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Measurement of Glomerular 
Filtration Rate using Quantitative 
SPECT/CT and Deep-learning-
based Kidney Segmentation
Junyoung Park1,2, Sungwoo Bae2,3, Seongho Seo  4, Sohyun Park5, Ji-In Bang6, 
Jeong Hee Han3, Won Woo Lee2,3,7 & Jae Sung Lee  1,2,7

Quantitative SPECT/CT is potentially useful for more accurate and reliable measurement of glomerular 

filtration rate (GFR) than conventional planar scintigraphy. However, manual drawing of a volume 
of interest (VOI) on renal parenchyma in CT images is a labor-intensive and time-consuming task. 
The aim of this study is to develop a fully automated GFR quantification method based on a deep 
learning approach to the 3D segmentation of kidney parenchyma in CT. We automatically segmented 
the kidneys in CT images using the proposed method with remarkably high Dice similarity coefficient 
relative to the manual segmentation (mean = 0.89). The GFR values derived using manual and 
automatic segmentation methods were strongly correlated (R2 = 0.96). The absolute difference 
between the individual GFR values using manual and automatic methods was only 2.90%. Moreover, 
the two segmentation methods had comparable performance in the urolithiasis patients and kidney 
donors. Furthermore, both segmentation modalities showed significantly decreased individual GFR 
in symptomatic kidneys compared with the normal or asymptomatic kidney groups. The proposed 
approach enables fast and accurate GFR measurement.

Glomerular �ltration rate (GFR) is de�ned as a �ow rate of blood plasma that is �ltered through glomerulus. It is 
considered as an indicator of renal function and is routinely used to stratify the severity of acute kidney injury or 
chronic kidney disease. �e GFR is estimated using a substance that is completely �ltered through glomerulus, 
not reabsorbed and not excreted in renal tubules1. If that is the case, urinary clearance of the substance is equal 
to the plasma clearance. Formulas such as Modi�cation of Diet in Renal Disease (MDRD) or Chronic Kidney 
Disease Epidemiology Collaboration (CKD-EPI) equations are frequently used in the clinic to derive GFR from 
the serum creatinine level, although creatinine is not an ideal substance for measuring renal clearance2.

In nuclear medicine, 51Cr-ethylenediaminetetraacetic acid (EDTA) and 99mTc-diethylenetriaminepentaacetic 
acid (DTPA) are the two most commonly utilized radiopharmaceuticals to evaluate renal function. Blood or 
urine sampling a�er injection of the radiotracers is a method to directly measure renal clearance1,3. However, 
these sampling procedures are laborious and time-consuming in comparison with other approaches. �erefore, 
99mTc-DTPA planar scintigraphy that measures the radiation counts in each kidney is more commonly used 
because of its ease of use. �e most popular method to calculate the GFR from the radiation counts is Gate’s 
method that utilizes the counts measured for 1 min from 2 min to 3 min a�er the injection of 99mTc-DTPA4,5.

Kidney single-photon emission computed tomography (SPECT)/computed tomography (CT) with 
99mTc-DTPA is a promising method for the measurement of GFR because it is more quantitative and reliable in 
measuring the renal clearance than planar scintigraphy6. �e SPECT/CT is acquired during the same period of 
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time as in the renal planar scintigraphy, and the volume of interest (VOI) is drawn on each kidney for the quanti-
�cation of absolute radioactivity. �e measurement of GFR using 99mTc-DTPA SPECT/CT was reproducible and 
accurate in healthy volunteers and renal tumor patients post partial nephrectomy and useful for disease severity 
evaluation in urinary stone patients6,7. However, the necessity of manual drawing of the VOI on the whole renal 
parenchyma in CT images is an obstacle that prevents the wide use of this new approach. �e labor-intensive and 
time-consuming manual drawing usually takes about 15 min per scan by nuclear medicine physicians6,7.

�e aim of this study is to develop an automated GFR quanti�cation method based on deep learning approach 
to the three-dimensional (3D) segmentation of kidney parenchyma in CT acquired in quantitative kidney 
SPECT/CT studies. In recent years, deep convolutional neural networks (CNNs) have shown superior perfor-
mance in many computer vision and biomedical applications, such as image de-noising, image classi�cation 
and object detection, and organ segmentation8–18. �ere is a related deep-learning-based kidney segmentation 
study for total kidney volume (functioning parenchyma and non-functioning cysts) quanti�cation in autosomal 
dominant polycystic kidney disease (ADPKD)19. In addition, some studies have shown that deep-learning based 
3D segmentation is e�ective for medical image dataset20–23. However, the GFR quanti�cation needs the segmen-
tation of the only functioning kidney parenchyma, which is more sophisticated than total kidney segmentation 
in ADPKD. In this study, we have trained a deep CNN to learn end-to-end mapping between the 3D CT volume 
and manually segmented VOI by experts using a dataset including 315 patients. �e performance of the CNN 
was validated using another dataset including 78 patients, and �ve-fold cross-validation was performed. Finally, 
the measurement of GFR using the manually drawing and deep-learning-generated VOIs were compared with 
each other in 63 urolithiasis patients and 25 negative controls (kidney donor) to show the clinical validity of the 
proposed method.

Methods
Dataset. Quantitative 99mTc-DTPA kidney SPECT/CT data of 393 patients (257 men and 136 women, 
age = 53.55 ± 12.64 years) were retrospectively analyzed for network training and validation (Supplementary 
Table S1). �e retrospective use of the scan data and waiver of consent were approved by the Institutional Review 
Board of our institute. �e SPECT/CT data were acquired using a GE Discovery NM/CT 670 scanner equipped 
with a low-energy high-resolution collimator6. One-minute SPECT data were acquired in a continuous mode 
2 min a�er the intravenous injection of 370 MBq 99mTc-DTPA. �e peak energy was set at 140 KeV with 20% 
window (126–154 KeV), and the scatter energy was set at 120 KeV with 10% window (115–125 KeV). �e SPECT 
images were reconstructed using an iterative ordered subset expectation maximization (OSEM) algorithm (2 
iterations and 10 subsets) and corrected for attenuation, scatter, and collimator–detector response. A post-recon-
struction low pass �lter (Butterworth with frequency of 0.48 and order of 10) was applied and image matrices 
were 128 × 128 × 128 (voxel size: 3.452 mm3). �e applied zoom factor during SPECT acquisition was 1.28. �e 
CT acquisition conditions were as follows: tube voltage of 120 KVp, tube current of 60–210 mA with autoMA 
function at a noise level of 20, detector collimation of 20 mm ( = 16 × 1.25 mm), helical thickness of 2.5 mm, 
table speed of 37 mm/s, tube rotation time of 0.5 s, and pitch of 0.938:1. �e CT images were reconstructed in a 
512 × 512 × 161 matrix with voxel sizes of 0.977 × 0.977 × 2.5 mm3. �e system sensitivity of SPECT for 99mTc was 
152.5 cpm/µCi, which had been determined by triple independent sessions of phantom studies24.

A nuclear medicine physician manually drew 2D regions of interest (ROIs) on individual renal parenchyma. 
To cover the whole kidney volume, approximately 80–100 slices were required in normal kidney. To save time 
and e�ort, ROIs were drawn in every 2–3 coronal CT slices up to 30 slices using the vendor’s Q Metrix so�ware, 
excluding unwanted structures like cysts, urinary stones, and tumors. A�er automatic ROI interpolation between 
the slices, provided by Q Metrix, a VOI was then generated by integrating these manually drawn and interpolated 
single-slice ROIs. While the automatic ROI interpolation is useful for reducing the time and labor required for 
the VOI drawing, the interpolated slices may still include unwanted structures, would then require further man-
ual interventions. It is of note that the quantitative kidney SPECT/CT was performed without iodine-contrast 
enhancement; however, iodine-contrast remained in the renal pelvis of the SPECT/CT in 22.6% ( = 89/393) 
because contrast-enhanced CT was performed 1–2 hours prior to the SPECT/CT for the post-operative evalua-
tion of renal tumor (Supplementary Table S1).

For CNN training and data analysis, CT and SPECT images and manual VOIs were resampled to have the 
same matrix and voxel sizes (256 × 256 × 232 and 1.726 mm3). To reduce the memory consumption in CNN 
training, the images were then cropped into 192 × 128 × 96 matrices, which are large enough to include both kid-
neys. In addition, we applied 3D volume smoothing and morphological operations to the manual VOIs to reduce 
the discontinuity in 3D space caused by the 2D ROI drawing. �ese preprocessed images and VOIs were �nally 
used for CNN training and testing and GFR estimation as shown in Fig. 1.

Neural network architecture. �e CNN that we used is a modi�ed 3D U-net that consists of the contrac-
tion and expansion paths25. �e 3D U-net learns an end-to-end mapping between CT and manually drawn renal 
parenchyma VOIs as shown in Supplementary Figure S1. Each path is exploited by the �ve sequential layers. �e 
contraction path, which captures the context, consist of a leaky recti�ed linear unit (leaky ReLU) as an activation 
function (a pre-activation residual block26), each followed by 3 × 3 × 3 convolution and 2 × 2 × 2 strided con-
volution for down-sampling. In addition, the element-wise sum array is used between the output of 2 × 2 × 2 
strided convolution and 3 × 3 × 3 convolution to forward feature maps from one stage of the network to other20. 
�e expansion path, which enables precise localization, consists of the leaky ReLU, which allows a small gradi-
ent when the unit is not active, 3 × 3 × 3 convolution, 1 × 1 × 1 convolution, and 2 × 2 × 2 de-convolution for 
up-sampling. �e element-wise sum array layer is also used right before the Sigmoid activation function to sum 
3 × 3 × 3 convolution results of the previous three layers20. We used a 3D spatial drop-out technique (drop-out 
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rate of 0.3), as these have shown better performance when adjacent voxels within feature maps are strongly corre-
lated compared with batch normalization.

We also employed symmetric skip connections (copy and concatenation), as shown in Supplementary 
Figure S1, to insert the local details captured in the feature maps of the contraction path into the feature maps 
of the expansion path27. We implemented the networks using the TensorFlow28 and Keras framework (https://
github.com/fchollet/keras).

Network training. �e network was trained using randomly selected dataset of 315 of 393 patients and vali-
dated using data from the remaining 78 patients. As mentioned previously, the resampled and cropped CT images 
and manual VOIs were used for network training. All the input and output datasets were in 3D volume format.

�e Dice similarity coe�cient, which is an overlap metric frequently used for assessing the quality of segmen-
tation maps, is used as the loss function11,21,29. Each layer was updated using error back-propagation with adaptive 
moment estimation optimizer (ADAM), which is a stochastic optimization technique30. �e exponential decay 
rates for the moment estimates β1 and β2 are 0.9 and 0.999 respectively, with epsilon of zero. �e learning rate for 
determining to what extent the newly acquired information overrides the old information was initially 0.0005 and 
reduced by half a�er 10 epochs if the loss function is not improved. �e number of epochs was 80 and each epoch 
includes 272 iterations. �e training time was approximately 60 min/epoch when using i7-7700K CPU (3.40 GHz) 
and one GTX 1080 TI GPU.

GFR estimation. We calculated %ID by applying the manual and automatic VOIs to the quantitative SPECT 
images. �en, individual GFRs were calculated using the following equation6:

= × . + .GFR (ml/min) (%ID 9 1462) 23 0653

�e sum of bilateral kidney GFRs was normalized to body surface area (BSA) using the following equation to 
calculate the total GFR of the bilateral kidneys. �e Dubois equation for the BSA in m2 was 0.007184 × (weight 
in kg)0.425 × (height in cm)0.725.

. = × .Total GFR (ml/min/1 73 m ) GFR (ml/min) (1 73/BSA m )2 2

Further validation on urolithiasis patients. To evaluate the performance of the network in the clinical 
setting, we adopted patients with urinary stones and kidney donors as negative controls. Consecutive 99mTc-DTPA 
kidney SPECT/CT studies of urolithiasis patients or kidney donors performed from March 2015 to January 2016 
were analyzed retrospectively. Among 69 urinary stone patients scanned during that period, 4 with underlying 
chronic kidney disease and 2 without available raw data were excluded. Among 26 kidney donors, one subject 
without raw data remaining was also excluded. Finally, 126 kidneys from 63 urinary stone patients and 50 kidneys 
from 25 kidney donors were investigated. Gender proportion was not signi�cantly di�erent between the normal 
(male:female = 15:10) and stone group (male:female = 30:33) (Chi-square test, p = 0.086). However, age was sig-
ni�cantly higher in urinary stone subjects (56.87 ± 12.60 years old) than in normal subjects (45.64 ± 13.91 years 
old) (independent samples t-test, p = 0.0004).

Each kidney was classi�ed into three groups: 50 normal kidneys (from kidney donor patients), 48 sympto-
matic kidneys with either ureter stone of any size or large renal stone (longest diameter > 10 mm), and 78 asymp-
tomatic kidneys with either small renal stone (longest diameter ≤ 10 mm) or contralateral kidney of unilateral 
urolithiasis patients.

Figure 1. Schematic diagrams of the deep-learning-based renal parenchyma segmentation for the 
measurement of glomerular �ltration rate (GFR) using quantitative single-photon emission computed 
tomography (SPECT)/computed tomography (CT).
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Individual and total GFR values obtained from manual segmentation or automatic segmentation were com-
pared in each group. For manual segmentation, the average of two independent measurements of GFR by four 
medical experts was used to represent the manual GFR. �e experts were blind to each other regarding the man-
ual segmentation results. For automatic segmentation, only a single measurement of GFR by the deep learning 
algorithm was employed.

Data analysis. For the quantitative evaluation of network performance, the Dice similarity coefficient 
between manual drawing and deep learning output was calculated. In addition, we assessed the correlation and 
mean absolute percentage error between the measurements of GFR using these di�erent segmentation methods. 
To con�rm the consistency of performance, we also performed �ve-fold cross-validation.

Statistical analyses in urolithiasis patients were performed with dedicated so�ware (Medcalc, version 14.8.1, 
bvba/GraphPad Prism, version 5.01). First, normality of the data was evaluated using the D’Agnostino–Pearson 
test and parametric or non-parametric tests were implemented according to the result. For the parametric test, 
independent samples t-test, paired samples t-test, or one-way analysis of variance (ANOVA) was performed. For 
the non-parametric test, Mann–Whitney test, Wilcoxon test, or Kruskal–Wallis test was done. Chi-square tests 
were performed for analyses of categorical data. A multiple comparison correction for t-test was implemented 
with Bonferroni correction. Results with P-values less than 0.05 were considered signi�cant.

Results
Segmentation. We could automatically segment the kidneys in CT images using the proposed method with 
high Dice similarity coe�cient relative to the manual segmentation (mean ± SD = 0.89 ± 0.03 in main experi-
ment) (Table 1). In addition, the proposed deep learning approach provided 3D kidney parenchyma VOIs with 
no discontinuity between slices because the CNN was trained to produce smooth 3D VOIs. �e time requirement 
of auto-segmentation was only a few seconds per patient, whereas the manual segmentation takes about 15 min 
per scan. We also performed an ablation study to optimize the network structure. �e results from the ablation 
study is summarized in Supplementary Table S2. Due to memory limitation, we could not use more than one 
batch without additional down-sampling of the image dataset. We observed that using the drop-out without 
down-sampling (batch size of one) showed better performance than batch normalization with down-sampling 
(batch size of two). Using the residual block and the element-wise sum array increased the Dice similarity coe�-
cient. In addition, the dice coe�cient was slightly improved by applying the drop-out for the proposed network.

Figures 2, and 3 show some cases in which the CNN outperformed the manual segmentation that was sup-
ported by the automatic inter-slice ROI interpolation function provided by the vendor’s so�ware. Note that the 

Method Unit

Dataset

Main Experiment Cross-validation 1
Cross-
validation 2 Cross-validation 3 Cross-validation 4

DSC
(mean ± SD) 0.89 ± 0.03 0.88 ± 0.04 0.88 ± 0.04 0.89 ± 0.03 0.89 ± 0.03

[range] 0.80–0.93 0.65–0.93 0.74–0.94 0.77–0.93 0.79–0.94

Mean-M
ml/min 
(mean ± SD)

49.87 ± 10.08 49.28 ± 10.21 47.83 ± 9.58 50.27 ± 10.72 49.68 ± 10.06

Mean-A
ml/min 
(mean ± SD)

49.41 ± 9.81 48.89 ± 9.88 47.70 ± 9.07 49.95 ± 10.26 49.06 ± 9.68

Correlation R2 0.96 0.96 0.95 0.96 0.96

MAPE % (mean ± SD) 2.90 ± 2.80 2.88 ± 2.75 2.99 ± 3.25 3.00 ± 2.93 2.67 ± 2.70

Table 1. �e results of cross-validations (total kidney). DSC, Dice similarity coe�cient; M, manual 
segmentation; A, automatic segmentation; MAPE, mean absolute percentage error.

Figure 2. Single-photon emission computed tomography (SPECT)/computed tomography (CT) images and 
renal parenchyma volumes of interest (VOIs) with incorrect region of interest (ROI) interpolation result (next 
slice as the second and fourth column) provided from the vendor’s so�ware. (A) Manually segmented VOI. (B) 
Deep-learning-generated automatic VOI.
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errors are mainly associated to the time-consuming nature of the manual segmentation in which every frame was 
not segmented as a compromise.

In Fig. 2, the pelvis of the le� kidney is wrongly included in the manual VOI (Fig. 2A) although the CNN did 
not yield such error (Fig. 2B). Figure 3 shows another case in which the CNN well excludes the multiple renal 
stones (yellow arrow in Fig. 3B), but the manual VOI failed to exclude multiple stones (Fig. 3A). In Fig. 3C,D, the 
CNN well delineates the partial nephrectomy margin in the le� kidney (red arrow). In addition, the accuracy of 
segmentation was better in the CNN outcome (yellow arrow).

GFR estimation. �e GFR values derived using manual and automatic segmentation methods were strongly 
correlated (R2 = 0.96 in main experiment) for total kidneys (Table 1). Scattered and Bland–Altman plots between 

Figure 3. Single-photon emission computed tomography (SPECT)/computed tomography (CT) images 
(multiple renal stones for (A,B) and partial nephrectomy for (C,D)) and renal parenchyma volumes of interest 
(VOIs) for a representative test dataset (A,C) Manually segmented VOI. (B,D) Deep-learning-generated 
automatic VOI.
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the measurement of GFR in total kidneys using manual and deep-learning-generated VOIs are shown in 
Fig. 4A,B. �e result of each right and le� kidney is shown in Supplementary Figure S2.

Figure 4C shows the percentage di�erence (mean absolute percentage error) between the measurements of 
GFR obtained using manual and deep-learning-generated VOIs in all �ve-fold cross-validations. �e absolute 
di�erence between the GFR values using manual (49.87 ± 10.08 ml/min) and automatic (49.41 ± 9.81 ml/min) 
methods was only 2.90 ± 2.80% (le� kidney: 3.12 ± 2.99%; right kidney: 3.13 ± 2.80%) in the main experiment. 
�e percentage di�erences obtained in the other cross-validations were 2.88 ± 2.75%, 2.99 ± 3.26%, 3.00 ± 2.94%, 
and 2.68 ± 2.70%, respectively. �e results of cross-validations are summarized in Table 1. �e correlation coe�-
cient R2 for the �ve sets ranged from 0.95 to 0.96.

Validation on urolithiasis patients. �e CNN segmentation-based GFR (GFRCNN) was applied for fur-
ther clinical validation for urolithiasis patients. �e manual-segmentation-based GFR by four human experts 
(GFRmanual) served as a reference. Individual kidney GFR and total GFR (sum of bilateral GFR with body surface 
area normalization) were investigated.

Supplementary Figure S3A and Table 2 show that GFRCNN and GFRmanual were equivalent in terms of total GFR 
evaluation of urolithiasis and controls. Total GFRCNN in kidney donors (119.25 ± 18.35 ml/min/1.73 m2) was not 
signi�cantly di�erent from GFRmanual (120.39 ± 19.26 ml/min/1.73 m2; P = 0.4432, Wilcoxon test). Total GFRCNN 
in urinary stone patients (115.02 ± 17.71 ml/min/1.73 m2) was also not signi�cantly di�erent from GFRmanual 
(115.65 ± 16.91 ml/min/1.73 m2; P = 0.2387, paired t-test). Meanwhile, total GFR in the normal and stone groups 
showed no signi�cant di�erence in both manual (P = 0.2582, independent samples t-test) and CNN-based seg-
mentations (P = 0.5693, Mann–Whitney test).

When it comes to the individual kidney GFR, GFRCNN and GFRmanual were comparable with each other with-
out signi�cant di�erence. Supplementary Figure S3B and Supplementary Table S3 show that individual GFRCNN 
in normal kidneys (60.43 ± 7.66 ml/min) was not signi�cantly di�erent from GFRmanual (61.01 ± 8.10 ml/min; 
P = 0.1725, paired t-test). In addition, individual GFR was not signi�cantly di�erent in asymptomatic kidneys 
(GFRCNN: 59.23 ± 9.25 ml/min versus GFRmanual: 59.72 ± 9.46 ml/min; P = 0.0361, paired t-test) and in sympto-
matic kidneys (GFRCNN: 51.76 ± 13.69 ml/min versus GFRmanual: 51.84 ± 12.73 ml/min).

Individual GFR in normal, asymptomatic, and symptomatic kidneys were signi�cantly di�erent in both man-
ual (P < 0.001, ANOVA) and CNN-based segmentation methods (P < 0.001, ANOVA). Post-hoc analyses revealed 
that in both manual and CNN segmentations, symptomatic kidneys had signi�cantly lower GFR compared with 
normal or asymptomatic kidneys (P < 0.05).

Finally, manual and automatic segmentation methods showed comparable performance in an evaluation of 
treatment response. Figure 5 and Supplementary Table S4 present a typical case of a urinary stone patient before 
and a�er removal of ureter and renal stones in a le� kidney. In serial projection images, 99mTc-DTPA uptake in le� 
renal parenchyma is normalized a�er the procedure. Both manual and automatic segmentation methods showed 
marked improvement of %ID and individual GFR in the le� kidney a�er the removal of the stones.

Figure 4. Scattered (A) and Bland–Altman (B) plots between measurement of total glomerular �ltration 
rate (GFR) using manual and deep-learning-generated volumes of interest (VOIs), and absolute percentage 
di�erence (C) between measurement of GFR using manual and deep-learning-generated VOIs: results of �ve-
fold cross-validation.

Normal (n = 25) Stone (n = 63) P-value

Manual 120.39 ± 19.26 115.65 ± 16.91 NS

CNN 119.25 ± 18.35 115.02 ± 17.71 NS

P-value NS NS

Table 2. Total glomerular �ltration rate (GFR) (ml/min/1.73 m2) by manual and convolutional neural network 
(CNN)-based segmentations in normal and urolithiasis patients (mean ± SD). NS, non-signi�cant.

https://doi.org/10.1038/s41598-019-40710-7
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Discussion
In this study, we showed that the deep learning approach is highly accurate in renal parenchyma segmentation in 
CT images acquired in kidney SPECT/CT studies and is useful for automated measurement of GFR. �e CNN 
outcomes yielded remarkably high Dice coe�cient (0.89) with manual segmentation, leading to the strong corre-
lations in %ID and GFR between the manual and automatic methods.

Automatically drawing VOIs only on renal parenchyma but excluding cysts and tumors is a challenging task 
because their CT intensities are very similar in non-contrast-enhanced CT images obtained in SPECT/CT studies. 
Although the proposed method performed the segmentation correctly in most cases as shown in Supplementary 
Figure S4, there were several cases in which the segmentation was not accurate. Supplementary Figure S5 is such 
a case in which a renal mass (yellow arrows) was incorrectly included although renal pelvis was well excluded (red 
arrows). Because this patient (male, 164 cm, 58 kg) was relatively smaller than others, insu�cient data for training 
deep CNN to properly handle such unusual cases would be the cause of inaccurate segmentation. In spite of such 
inaccuracy, the GFR error in this patient was only 2.48% because the radioactivity in the tumor was very low.

Because we trained the CNN to draw VOIs on the renal parenchyma of both kidneys, there was error in the 
patient with only a single kidney. In Supplementary Figure S6, the CNN drew a long narrow VOI on the liver 
parenchyma (yellow arrow) of a patient who does not have a right kidney. �e CNN experienced only three 
single-kidney cases during the training among the training set with 272 patients. Additional datasets of with 
single-kidney patients will be necessary to overcome this limitation. In the cases shown in Figs 2 and 3, there 
were some segmentation errors in manual VOIs. By carefully inspecting the cause of these errors, we could reveal 
that the error in the manual VOI originated from the discontinuity in the perpendicular direction to the ROIs 
and subsequent inter-slice ROI interpolation. In two sequential slices shown in Fig. 2A, the ROI on the le� was 
manually drawn and that on the right was interpolated.

In the further validation of the proposed method for urolithiasis, automatic segmentation was comparable with 
manual segmentation in measuring GFR. �ere was no di�erence between manually driven GFR and CNN-driven 
GFR in all groups of patients (total GFR) and kidneys (individual GFR). In addition, in both automatic and manual 
segmentation methods, individual kidneys with symptomatic urinary stone had lower GFR compared with normal 
or kidneys with asymptomatic stones. We could presume that both segmentation methods work well to represent 
the functional deterioration by obstructing urinary stones and the subsequent improvement a�er stone removal 
procedures31,32. Further clinical validation of deep-learning-based segmentation is required to expand its use in 
more complicated cases such as multi-cystic dysplastic kidneys where manual segmentation is more laborious.

To the best of our knowledge, this is the �rst deep learning study on the kidney parenchyma segmentation 
in CT and its application to the SPECT activity quanti�cation. �e proposed deep learning approach to the 3D 
segmentation of kidney parenchyma in CT enables fast and accurate measurement of GFR. �e combination of 
CT-based automatic segmentation by the deep learning approach and novel quantitative SPECT technology may 
pave the way for precision nuclear medicine regarding measurement of GFR.

Figure 5. Single-photon emission computed tomography (SPECT)/computed tomography (CT) images of a 
patient (A) before (red arrow indicates a ureter stone and yellow arrow indicates a renal stone) and (B) 4 months 
a�er removal of le� ureter and renal stones. A projection image is presented in the �rst column, axial images of 
CT (top) and SPECT/CT fusion (bottom) are in the second, and segmentation results (automatic segmentation 
in the top and manual segmentation in the bottom) are shown in the third column.
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