
IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 12, NO. 7, JULY 2000 861

Measurement of High-Order Polarization
Mode Dispersion

Yi Li, A. Eyal, P.-O. Hedekvist, and A. Yariv

Abstract—Wedemonstrate a new method to measure high-order
polarization mode dispersion (PMD) using the Jones matrix expo-
nential expansion. High-order PMD is characterized by measuring
a series of characteristic matrices, which are convenient quantities
for analyzing PMD effects in the time-domain. An experimental
method is developed to estimate the validity range of the exponen-
tial expansion.

Index Terms—Differential group delay, optical fiber communi-
cation, optical measurements, polarization mode dispersion, prin-
cipal states of polarization.

I. INTRODUCTION

W ITH the current trend toward ultrahigh bit rate transmis-
sion systems, the effects of second- and higher order

PMD are becoming increasingly significant [1], [2]. It is thus
important to find convenient ways to characterize these effects
and measure them. Among the existing standard techniques
are the Jones matrix eigenanalysis (JME) [3] and the Poincaré
sphere technique (PST) [4], [5], and they are well-suited for
accurate measurement of first-order PMD. Main drawbacks
of these approaches include practical complexity to accom-
modate high-order PMD measurement and inconvenience for
time-domain analysis such as calculating pulse deformation.
Recently, Jopson et al. proposed a new measurement method,
the Müller matrix method (MMM) [6] to measure higher order
PMD. It attains algorithmic simplicity by staying completely
in the Stokes space and is also capable of obtaining relatively
high signal-to-noise ratio by requiring less contingent control
of the input polarization states. However, the inconvenience
for time-domain analysis still remains. In a recent paper [7]
we have introduced an alternative method for characterizing
high-order PMD, which is based on a novel expansion of the
Jones matrix. The main advantage of this method is that the
descriptors used to charaterize high-order PMD are directly
related to PMD-induced pulse deformation. Therefore, they are
particularly convenient for time-domain analysis. Here we de-
scribe a method to measure these high-order PMD descriptors.
Since our method only involves measuring the Jones matrix
within the transmission bandwidth, it is easy to implement by
using a commercially available polarization analyzer. An addi-
tional reward of our measurement approach is that it can give, in
principle, all orders of PMD descriptorssimultaneously. In this
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letter, we report measurements of high-order PMD descriptors
up to the fourth order, and the issue of measurement accuracy
is addressed. Finally we demonstrate a method to estimate
the validity range of the Jones matrix expansion mentioned
above. It is then found that by including more high-order PMD
descriptors, we are able to give precise description of PMD
over a wider frequency bandwidth.

II. THE EXPONENTIAL EXPANSION

Let ~Ein = ~Aei!t be the input optical field vector which is
characterized by its transversex- andy-components, and~Eout

be the output field after traveling through a linear medium. The
Jones matrixT(!) of the medium is then defined by:~Eout =
T(!)~Ein. The exponential expansion of the Jones matrix around
some carrier frequency!0 takes the form [7]
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whereT0 is the Jones matrix of the medium at!0. The2 � 2
complex matrices,Nk ’s, are defined as thekth-order charac-
teristic matrixof PMD. We denote the (column) eigenvectors
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in the canonical form: [7]
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In a similar fashion to defining the PSP’s and DGD to
characterize the first-order PMD, we definê�(�)

k
as the

kth-order principal states of PMD, andImf�(+)
k

� �
(�)
k

g as
the kth-order Differential Group Delay Dispersion(DGDD)
[7]. In the special case ofk = 1; �

(�)
1 are the well-known

PSP’s, and the first-order DGDD is the ordinary DGD of the
medium. The effect of second-order PMD is described by�

(�)
2

andDGDD2 � Imf�
(+)
2 � �
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2 g. The physical meaning of

these descriptors can be best visualized in a medium in which
the first-order PMD has been compensated. In such a medium
the dominant effect of PMD is a quadratic phase difference be-
tween the second-order PSP’s. This quadratic phase difference,
given by(1=2)
2(DGDD)2, is manifested in the time domain
by a differential broadening of pulses. Pulses which are aligned
with �

(+)
2 and �

(�)
2 will experience maximum and minimum

broadening, respectively. The particular form of (2) makes it
a convenient formulation for studying pulse deformation due
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to high-order PMD, since each bracket can be treated as a
subsystem of different phase dispersion characteristics.

III. M EASUREMENTMETHOD

Measuring the characteristic matrices is, therefore, important
for characterizing high-order PMD. Here we describe an accu-
rate and easy-to-implement method to measure these matrices.
By explicitly expanding each exponential term in (1) and com-
paring the resulting expansion to the ordinary Taylor expansion
of the Jones matrices
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we obtainNk’s in terms ofT and its derivatives
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It is evident that measuring the characteristic matrices is
equivalent to measuring the derivatives of the Jones matrix.
In most polarization analyzing instruments the first-order
derivative ofT, which is used subsequently to calculate the
DGD, is obtained by measuring the difference of the Jones
matrix at two nearby frequencies. In principle, high-order
derivatives of the Jones matrix could be obtained similarly. In
reality, however, this direct approach leads to significant errors
in high-order derivatives since we are dealing with ratios of
extremely small quatities, and minor measurement fluctuations
may result in large deviation. Better accuracy can be achieved
by numerically fitting the Jones matrix data to a polynomial of
matricesTn(
) = A0 + A1
 + A2
2 + � � � + An
n, the
degree of which depends on the number of terms to keep in the
expansion (1). The derivatives of the Jones matrix are then given
by the coefficients of this polynomial:T(k)j!0

= k! � Ak. In
summary, the measurement comprises of the following stages:
1) The Jones matrix is measured at consecutive wavelengths in
the bandwidth of interest; 2) A polynomial fit is performed to
obtain an approximated analytical expression for the measured
Jones matrix; 3) From the resulting fitting coefficients the
characteristic matricesNk ’s are calculated.

Besides the simultaneity of determination of all orders of
PMD descriptors, our approach allows for convenient verifica-
tion of measurement accuracy by comparing the measured Jones
matrix with the following truncated exponential expansion

T(!0 +
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If better agreement is achieved by including more exponential
terms in (5), the accuracy of measuredNk ’s is confirmed.

IV. EXPERIMENTAL RESULTS

In the experimental setup, a tunable laser source was directed
through a polarization analyzer and our system under test
(SUT). The Jones matrix of the SUT was measured as function

Fig. 1. Comparison of measured Jones matrix elementsT12 and T22

(circles—real part; triangles—imaginary part) and reconstructed finite product
(5). The dotted lines are forn = 1 and the solid lines are forn = 3. The
wavelength is with respect to�0 = 1546:5 nm.

of wavelength in a suitable bandwidth. The measurement was
performed on two different types of fibers. One is a standard 33
km single-mode fiber (SMF). The other one is made of three
concatenations of high-birefringence fibers (HiBi). Both are
polarization-mode dispersive media, and the average PMD is a
few pico-second for the HiBi and a few tenth pico-second for
the SMF. The inclusion of the HiBi fiber enables us to compare
our measurement to known analytic results later.

For each SUT the characteristic matrices were calculated
from the measured Jones matrix, and truncated products (5)
for different n values are constructed and compared against
the original Jones matrix data (Fig. 1). For both HiBi and
SMF, the truncated product approximation improves with
the inclusion of more terms in (5). The major improvement
in agreement between the Jones matrix and its exponential
expansion that results from the inclusion of then = 3 term
strongly confirms the validity of the exponential expansion in
describing pulse propagation. Since the propagator (5) is in the
form of products of operators, it lends itself more readily to
optical manipulation and compensation by a serial arrangement
of optical components.

Further confirmation of accuracy can be achieved by com-
paring the DGD profiles calculated from the truncated prod-
ucts (5) and that obtained from the measurement, as shown in
Figs. 2 and 3. Once again, the inclusion of more terms in the
truncated product approximation leads to better agreement with
the measurement.

To assess the relative importance of different orders of
PMD effects, it is instrumental to estimate the validity range
(VR) of the truncated product approximation for a givenn.
The definition of the VR is somewhat arbitrary, and here we
define that its boundary is where the DGD calculated from
(5) starts to deviate rapidly from a reference DGD curve. In
real applications, this reference is just the DGD data from the
measurement. Figs. 2 and 3 illustrate the applicability of this
approach, and it is evident that inclusion of more higher order
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Fig. 2. Comparison between the measured DGD profile and those calculated
from the truncated products (5) for the SMF.

Fig. 3. Comparison between the measured (and analytical) DGD profile and
those calculated from the truncated products (5) for the HiBi.

terms in (5) leads to wider VR’s. The VR’s for differentn
values are listed below

n 2 3 4
VR in nm (HiBi): 0:05 0:15 0:35
VR in nm (SMF): 4:0 8:0 15:0:

Finally, it is interesting to compare the results from measure-
ment and the analytical predictions for the concatenations of
HiBi fibers. By using the analytical formula derived by Gisin
and Pellaux [8], we can express the DGD of concatenations of
birefringent fibers as a function of fiber parameters such as cou-
pling angles and individual DGD’s of each concatenation. Due

to extreme sensitivity of the DGD profile on these parameters,
the exact values of these parameters are fine-tuned around their
experimentally measured values by numerically fitting the an-
alytical DGD curve to measurement data. The solid curve in
Fig. 3 is the analytical DGD profile with numerically deter-
mined coupling angles of 45.02� and�45.20�, and individual
DGD’s of 6.1314 ps, 2.3690 ps, and 6.1312 ps. The analytical
curve fits well with the measurement results.

V. CONCLUSION

The exponential expansion of the Jones matrix is a new tech-
nique that provides a convenient and intuitive way to analyze
high-order PMD effects. By using a small number of descrip-
tors (either the characteristic matrices or the corresponding
PSP’s and DGDD’s) the PMD properties of the transmission
medium can be completely described within a given range
of frequencies. We have demonstrated an accurate method
to measure the PMD characteristic matrices. By showing the
convergence of the finite product approximation (5) to the
experimental measurement, we have not only verified the
applicability of the new Jones matrix exponential expansion
experimentally, but also confirmed the accuracy of our method.
The validity range of the finite product approximation has been
estimated as a guideline for applying the measured descriptors
to time-domain analysis.
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