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Measurement of in-plane and out-of-plane displacements and strains using

digital holographic moiré
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The paper proposes a non-destructive method for simultaneous measurement of in-plane and out-of-plane displacements
and strains undergone by a deformed specimen from a single moiré fringe pattern obtained on the specimen in a dual
beam digital holographic interferometry setup. The moiré fringe pattern encodes multiple interference phases which carry
the information on multidimensional deformation. The interference field is segmented in each column and is modeled
as multicomponent quadratic/cubic frequency-modulated signal in each segment. Subsequently, the product form of
modified cubic phase function is used for accurate estimation of phase parameters. The estimated phase parameters are
further utilized for direct estimation of the unwrapped interference phases and phase derivatives. The simulation and
experimental results are provided to validate the effectiveness of the proposed method.

Keywords: digital holographic moiré; interferometry; multicomponent signal; in-plane and out-of-plane displacements
and strains; modified cubic phase function

1. Introduction

Over the years, several fringe analysis techniques have been

proposed to accurately estimate the interference phase and

which have significantly impacted deformation measure-

ment systems in the broad field of optical metrology. Some

of these techniques are based on the Fourier transform [1],

the windowed Fourier transform [2], the wavelet transform

[3], the regularized phase tracking [4], the piecewise poly-

nomial phase approximation [5,6], etc. However, the fringe

analysis techniques mentioned above have been developed

with a view to be plugged onto the measurement systems

dedicated to single deformation measurements which pro-

duce fringe patterns having a single-interference phase map.

These single-phase measurement systems are, in general,

dedicated to the measurement of quantities such as contour-

ing [7], or single displacement components [8,9]. However,

a major drawback of the fringe analysis techniques cited

above [1–6] is that they fail when applied to the simulta-

neous measurement of multiple displacement components.

Hence, there is an important need for the development of

fringe analysis techniques for multidimensional deforma-

tion measurement. The scope of our paper will be focused

on the development of such measurement systems in the

context of digital holography. The scale of importance of

digital holography in optical metrology has significantly in-

creased by its ability to use a charge-coupled device (CCD)

∗Corresponding author. Email: pramod.rastogi@epfl.ch

to record the interference of an object beam and a reference

beam.

The problem of multidimensional deformation measure-

ment has led to the investigation of new techniques based

on the use of multiple object-reference beam pairs in digital

holographic interferometry. In Ref. [10], a multiplexing-

demultiplexing technique for digitally recorded holograms

is developed that basically involves obtaining an incoherent

mixing of two object waves scattered from an object sur-

face. To each of the scattered wave is assigned a separate

reference beam. Each of the two pairs of object-reference

beams are orthogonally polarized one with respect to the

other. On the other hand, the work in Ref. [11] is based on

the use of delay lines to obtain multiple sets of independent

holograms on one single CCD frame. Although requiring

complicated setups, these methods have been successfully

applied to the simultaneous measurement of multiple dis-

placement components of an object subjected to load. Other

elegant methods have been reported in Refs. [12,13], which

have maintained the basic precept of incoherent mixing of

scattered object waves using multiple pairs of object and

reference beams, with each pair originating from a laser

of a different wavelength. The price to pay here is the

use of multiple lasers in a measurement system. Finally,

Ref. [14] considers sequentially recording a pair of digital

holograms for each of the two object-reference beam pairs

© 2014 Taylor & Francis

D
o
w

n
lo

ad
ed

 b
y
 [

E
P

F
L

 B
ib

li
o
th

èq
u
e]

 a
t 

0
0
:1

3
 1

8
 J

u
n
e 

2
0
1
4
 



756 R. Kulkarni et al.

used in the measurement system. However, the requirement

of multiple frames and the use of sequential recording makes

the method less relevant to the simultaneous measurement

of multiple displacement components of a dynamic object.

We have recently developed a digital holographic moiré-

based system [15] that overcomes the need to optically

obtain multiple pairs of object-reference beams, by simul-

taneously illuminating the object from multiple directions

and using a single reference beam. The method has been

shown to be effective in the simultaneous measurement

of in-plane and out-of-plane components of displacements

of a deformed object. However, the method in Ref. [15]

requires a careful control of the carrier in the experimental

setup to ensure the separation of the signal components in

the frequency domain. Although the techniques proposed in

[16,17] overcome this problem, these techniques are applied

only for the multidimensional displacement measurement.

Moreover, whereas the phase estimation method proposed

in [16] is sensitive to noise, the interference phase

approximation method in [17] is limited upto second-order

polynomial.

In the present paper, we propose a new method for

simultaneous estimation of multiple interference phases and

their derivatives from a single digital holographic moiré

fringe pattern. A multicomponent local quadratic/cubic

frequency-modulated signal model of the interference field

is considered which allows to approximate the rapidly

varying interference phases with lower order polynomial

phase function. Consequently, the method provides the

flexibility to select either the third-order or the fourth-order

polynomial phase approximation. The proposed method

relies on the product form of modified cubic phase function

(MCPF) for accurate estimation of the polynomial coeffi-

cients. The estimated polynomial coefficients are utilized

for estimating the multiple unwrapped interference phases

and phase derivatives. The theory of proposed method is

explained in the next section. Simulation and experimental

results are provided in Section 3, followed by conclusions.

2. Theory

Consider two-directional illumination of an object surface

with two illumination beams oriented symmetrically with

respect to the surface normal. The holograms are recorded

before and after deformation of the object. The conjugate

multiplication of reconstructed optical wavefields corre-

sponding to the different object states results in a multi-

component interference field which can be represented as,

γ (x, y) = A1(x, y) exp[ jφ1(x, y)]

+ A2(x, y) exp[ jφ2(x, y)] + η(x, y) (1)

We note that the interference field γ (x, y) of size N × N

contains two signal components. A1(x, y) and A2(x, y)

are assumed to be slowly varying or of constant ampli-

tudes; φ1(x, y) and φ2(x, y) are the interference phases

corresponding to the two object beams; and, η(x, y) is the

complex additive white Gaussian noise. In the proposed

optical configuration, the sum and difference of interfer-

ence phases provides the measurement of out-of-plane and

in-plane displacement components, respectively. Similarly,

the sum and difference of interference phase derivatives

provides the measurement of out-of-plane and in-plane

strain components, respectively. In a given column x , the

interference field can be given as,

γ (y) = A1(y) exp[ jφ1(y)] + A2(y) exp[ jφ2(y)] + η(y)

(2)

In the proposed method, in each column x , γ (y) is divided

into Nw non-overlapping segments. The interference field

in each segment is then approximated as a multicomponent

quadratic/cubic frequency-modulated signal. The analysis

is carried out for multicomponent quadratic frequency-

modulated signal model. The signal length Ns in each

segment is assumed to be an odd number. Further, in the

segment i of the given column x where i ∈ [1, Nw], the

interference field can be represented as,

γi (y) = A1i (y) exp[ jφ1i (y)]+A2i (y) exp[ jφ2i (y)]+ηi (y)

(3)

where, − (Ns−1)
2

≤ y ≤ (Ns−1)
2

. The interference phases

can be represented as,

φ1i (y) = ai0 + ai1 y + ai2 y2 + ai3 y3 (4)

φ2i (y) = bi0 + bi1 y + bi2 y2 + bi3 y3 (5)

The phase derivatives along y-axis can be calculated as

follows,

∂φ1i (y)

∂y
= ai1 + 2ai2 y + 3ai3 y2 (6)

∂φ2i (y)

∂y
= bi1 + 2bi2 y + 3bi3 y2 (7)

From Equations (4)–(7), it is evident that the phases and

their derivatives’ estimates can be obtained by accurately

estimating the polynomial coefficients. We propose to use

the product form of MCPF to calculate the estimates of ai3

and bi3. The product form of MCPF can be written as [18],

PMCPF(�; yK ) =

K
∏

k=1

MCPF

(

yk,
yK

yk

�

)

(8)

where,

MCPF(y,�) =

(Ns−1)
2

∑

m=0

γi (y + m)γi (y − m)

× γ ∗
i (−y + m)γ ∗

i (−y − m) exp(− j�m2)

(9)

One of the important advantages of using the product

form of the MCPF function is that it allows for avoiding

the effect of cross-terms and spurious peaks appearing in

the case of multicomponent signal analysis. Here, K is the

number of y values for which MCPF is calculated. The
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spectral scaling operation in Equation (8) ensures that the

peaks are aligned at single frequency calculated for each

value of y. To ease the implementation, the values of y

are selected as yK = 2yK−1 = 4yK−2 = · · · = 2K−1 y1.

Two peaks are observed in PMCPF spectrum corresponding

to ai3 and bi3. However, the difference between the two

peaks is not observable. This increases the complexity of

assigning coefficients to their respective polynomials. We

approach this problem by modeling an amplitude discrimi-

nation criteria. The basis of this discrimination criteria is to

create a sufficiently large difference between the amplitudes

A1 and A2. The application of this criteria means that in

a given optical setup, one laser beam will be set to have

more intensity than the other beam. This insures that in

case of A1 > A2, only a single peak corresponding to

ai3 is observed in the PMCPF spectrum. Consequently, the

estimate of coefficient ai3 can be obtained as,

âi3 =
arg max� |PMCPF(�; yK )|

12yK

(10)

Once the estimate of ai3 has been obtained, peeling off

operation is performed as follows,

γi2(y) = γi (y) exp
(

− j âi3 y3
)

(11)

As a result, the signal γi2(y) contains the second-order

polynomial phase of the stronger component. Subsequently,

the product cubic phase function (PCPF) is applied to obtain

the estimate of ai2 [19]. The PCPF is computed as a product

of cubic phase function (CPF) calculated for different values

of y,

PCPF(�) =

K
∏

k=1

CPF(yk,�) (12)

where,

CPF(y,�) =

(Ns −1)
2

∑

m=0

γi2(y + m)γi2(y − m) exp(− j�m2)

(13)

Here, K is the number of y values for which PCPF is

calculated. The dominant peak in the PCPF spectrum gives

the estimate of ai2 as,

âi2 =
arg max� |PCPF(�)|

2
(14)

To obtain the first-order coefficient estimate of the stronger

component, peeling off operation is performed as follows,

γi1(y) = γi2(y) exp
(

− j âi2 y2
)

(15)

Consequently,γi1(y) contains first-order phase of the stronger

component. The estimate of ai1 is obtained by computing

the discrete Fourier transform (DFT) of the signal γi1(y)

where,

X i1(ω) = DFT[γi1(y)] (16)

âi1 = arg max
ω

|X i1(ω)| (17)

The DFT of γi1(y) is computed using the Fast Fourier

Transform (FFT) algorithm. The dominant peak of FFT

spectrum gives coarse estimate of ai1. Subsequently, a fine

estimate âi1 is obtained using iterative frequency estimation

by interpolation on Fourier coefficients [20]. Finally, γi1(y)

is peeled off to obtain the estimates for ai0 and Ai1 as,

γi0(y) = γi1(y) exp(− j âi1 y) (18)

âi0 = angle

⎡

⎢

⎣

1

Ns

(Ns −1)
2

∑

y=− (Ns−1)
2

γi0(y)

⎤

⎥

⎦
(19)

Â1i =

∣

∣

∣

∣

∣

∣

∣

1

Ns

(Ns−1)
2

∑

y=− (Ns−1)
2

γi0(y)

∣

∣

∣

∣

∣

∣

∣

(20)

The approximation of stronger component γA1i
(y) is ob-

tained using the coefficient estimates
[

âi3, âi2, âi1, âi0

]

and

the amplitude estimate Â1i as,

γA1i
(y) = Â1i exp

[

j
(

âi0 + âi1 y + âi2 y2 + âi3 y3
)]

(21)

The contribution of stronger signal component is removed

from original signal by subtractingγA1i
(y) fromγi (y).Thus,

we obtain,

γA2i
(y) = γi (y) − γA1i

(y) (22)

Consequently, the effective signal primarily contains the

signal component having a lower amplitude A2i . The above

procedure of coefficient and amplitude estimation is re-

peated to obtain
[

b̂i3, b̂i2, b̂i1, b̂i0

]

and Â2i related toγA2i
(y).

Further, a multicomponent coefficient optimization routine

[21], which involves Nelder-Mead simplex algorithm, is

used for the refinement of the coefficient estimates. This

procedure helps in minimizing the effect of noise and the

cross-component contribution. These refined coefficient

estimates along with Equations (4)–(7) are used to obtain

the estimates of phases and their derivatives. It should be

noted that the phases and their derivatives calculated on

a segment are unwrapped. The phases φ1i (y), φ2i (y) and

their derivatives
∂φ1i (y)

∂y
,

∂φ2i (y)
∂y

are estimated for all the

segments in all columns. Phase-stitching operation is

applied to obtain 2D continuous phase distribution.

If the cubic frequency modulated signal model is consid-

ered in the event of a relatively rapidly varying interference

phases, then the Equations (4)–(7) will contain additional

terms with the fourth-order polynomial coefficients ai4 and

bi4. After peeling off operation in Equation (11), the coef-

ficient ai4 can be calculated in similar manner as ai3 with

the modifications in Equations (8)–(9) as,

PMCPF(�; yK ) =

K
∏

k=1

MCPF

(

yk,

(

yK

yk

)2

�

)

(23)
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(b)(a)

Figure 1. (a) Moiré fringe pattern (b) Fourier spectrum. (The color version of this figure is included in the online version of the journal.)

Figure 2. (a) Phase φ1, (b) Phase φ2, (c) Error in estimation of φ1 and (d) Error in estimation of φ2. All values are in radians. (The color
version of this figure is included in the online version of the journal.)

where,

MCPF(y,�) =

(Ns−1)
2

∑

m=0

γi2(y + m)γi2(y − m)

× γ ∗
i2(m)γ ∗

i2(−m) exp
(

− j�m2
)

(24)

The estimate of coefficient ai4 can be calculated as,

âi4 =
arg max� |PMCPF(�; yK )|

12y2
K

(25)

Subsequently, the peeling off operation is performed to

obtain the lower order polynomial coefficients.
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Figure 3. (a) Phase derivative
∂φ1(y)

∂y
, (b) Phase derivative

∂φ2(y)
∂y

, (c) Error in estimation of
∂φ1(y)

∂y
and (d) Error in estimation of

∂φ2(y)
∂y

.

All values are in radians. (The color version of this figure is included in the online version of the journal.)

Columns

R
o
w

s

50 100 150 200 250

50

100

150

200

250

(a) (b)

Figure 4. (a) Experimental moiré fringe pattern and (b) Fourier spectrum. (The color version of this figure is included in the online version
of the journal.)

3. Simulation and experimental results

To evaluate the performance of the proposed method, the

interference field in Equation (1) was simulated using two

2D interference phases, with the signal-to-noise ratio (SNR)

of 30 dB. The size of simulated interference field was

513×513 pixels. The amplitude discrimination criteria with

A1 = 2 and A2 = 1 were used. The moiré fringe pattern

i.e. the real part of the interference field is shown in the

Figure 1(a). The Fourier spectrum of the interference field

shown in the Figure 1(b), indicates that the individual signal
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760 R. Kulkarni et al.

Figure 5. (a) Phase φ1, (b) Phase φ2, (c) wrapped form of φ1 and (d) wrapped form of φ2. (The color version of this figure is included in
the online version of the journal.)

components are not well separated in the frequency domain.

Therefore, the phase estimation methods based on spectral

analysis [1] are not suitable for the analysis of the type of

multicomponent signals we are concerned with.

The simulated interference phases φ1 and φ2 are shown in

Figure 2(a) and (b), respectively. The interference field was

divided into Nw = 4, number of segments in each column.

The proposed method was applied for interference phase

and phase derivative estimation. The error in the phase

estimation is shown in Figure 2(c) and (d). The root mean-

square-error (RMSE) in phase estimation was found to be

0.0286 and 0.0382 rad. The simulated interference phase

derivatives of φ1 and φ2 are shown in Figure 3(a) and (b),

respectively. The error in the phase derivative estimation is

shown in Figure 3(c) and (d). The RMSE in phase derivative

estimation was found to be 0.0078 and 0.0091 rad. The

analysis was also performed with the method proposed in

[17]. In that case, however, the RMSE in phase estima-

tion was found to be 0.3386 and 0.3663 rad. As one can

see, these values are much higher as compared to those

obtained by the method proposed in this paper. Moreover,

the method proposed in [17] failed to produce faithfully the

phase derivative estimation.

A digital holographic moiré configuration in which the

object surface is illuminated by two collimated beams placed

symmetrically with respect to the surface normal was set up

to obtain moiré fringes. Since the proposed method does not

require the spectra of the individual signal components to

be separated, no carrier frequency needs to be introduced in

the object beam. This overcomes the limitation of careful

control of carrier frequency as required in [15]. To establish

the amplitude discrimination criteria, the intensities of the

two object beams were adjusted such that the intensity of

one beam is twice as that of the other beam.

In the experimental setup, a Coherent Verdi (Coherent

Inc., USA) laser of 532 nm wavelength was used as the light

source. A CCD camera (XCL-U1000, Sony Corporation,

Japan) of size 1600×1200 pixels was used for the recording
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Figure 6. (a) Sum of phases, (b) Difference of phases, (c) wrapped form of sum of phases and (d) wrapped form of difference of phases.
(The color version of this figure is included in the online version of the journal.)

Figure 7. (a) Sum of phase derivatives and (b) Difference of phase derivatives. (The color version of this figure is included in the online
version of the journal.)

of holograms. The real part of the reconstructed interference

field, i.e. the digital holographic moiré fringe pattern is

shown in Figure 4(a). The 2D Fourier transform of the inter-

ference field is shown in Figure 4(b). The unwrapped inter-

ference phases encoded in the moiré pattern were extracted

using the proposed method as shown in Figure 5(a) and (b).

The wrapped forms of the phases are shown in Figure 5(c)

and (d). The sum and difference of estimated interference

phases are shown in Figure 6(a) and (b) along with their

wrapped forms in Figure 6(c) and (d), respectively. The

phase derivative estimates were also calculated using the

proposed method. The sum and difference of estimated

interference phase derivatives are shown in Figure 7(a)

and (b).

4. Conclusion

A new approach for simultaneous measurement of multi-

dimensional deformation is presented. The method reliably

estimates the multiple interference phases and phase deriva-

tives from a single digital holographic moiré fringe pattern

without using any unwrapping algorithms or numerical dif-

ferentiation. This makes the proposed method suitable for

dynamic multidimensional deformation measurement. The
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762 R. Kulkarni et al.

simulation results show that the proposed method performs

better in term of accuracy as compared to the previously

reported methods. The optical setup is simplified with the

use of a single reference beam and a single laser source.

The simulation and experimental results substantiate the

effectiveness of the proposed method.
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