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Abstract This study describes a new method for analyzing

microcirculatory videos. It introduces algorithms for quan-

titative assessment of vessel length, diameter, the functional

microcirculatory density distribution and red blood-cell

(RBC) velocity in individual vessels as well as its distribu-

tion. The technique was validated and compared to

commercial software. The method was applied to the sub-

lingual microcirculation in a healthy volunteer and in a

patient during cardiac surgery. Analysis time was reduced

from hours to minutes compared to previous methods

requiring manual vessel identification. Vessel diameter was

detected with high accuracy ([80%, d [ 3 pixels). Capil-

lary length was estimated within 5 pixels accuracy. Velocity

estimation was very accurate ([95%) in the range [2.5,

1,000] pixels/s. RBC velocity was reduced by 70% during

the first 10 s of cardiac luxation. The present method has

been shown to be fast and accurate and provides increased

insight into the functional properties of the microcirculation.

Keywords Orthogonal polarized spectral (OPS)

imaging � Side-stream dark field (SDF) imaging �
Vessel density � Blood velocity � Space–time diagram

1 Introduction

Sublingual orthogonal polarization spectral (OPS) imaging

[2, 4, 23, 25, 27–29, 34] and side-stream dark field (SDF)

imaging [17] are currently being used extensively in clin-

ical microcirculatory research, especially in surgery and

intensive care medicine. This research has gained clinical

importance by the finding in several centers that micro-

circulatory alterations nonresponsive to therapy predict a

poor outcome in critically ill patients [32, 39]. This pre-

dictive value of microcirculatory images was not found in

systemic hemodynamic or oxygen-derived parameters

measured conventionally at the bedside. Furthermore,

clinical investigations have shown that the impact of

standard as well as innovative therapies could best be

demonstrated by their effect on the sublingual microcir-

culation [7, 10, 34, 35]. In demonstrating their effects, OPS

and SDF images have been analyzed manually by semi-

quantitative scoring methods [4, 8, 9, 34]. Although these

methods have been validated and prove sensitive and

specific in identifying the severity of disease in critically ill

patients they are cumbersome, very time consuming and

semi-quantitative. Klyscz et al. [22] described an early

quantitative method for estimating red blood-cell (RBC)

velocity, limited to straight vessel segments selected

manually by the user [11, 13, 18–20, 22, 24, 28]. Local

vessel width is determined manually with an on-screen

caliper; vessel length is obtained using a drawing tool that

allows manual tracing of vessels. Although the program is

unique in its field, it requires a large amount of user

interaction, which increases observer bias and analysis

time.

The image analysis techniques proposed in the current

paper provide a high degree of automation and yield

quantitative measures of vessel length, vessel diameter,
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the functional capillary density distribution, RBC velocity

in individual vessel segments and the RBC velocity

distribution. Space–time diagrams [20] are used for

velocity estimation and the new technique, in contrast to

earlier similar image analysis software, is able to gen-

erate space–time diagrams of curved vessels. We

introduce automatic detection of the line orientation in

space–time diagrams for automated velocity estimation.

The accuracy of the present method was validated using

video simulations and compared to commercially avail-

able software (CapiScope [6, 14, 33]). Finally, in order to

illustrate the application of the software we present

analyses of sublingual video recordings from a healthy

volunteer and from a patient during cardiac luxation in

open-heart surgery.

2 Methods

With currently available imaging techniques, such as cap-

illaroscopy, OPS or SDF imaging, ‘‘vessels’’ are only

observed in the presence of RBCs. The RBCs contain

haemoglobin, which highly absorbs the incident wave-

length used in these techniques, in contrast to the

background medium. The capillary vessel wall is basically

invisible to these imaging techniques. Videos of the

microcirculation therefore show structures of red blood

cells that are bounded by vessel walls. These structures are

referred to as ‘‘vessels’’ in this paper.

The analysis techniques described involve vessel seg-

mentation (the operation that extracts vessel segments from

an image) and RBC velocity estimation using space–time

diagrams, and require a comprehensive series of image

processing steps as indicated by Fig. 1. The performance of

the image analysis algorithms depends on a series of

parameters that are listed in Table 1. These parameters are

adjusted for optimal performance, considering the utilized

image scale, and need only be adapted when changing

optical magnification.

Movement of the subject or the hand-held imaging

device can result in unstable images that hamper vessel

recognition and velocity measurements. In order to stabi-

lize images 2D cross correlation was used [1]. During this

stabilization process, image enhancement is optionally

performed in two ways. First, intensity variations in the

background are reduced for each frame by subtracting the

quadratic polynomial surface that best-fits the image, and

by adding the average intensity of the original image.

Secondly, contrast improvement is achieved by manipu-

lating the image gray-scale histogram, by mapping each

gray-level of the input image to a gray-level of the output

image using a so-called transfer function, as described by

Pries [30]. The latter method may affect the vessel geom-

etry and is therefore not recommended before performing

spatial measurements. It is convenient, however, to eval-

uate space–time diagrams.

After stabilization, video frames are time-averaged to

fill up interruptions in capillaries that exist due to the

presence of plasma gaps or white blood cells. Averaging

causes capillaries to be detected as a continuous structure,

irrespective of interrupted cell flow. Averaging also redu-

ces the contribution of noise, which is beneficial for the

vessel segmentation process.

The remaining analysis steps rely on the scale parameter

(r). Analyzing at larger values of the scale parameter

detects larger vessels whereas smaller values of this

Fig. 1 a Analysis steps for

vessel segmentation and for

assessment of quantitative

analysis parameters. Step 10,

velocity detection, is detailed in

the second diagram. b Analysis

steps for quantifying RBC

velocity per vessel segment
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parameter detects smaller structures. The scale parameter is

explained in greater detail in the Appendix. The pre-pro-

cessed image is subjected to vessel segmentation as

detailed in the Appendix.

The vessel diameter may be overestimated, especially in

small vessels, if the microcirculatory image is not in focus.

It is, therefore, important to exclude those vessels that are

out of focus. In the present study the average gradient

magnitude at all edge points of a vessel is used to deter-

mine a focus score per vessel. This focus score [12] is made

less sensitive to background variations by normalization to

the background intensity, local (200 9 200 pixels2) to each

edge pixel. The user is able to exclude vessels with a focus

score below a manually adjusted limit.

Blood flow splits into two branches at a bifurcation,

causing RBC velocity to change. For accurate RBC

velocity assessment, space–time diagrams have to be

determined from vessel segments between bifurcations.

The process of cutting vessels at bifurcations is automated

by determining the distance between the end of a blood

vessel segment and the wall of neighboring vessels. If a

vessel approaches a neighbor within less than 1½ 9 the

neighbor’s radius, the neighbor is cut in two at the point of

approach. The 1½ 9 factor allows cutting of vessels that

bifurcate or intersect, yet prevents cutting vessels that run

parallel. This cutting procedure is repeated for all available

vessel segments.

Following the above-described automatic segmentation,

the user is able to manipulate these intermediate results

by deleting, cutting, or connecting vessel segments.

Undetected vessel segments can be manually drawn in

where the software suggests a present vessel segment,

given a user-selectable scale (i.e. r = 1.5, r = 3.0,

r = 6.0 or r = 12.0). If computer-assisted vessel detection

fails, one can add remaining vessels by manual tracing with

a user-selected diameter.

RBC velocity is determined using space–time diagrams

[20], which are obtained by automatically tiling the cen-

terline intensity of a vessel as vertical lines (corrected for

vessel curvature, see the Appendix) for a number of con-

secutive frames. Moving cells and plasma gaps cause tilted

lines to appear in these diagrams (see Fig. 7b for an

example). The line orientation is indicative for RBC

velocity. Acquiring the space–time diagram from curved

vessels is an improvement on previous methods which only

allow velocity estimation from straight vessel segments

where the user draws a straight centerline. Image histogram

equalization [31] is utilized to automatically improve vis-

ibility of the line structure in space–time diagrams. RBC

velocity is estimated automatically using gray-scale Hough

transform [15, 26], detailed in the Appendix. The user is

allowed to overrule the result of automatic analysis by

tracing lines in the space–time diagram interactively. When

interactively tracing lines, the average orientation is used

for further processing. Finally, the acquired orientation is

converted to an actual velocity value (see Appendix).

Some of the above described techniques, numbered in

Fig. 1a, b, are new in microcirculatory image analysis and

are therefore explained in the Appendix in greater detail.

These include: Fig. 1a-(3) centerline detection, Fig. 1a-(6)

Table 1 Parameter settings for automated microcirculatory analysis

Symbol Description Setting Motivation

rmax Search range for linking pixels 5 pixels If the search range is set too large, spurious

vessel segments are linked together

a Search angle for linking pixels 90� ±45� allows strong curvature yet rejects

perpendicular continuation of a vessel

r Standard deviation of Gaussian derivatives for

centerline detection; Many other filter segmentation

parameters are derived from this scale parameter

3 pixels Pragmatically determined

rcross Edge detection; standard deviation of highest derivative

filter in direction normal to vessel orientation

1/3 9 r This filter setting gives no considerable

overestimation of capillary diameter

([4 lm)

rlong Edge detection; standard deviation for averaging

distance to vessel wall in longitudinal direction

3 9 r This filter settings spans small plasma gaps

smin Minimum vessel segment length 5 9 ra Pragmatically determined

redge Standard deviation of edge distance smoothing 3 9 r Pragmatically determined

ethr Centerline detection threshold 0.7b Pragmatically determined

rH Standard deviation for smoothing Hough score diagram

(Fig. 7a)

2� Pragmatically determined

vmin Lower limit for velocity assessment 2 lm/s Pragmatically determined

a Set to 2r for interactive assessment
b Set to 0 for interactive assessment
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vessel wall detection in the presence of interrupted cell

flow, Fig. 1b-(2) curvature correction, Fig. 1b-(4) auto-

matic orientation and velocity estimation and Fig. 1b-(5)

theoretical range of velocity assessment.

3 Experiments

In all experiments detailed below, the algorithms were

configured according to the settings given in Table 1.

Contrast enhancements were not used in any of the

experiments.

3.1 Validation

To validate the performance of vessel length, diameter and

RBC velocity, simulation videos were created. The main

advantage of simulation videos is that the actual vessel and

flow characteristics are fully known and the ability of the

software to measure it can accurately be determined. In

addition, such simulation videos exclude optical effects,

such as, scattering of light in surrounding tissue and wid-

ening of vessels due to point spread effects [38].

The simulation video for length and diameter validation

(500 9 500 pixels) contains five lines of different length

(50, 100, 150, 200 and 250 pixels) with a Gaussian cross-

sectional profile (with standard deviation rl). The vessel

wall of these simulated vessels is marked by the points

where the maximum gradient is found, i.e. at ± rl, yield-

ing d = 2rl, where d is the line diameter. The background

and centerline intensity were set to 200 and 50 au

(au = arbitrary units). The effect of vessel orientation was

incorporated by including frames with different line ori-

entation in the range [0, 90]� with 15� increments.

A second simulation video (250 9 250 pixels) was

created for validating velocity assessment. Each video

frame shows a simulated vessel containing ‘‘cells’’ being

circular blobs with a Gaussian cross-sectional intensity

profile (rcell = 3 pixels). These cells (approximately 1 cell

per 5 pixels of vessel length, background intensity 200 au,

center at 50 au) were drawn at random locations but within

the boundaries of an imaginary vessel of 10 pixels wide

that extends to the edges of each video frame. The accuracy

of interactive and automatic velocity assessment was tested

in a vessel oriented at 0� in the velocity range [2.5, 2,000]

pixels/s. The lower limit of this range was chosen prag-

matically while the upper limit is in accordance with the

physical limit of detection (*vmax, see Eq. 2 in the

Appendix, L = 250 pixels, f = 25 frames/s). Velocity

results were obtained interactively, by tracing up to five

available lines in the space–time diagram, and automati-

cally (see Appendix).

Each video fragment covered 100 frames. Gaussian

noise was added to each frame with rnoise = 10 au, which

is approximately twice that of a typical SDF image. The

validation experiments were made independent of optical

magnification, by expressing the accuracy of assessment in

terms of pixels/s. The two simulation videos have been put

on the Internet (http://www.sdfimaging.net) as information

for the reader and for use in validation of other software

developments.

3.2 Comparison

To evaluate the utility and accuracy of our software we

compared its performance to that of a commercially

available microcirculation image analysis package. In this

context, CapImage [22] and CapiScope [14] are commer-

cially available software packages used to analyze

microcirculatory video sequences. CapImage represents

one of the few software packages that has been described

and evaluated in the literature in any detail. To our

knowledge this package is no longer available. Instead a

new software package was developed with similar modal-

ities but using improved technology, called CapiScope. A

validation study [6, 33] showed that CapiScope provides

comparable values for microcirculatory parameters, such

as, vessel diameter and RBC velocity, to those obtained

with CapImage. In the present study we compared the

performance of our software to that of CapiScope (version

3.6.4.0) (KK-Technology, Bridleways Holyford, Devon,

England).

In the comparison study the ability of the software to

measure the average vessel diameter was compared to that

measured by CapiScope. In the CapiScope method an

average of five determinations at different locations along

the vessel was taken as the average diameter and in the

present software the diameter was averaged over the entire

vessel segment. RBC velocity was measured in a simula-

tion video as well as in an SDF imaging recording of the

sublingual microcirculation in a healthy male volunteer

(see http://www.sdfimaging.net). In the latter experiment

the interactively obtained velocity results were most

accurate and served as reference for determining the error

in automatic analysis. For automatic analysis, a velocity

error level up to 20% compared to interactive assessment,

was considered acceptable within the framework of the

experiment.

For comparing the vessel length estimation, the vessel

density (VD) was also determined by both programs by

analyzing ten sublingual recordings of healthy individuals.

The VD is defined as the functional capillary density

(FCD) [16, 22] and includes thick vessels as well as

capillaries.
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To evaluate the time saved by the present method two

experienced analysis researchers applied the two methods

to the analysis of the simulation as described before and to

SDF image recordings of the sublingual microcirculation.

3.3 Clinical application

Sublingual video recordings were made using a MicroScan

SDF system [17] (MicroScan B.V., Amsterdam, The

Netherlands) with a standard 59 optical magnification,

which results in microcirculation images with a pixel

spacing of approximately (h 9 w) 1.5 9 1.4 lm. The

disposable microscope tip is held gently against the tissue

and guarantees a fixed distance (*1 mm) and no per-

spective between specimen and lens over the entire field of

view. The hardware features a point spread function [38]

similar to a Gaussian distribution with a standard deviation

of approximately 1 pixel in the x and y direction. Capil-

laries, having a diameter of about 4-5 lm, are therefore

approximately 3 pixels wide in standard SDF images.

A sublingual video recording from a healthy male vol-

unteer was selected with high contrast and moderate RBC

velocity, which allowed us to evaluate the feasibility of

automatically analyzing space–time diagrams of clinical

observations. Another sublingual recording was made during

cardiac luxation in a patient who underwent cardiac bypass

surgery using off-pump coronary artery grafting (OPCAB).

Cardiac luxation is a procedure that is used during cardiac

surgery where the heart is lifted and repositioned causing an

immediate decrease of cardiac output and thereby sublingual

microcirculation. During this procedure sublingual SDF

imaging was applied and cessation of the microcirculation

was observed during luxation-induced hypotension. The

luxation videos have also been put on the Internet

(http://www.sdfimaging.net) as information for the reader.

4 Results

4.1 Validation experiments

4.1.1 Vessel length

In two out of 35 measurements at a diameter d = 1 pixel

automatic vessel detection failed due to the presence of

noise. The bars in Fig. 2a show the average length deviation

of lines at different orientation. The error bars indicate the

small error range due to line orientation and image noise

(\5% for capillaries with L [ 100 pixels and d \ 5 pixels).

The graph shows that the accuracy of length assessment

strongly depends on the diameter of the simulated vessel

(due to the scale of analysis). CapiScope could not measure

vessel length automatically.

4.1.2 Vessel diameter

Figure 2b shows the relative diameter-estimation error of

simulated vessels as obtained by the present method

(r = 3, rcross = 1) and by CapiScope. The error bars

indicate the range as a result of vessel orientation and

image noise. CapiScope tends to overestimate vessel

diameter slightly over the entire range. The present method

performs better for vessels wider than 5 pixels. It also

shows a smaller diameter variation due to orientation and

Fig. 2 Results of evaluation using simulation video. a Average

vessel length estimation error (lerr) versus actual length (L, pixels) and

diameter (d, pixels). b Average diameter estimation error (derr) versus

actual vessel diameter (d in pixels). Measurements at whole pixel

intervals are slightly shifted apart for clarity. The error bars in both

figures indicate the error range due to image noise and vessel

orientation as tested in the range [0, 90], with 15� increments. c
Accuracy of interactive, automatic (Hough) and CapiScope velocity

estimation. The inset shows the space–time diagrams that yielded

these results
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image noise. With the present method, vessels with a

diameter in the range [2rcross, 13] pixels show an absolute

diameter error\1 pixel. This results in a relative error that

drops below 20% for vessels wider than 3 pixels (Fig. 2b).

4.1.3 Velocity

RBC velocity was estimated by the present method using

the acquired space–time diagrams shown in Fig. 2c (inset).

These diagrams show that a line structure is clearly visible

at low velocities while the images turn rather noisy at high

velocities. Figure 2c shows the deviation in velocity

assessment as obtained with the new method by drawing

lines in the space–time diagram manually, automatically

using the Hough method, and using CapiScope. Interac-

tively tracing lines in the space–time diagram gives the

best results and appears feasible up to 1,000 pixels/s in this

simulation experiment (accuracy [95%). Automatic

velocity assessment performs excellently up to 750 pixels/s

([95% accurate). At higher velocities ([1250 pixels/s), the

method fails and selects an alternative orientation that

results in a large velocity error. CapiScope was not able to

measure velocities below 50 pixels/s. Higher velocities

showed a relatively large error (Fig. 2c).

4.2 Comparison experiments

This section compares the analysis results of the present

method with CapiScope in finding vessel density, vessel

diameter and RBC velocity. For these experiments SDF

image recordings were used that show the sublingual

microcirculation of healthy volunteers.

The Bland–Altman plots [3] in Fig. 3a, b illustrate the

similarity between the present method and CapiScope in

measuring vessel density and the diameter of sublingual

vessels. With the present method, VD measurements were

performed in 67% of the time required by using CapiScope

(10 recordings in 56 min with the present method com-

pared to 84 min with CapiScope). The vessel diameter

measurement using CapiScope took approximately 4 h

while the present method provided the same data in

approximately 10 min.

Velocity results obtained by the present method do not

correspond with those obtained by CapiScope (as illus-

trated by the graph in Fig. 3c). With the present method,

line orientation in the space–time diagram was analyzed

automatically and if the presented orientation failed, lines

were traced manually. Visual inspection of the video

fragment, together with the many space–time diagrams,

confirmed the presence of relatively low velocities in this

experiment (\200 lm/s) that were largely overestimated

by CapiScope. This finding is similar to the results of the

simulation experiment shown in Fig. 2c which illustrates

the disparity between the two methods. Manual velocity

analysis with CapiScope took 3 h in this experiment

compared to 20 min using the present automated method.

4.3 Clinical application

This section describes the application of the present

method in analyzing microcirculatory images from a

healthy volunteer and from a patient during cardiac

surgery.

4.3.1 Healthy volunteer

The video recording of a healthy volunteer was analyzed

after averaging frames within a 2 s interval. In this

experiment 31% of the total vessel length required man-

ual interaction. The functional microcirculatory density

Fig. 3 Agreement of present method and CapiScope, represented by

Bland–Altman plots [3] showing, a difference against average vessel

density (VD), b difference against average diameter, c difference

against average velocity. Data was obtained from sublingual micro-

circulatory video recordings. All curves are drawn with 95% limits of

agreement (dashed lines) and regression line
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distribution is given in Fig. 4a. It shows the presence of a

bimodal distribution with a large portion of the image area

being occupied by capillaries in the range 5-10 lm.

In this analysis a total of 207 vessel segments was

analyzed. In 99 segments (48%) the space–time diagrams

did not reveal a visible line structure. In some of these

cases vessel segments were too short to allow velocity

analysis (see Eq. 2 in the Appendix). The space–time

diagrams of the remaining 108 vessel segments (52%)

showed a line structure that was analyzed both interac-

tively, by tracing lines, and automatically. The velocity

distribution in Fig. 4b illustrates the result of interactive

analysis and shows that RBC velocity is in the same order

of magnitude for all vessels in the given diameter range

d = [0, 60] lm. With automatic analysis 29 segments

(27%) fell within the 20% error level of acceptance.

4.3.2 Cardiac luxation

The present method was used to measure the changes

which occur when the heart is repositioned during off-

pump cardiac surgery. Figure 5a, c indicate the average of

250 frames (10 s) from the sublingual video recording

before and during cardiac luxation. The figures at the right

(Fig. 5b, d) show the same video data with the results of

analysis superimposed. Vessel segments with a diameter

larger than 60 lm were excluded. In these two experiments

95% (before luxation) and 80% (during luxation) of the

total vessel length were segmented automatically, the

remaining vessels were added interactively. We traced up

to 20 lines in each space–time diagram (10 s interval) to

get an impression of the average velocity in each vessel

segment during that interval. Space–time diagrams showed

a clear line structure in 44% of the vessel segments before,

and 48% during luxation. These represent approximately

75% of the segmented vessel length in both cases. RBC

velocity is color-coded in the vessels of Fig. 5b, d. Dark

colors in Fig. 5d clearly show that RBC velocity is reduced

during cardiac luxation. Figure 4c demonstrates the

velocity distribution.

The observed image area that was occupied by vessels in

the cardiac luxation example changed from 17.1 to 14.6%,

which is a 15% reduction. The reduction of vessels was

confirmed by visual inspection of the images of Fig. 5. It

shows that some small vessels are not visible, i.e. the

presence of red blood cells is lacking or is reduced, during

cardiac luxation. The density distributions of Fig. 4d

illustrate that a slight reduction of small vessels

(d \ 45 lm) occurs during luxation.

5 Discussion

This present study has introduced advanced image analysis

techniques for the analysis of microcirculatory video

sequences which allow determination of vessel length,

Fig. 4 Distributions a
Sublingual microcirculatory

density distribution

[A represents the relative image

area occupied by vessels in the

given diameter (d) range] and,

b velocity distribution, both of a

healthy male individual.

c Velocity distribution, and

d functional microcirculatory

density distribution, both

showing the results before and

during the first 10 s of cardiac

luxation (see also Fig. 5)
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diameter and RBC velocity, from curved vessels, quanti-

tatively. The method combines automatic vessel

identification with manually tracing vessels. It further

provides the microcirculatory density distribution and the

RBC velocity distribution. A first step towards automatic

detection of RBC velocity from space–time diagrams has

been made. The method was validated using simulation

video sequences and was compared with commercially

available software (CapiScope). Finally, clinical applica-

tion of the software was demonstrated by analyzing

microcirculatory images from a healthy volunteer and from

a patient during cardiac surgery.

The measurements performed on sublingual recordings

showed that 69–95% of the total vessel length was detected

automatically at a single scale of analysis. Compared to

CapiScope, the present method reduced analysis time from

hours to minutes. It can therefore be concluded that com-

puter-assisted vessel segmentation drastically reduces user

interaction although visual inspection of the superimposed

results and possible interaction at selectable scales, remain

necessary.

The validation experiments were all performed at

the same small scale of automatic analysis, which

focuses on small image features, such as small vessels.

This explains why vessel length and diameter estimation

were less accurate for large-diameter vessels. In addition,

the eigenvalue |kn| (see ‘‘centerline detection’’ in the

Appendix) reduces with vessel diameter. In the simulation

experiments, where vessels end in a step edge (i.e., |kt| is

fixed), less pixels are consequently marked as being cen-

terline pixels. This explains the underestimation of vessel

length for large-diameter vessels. Considering the length of

actual vessels in OPS and SDF images (L & 100 pixels on

average), it can be concluded that length estimation is very

accurate ([95%) for capillaries up to 5 pixels wide. Vessel

diameter could accurately be determined ([80%) for ves-

sels wider than 3 pixels as in standard SDF images.

Velocity estimation with the present method was very

accurate ([95%) for both interactive velocity estimation

(range [2.5, 1,000] lm/s) and automatic analysis of space–

time diagrams (range [2.5, 750] pixels/s). CapiScope on the

other hand, was not able to identify vessels automatically.

It also could not measure vessel length automatically,

could not measure velocities in curved vessels and was not

able to measure velocities below 50 pixels/s while higher

velocities were relatively inaccurate.

Clinical application of the present method illustrated the

use of the functional microcirculatory distribution. Its

bimodal behavior demonstrates the presence of microcap-

illaries as well as larger vessels. The velocity distribution

was also bimodal and showed that velocities are of the

same order of magnitude in vessels ranging [3, 60] lm. It

was also demonstrated that RBC velocity reduced to

approximately one third in all vessels ranging [3, 60] lm,

Fig. 5 a Average frame out of a

video sequence showing

sublingual microcirculation

before a luxation procedure. b
Same image as (a) with analysis

results superimposed. c Average

of frames obtained during a

luxation procedure, d with

analysis results superimposed.

The magnitude of red-blood cell

velocity is color-coded in the

range [5 (dark), 650

(bright)] lm/s. Vessel segments

with space–time diagrams that

could not be analysed are

marked black. The small arrows
indicate the direction of blood

flow
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during episodes of shock with severe hypotension caused

by cardiac luxation. The present method of analysis was

able to detect the microcirculatory alterations adequately

and this illustrates its potential use in clinical microcircu-

lation research.

The clinical experiments confirmed the feasibility of

analyzing space–time diagrams automatically using the

Hough transform (*25% of the vessels with a visible line

structure in the space–time diagram). The performance of

automatic velocity analysis strongly depends on the quality

of microcirculatory video recordings. In this respect, RBC

velocity measurements benefit from higher frame rates,

which increases the velocity range (limited by vmax, see

Eq. 2 in the Appendix), and from stroboscopic illumination

with very short exposure times, which reduce longitudinal

motion blur in vessels, thereby yielding high-contrast space–

time diagrams. This would increase the performance of

automatic orientation detection of space–time diagrams and

may ultimately render velocity detection fully automatic.

The image analysis technique described in this study

drastically reduce analysis time. It further reduces user

interaction and observer bias. The method proved to be fast

and accurate. It enables determination of vascular density

and RBC velocity distributions that were otherwise

impossible to obtain. We expect that the present method

will allow much more widespread analysis of microcircu-

latory images which currently is very time consuming and

thereby prohibiting. It is expected that the use of the

present method will encourage microcirculation research

and will increase our insight into the central role of the

microcirculation in health and disease.

A full-featured version of the software that includes all

analysis algorithms in this paper can be downloaded free of

charge for evaluation at http://www.sdfimaging.net.
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Appendix

Vessel segmentation

Scale of analysis. The image analysis techniques described

in this paper require determination of spatial intensity

derivatives. These image derivatives are noise sensitive if

calculated as the difference between adjacent pixels.

Gaussian derivatives are therefore used [37, 38] that

include image data within the working distance of the

Gaussian kernel. The Gaussian derivatives are obtained by

convolving the image with the corresponding derivative of

a Gaussian. The standard deviation (r) of the Gaussian

filter serves as the scale parameter. Many distance related

analysis parameters are based on this scale parameter as

indicated in Table 1.

Centerline detection is based on the method described

by Steger [37]. In short, this method calculates the eigen-

vectors of the local Hessian matrix [21] and results in a

vector that points in the vessel direction (t) and a vector in

the perpendicular direction (n). Image pixels are consid-

ered candidate centerline pixels if the second order spatial

intensity derivative in the direction of n, represented by

eigenvalue kn, is markedly higher than in the perpendicular

direction t, represented by kt. This condition is tested by

evaluating |kn|/(|kn|+|kt|) C ethr, with ethr a given threshold

value (Table 1). Candidate pixels are identified as center-

line pixels if the cross-intensity profile, i.e. the intensity

profile in the direction of n, is locally at its extremum.

Centerline pixels are subsequently grouped into vessel

segments. Grouping starts at the centerline pixel with the

highest value of kn, and includes neighboring pixels that

are on the same centerline (and do not belong to a vessel

that runs parallel), and have similar eigenvalue directions.

These conditions are tested as described by Staal et al. [36].

In the present paper, the search area for neighboring pixels

is illustrated by a triangle, defined by an opening angle,

with bisector towards tangent vector (t), and a perpendic-

ular bisector (towards n) at a distance r in a given search

range ([1, rmax], Table 1). The orientation that resulted

from Hessian analysis helps to calculate the length con-

tribution per centerline pixel and the total length of a vessel

segment. Vessel segments that exist due to the presence of

noise are usually small, which justifies removing segments

with a limited length (\smin, Table 1).

Vessel wall detection. The vessel wall is detected at each

centerline pixel and is marked by the points where the

cross-sectional intensity profile shows its maximum

steepness (in the direction of the normal vector n, descri-

bed above). With this information a vessel’s cross-sectional

intensity profile is determined by sampling the image at

sub-pixel level (by linear interpolation) in the normal

direction. This process is repeated for each centerline pixel

to obtain straightened vessels. Gaps may occur in these

straightened vessels if plasma gaps or white blood cells

interrupt the continuous flow of red blood cells. For this

reason an anisotropic diffusion kernel is used [38] with a

Gaussian response (rlong, Table 1) that largely extends in

the longitudinal direction of a vessel. It effectively closes

possible interruptions and detects vessels as a whole.

Horizontally, the first derivative of a Gaussian filter kernel

is used as a maximum gradient detector, with a small extent

in the cross direction (rcross, Table 1) to preserve well
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localized edge detection [5]. Convolution with the edge

detection kernel may bias vessel diameter estimation,

especially for small vessels. This is caused by the filter’s

own pulse response, which shows its highest gradient

(G00(x) = 0) at x = ±rcross. Vessels are therefore detected

as being at least 2rcross pixels wide.

Misinterpreted edge points (artifacts) largely deviate by

their mean distance to the centerline. This property is used

to remove artifacts iteratively by excluding the most-dis-

tant edge point that exceeds two standard deviations from

the mean distance in each iteration pass. This process is

repeated until all remaining distance samples are within

two standard deviations from the mean distance. The

resulting mean distance is assigned to all artifact locations.

Finally, Gaussian filtering (redge, Table 1) is performed to

smooth the acquired centerline-wall distance in the longi-

tudinal direction. The above described procedure is

repeated for the opposite vessel wall and yields estimates

of the local and average vessel diameter.

Velocity determination

The slope of the line structure in space–time diagrams [20]

is a measure of RBC velocity, which is calculated as:

v = Ds/Dt = tan u with Ds the longitudinal displacement

along the vessel centerline in time fragment Dt (see Fig. 7b).

Curvature correction. The time axis of space–time

diagrams is a multiple of the frame interval, which is very

accurate in CCD cameras. The space axis, on the other

hand, is not uniformly distributed since the length contri-

bution per pixel depends on the local vessel orientation.

This orientation dependence is compensated for, by map-

ping the randomly spaced centerline pixels onto the

equidistant intervals of the space–time diagram using linear

interpolation. In this study the number of distance pixels of

the space–time diagram was taken equal to the number of

centerline pixels that describes the corresponding vessel.

Automatic velocity determination. A possible way for

automatic determination of RBC velocity from space–time

diagrams is by orientation estimation using the Hough

transform [15]. The conventional Hough transform is a

method for detecting straight lines (or curves) in images. It

is basically a point-to-curve transformation that detects the

parameters of straight lines in images. The technique

considers the polar representation of a line:

q ¼ xi cos uþ yi sin u ð1Þ

with (xi, yi) the coordinate of each line pixel in the space–

time diagram, u the orientation of the vector normal to the

line and starting at the origin (top-left image position as in

Fig. 7b), and q the length of this vector, which is equal to the

line distance to the origin. Each line pixel is mapped to a

Fig. 6 a Hough transform of pixels in a space–time diagram (see

Fig. 7b) having the same gray level. The Hough count (H) is the

number of pixels on a line with orientation angle u at distance q from

the origin. The orientation (u) represents the angle between the vector

normal to the line and the positive x-axis (Fig. 7b). b Result of

thresholding, which accepts long lines exceeding 90% of the

maximum Hough count in (a). c is obtained by adding the responses,

as in (b), for all gray levels. The obtained result is less sensitive to

noise or artifacts in the space–time diagram and preserves long lines

out of the space–time diagram

Fig. 7 a Adding accumulator

cells from Fig. 6c that have the

same orientation, results in the

Hough score diagram (gray
curve). Spikes are removed by

Gaussian smoothing (black
curve). The highest peak

identifies the global orientation

of lines in the space–time

diagram. b Original space–time

diagram and the definition of

orientation parameter u. The

white arrow indicates the

resulting orientation
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sinusoidal curve in parameter space, q(u). The discrete

image of parameter space consists of accumulator cells, H(u,

q), that are incremented for each sinusoidal curve that passes

the cell. By converting all line pixels of the space–time

diagram into sinusoidal curves, the accumulator cells

increment to the line length (L, in pixel units). An accumu-

lator cell therefore yields the characteristic parameters (u, q,

L) of a line. With the space–time diagram as input image, a

high response (count) is expected at a specified orientation

(u) and for multiple lines with a different distance to the

origin (q). The response is also used to reject small line

structures (artifacts in space–time diagrams) by thresholding

accumulator cells with relatively low counts (\90% of the

largest Hough count, see Fig. 6b). By performing this pro-

cedure for all (or a selection of) gray levels, as in gray-scale

Hough transformation [26], and by adding the responses, we

obtain a result that is less sensitive to the noisy character of

space–time diagrams (Fig. 6c, named the ‘‘long-line’’

Hough space). Since the global line orientation is required,

the total count of accumulator cells representing the same

orientation ðHðuÞ ¼
P

q Hðu; qÞÞ finally serves as a

‘‘score’’ per orientation (Fig. 7a). This curve is finally

smoothed using a Gaussian filter kernel (rH, Table 1). The

highest peak in the filtered curve, Fig. 7a, gives the best

estimation of the global line orientation that we seek and

represents equally oriented long lines at different gray levels.

Theoretical range of velocity assessment. The physical

upper limit of velocity assessment depends on vessel length

(L in lm) and video frame rate (f) of the CCD camera.

Velocity measurements from slowly sampled scenes may

be hampered by aliasing. It is theoretically possible to

calculate RBC velocity from the space–time diagram if an

object travels at constant velocity and is visible in only two

successive frames. However, it is not possible to tell with

certainty whether the cell object in the first frame is the

same as in the second frame. If additional video frames

show that the object moves with a rather constant dis-

placement between successive frames, it is ‘‘more likely’’

that one and the same object is being observed. Therefore,

a minimum of three frame intervals is chosen for deter-

mining the maximum physical velocity limit (vmax):

vmax ¼
Lf

3
lm/s½ � ð2Þ

Space–time diagrams are often marked by horizontal lines

as a result of dark spots at fixed locations, e.g. due to

intersecting vessels (see peaks at u = ±90� in Fig. 7a), or

by vertical lines, e.g. due to periodic variations in illumi-

nation. Orientations that correspond to velocities above the

physical limit, as described above, or below a given lower

limit (vmin, Table 1) are therefore rejected and require

manual assessment, i.e. by tracing lines in the space–time

diagram interactively.
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