^{2}\right]$
$g_{e} \quad=$ gravitational conversion factor \quad [g-mass $\cdot \mathrm{c}$	cm / g-force $\left.\cdot \mathrm{sec}^{2}\right]$
$L \quad=$ pipe length	[cm]
$m=$ ratio defined by $m=A_{1} / A_{2}$	[-]
$\Delta p_{h}=$ pressure drop due to the density of mixture	- [g-force $/ \mathrm{cm}^{2}$]
$\Delta p_{m}=$ total pressure drop	[g;force/ cm^{2}]
$\Delta p_{s}=$ additional pressure drop due to solids	$\left[\mathrm{g}\right.$-force $/ \mathrm{cm}^{2}$]
$\Delta p_{w}=$ pressure drop due to friction of water	$\left[\mathrm{g}\right.$-force $\left./ \mathrm{cm}^{2}\right]$
$S=$ acceleration distance of particle	[cm]
$u=$ velocity of liquid	$[\mathrm{cm} / \mathrm{sec}]$
$u_{p} .=$ velocity of solids	[$\mathrm{cm} / \mathrm{sec}]$
$u_{m}=$ velocity of solids-liquid mixture	$[\mathrm{cm} / \mathrm{sec}]$
$u_{s}=\operatorname{slip}$ velocity of solids	[$\mathrm{cm} / \mathrm{sec}]$
$W_{l}=$ flow rate of liquid	[g-mass/sec]
$W_{s}=$ flow rate of solids	[g-mass $/ \mathrm{sec}$]
Greek letters	
$\lambda=$ Fanning's friction factor	[-]
$\rho_{l}=$ density of liquid	[g-mass $/ \mathrm{cm}^{3}$]
$\rho_{s}=$ true density of solids	[g-mass/cm ${ }^{3}$]

g-mass $/ \mathrm{cm}^{3}$

Subscripts
$1=$ refers to Line I in test line'
$2=$ refers to Line II in test line

Literature cited

1) Brook, N. : Proc. Instn Mech. Engrs., 176, 127 (1962)
2) Ito, C.: Journal of the Central Japan Society of Automatic Control Engineers, 5, 35 (1962)
3) Kamei, S., R. Toei and M. Hitaoka: Kagaku Kogaku (Chem. Eng., Japan), 20, 60 (1956)
4) Newitt, D. M., J. F. Richardson and M. Abbott: Trans. Instn Chem. Engrs., 33, 93 (1955)
5) Newitt, D. M., J. F. Richardson and B. J. Gliddon: Trans. Instn Chem. Engrs., 39, 93 (1961)
6) Uematsu, T., et al.: Yusō-Kōgaku Handbook, 327 (1966)
7) Worster, R. C. and D. F. Denny: Proc. Instn Mech. Engrs. (London), 169, 563 (1955)

[^0]: $A=$ cross sectional area of pipe
 $\left[\mathrm{cm}^{2}\right]$
 $C=$ transport concentration

