
Measurement of Inherent Noise in EDA Tools�

Andrew B. Kahng† and Stefanus Mantik

† UCSD CSE and ECE Departments, La Jolla, CA 92093-0114
UCLA Computer Science Department, Los Angeles, CA 90095-1596

abk@ucsd.edu, stefanus@cs.ucla.edu

Abstract

With advancing semiconductor technology and exponentially
growing design complexities, predictability of design tools be-
comes an important part of a stable top-down design process. Pre-
diction of individual tool solution quality enables designers to use
tools to achieve best solutions within prescribed resources, thus re-
ducing design cycle time. However, as EDA tools become more
complex, they become less predictable. One factor in the loss of
predictability isinherent noisein both algorithms and how the al-
gorithms are invoked. In this work, we seek to identify sources of
noise in EDA tools, and analyze the effects of these noise sources
on design quality.

Our specific contributions are: (i) we propose new behavior
criteria for tools with respect to the existence and management of
noise; (ii) we compile and categorize possible perturbations in the
tool use model or tool architecture that can be sources of noise;
and (iii) we assess the behavior of industry place and route tools
with respect to these criteria and noise sources. While the behavior
criteria give some guidelines for and characterize the stability of
tools, we are not recommending that tools be immune from input
perturbations. Rather, the categorization of noise allows us to better
understand how tools will or should behave; this may eventually
enable improved tool predictors that consider inherent tool noise.

1 Introduction

To accommodate ever-increasing design complexity with shorter
design cycle times, several avenues of research have been pursued,
including elimination of design iterations, use of early estimations,
methodologies such as design reuse, and design process instrumen-
tation and optimization. One potential improvement that has be-
come more important concernspredictability of the individual al-
gorithm or design tool [6]. A prediction of the final solution quality
from an EDA tool – before running that tool – can significantly re-
duce design time and enable a top-down predictive design method-
ology. Ideally, the prediction will prevent any run that leads to bad
solutions, and will guide the user to choose a small set of runs (us-
ing the right tools and the right tool parameterizations) that will
most likely return a high-quality solution.

Creating a prediction model for a tool requires understanding
of the behavior of that tool. A typical EDA tool contains several
algorithms that are used to perform design optimizations. Most
design problems are NP-hard, and there are no exact methods for
practical design instances. Therefore, heuristic approaches are used
which return suboptimal solutions. These heuristics lead tonoise
that creates variability in solution quality.1 Noise in EDA tools has
been mostly ignored up to now, likely because it is assumed to have
little effect on solution quality. However, as tools become more

� This work was supported by a grant from Cadence Design Systems, Inc. and by
the MARCO Gigascale Silicon Research Center.

1Given the existence of noise in algorithm implementations, designers often run
their tools several times and choose the best of the resulting solutions. For each run,
design attributes or assumed noise sources (e.g., initial seeds) are perturbed slightly to
create variation.

complex, the number of potential noise sources and the potential
for noise in solution quality grows accordingly. If tools become
unpredictable because of noise effects (i.e., noise creates variations
in solution quality or solution structure which deviate unacceptably
from predictions), a loss of design quality and productivity will
result.

Besides adding variation to solution quality, tool noise can
also change the effective solution space or “landscape”. In other
words, tool noise will make solution spaces less smooth, and ham-
per gradient-following or other methods for finding good operat-
ing points for tools. As a result, design methodologies can require
longer runtimes to find acceptable solutions. On the other hand,
variations in solution quality due to noise may have some positive
effects. For example, such variations permit exploitation of multi-
start and order statistics to get predictably good results after some
number of design attempts. Noise also delivers variant solutions
which can each be explored.

Our goal is to understand how tools behave in the presence of
noise, so that we can create better predictive models that are noise-
aware. In the remainder of this paper, we (i) propose behavior
criteria for tools with respect to inherent noise and predictability,
(ii) propose a taxonomy of possible use model and instance per-
turbations that correspond to noise sources, and (iii) experimen-
tally characterize industry place and route tools according to the
proposed behavior criteria. Specifically, Section 2 reviews related
works on noise analyses in optimization algorithms. In Section 3
and in Section 4, we respectively present behavior criteria for tools
and a taxonomy of possible perturbations (noise sources). Experi-
ments are given in Section 5 with some additional analyses in Sec-
tion 6, and we discuss ongoing and future research directions in
Section 7.

2 Previous works

The presence of noise in heuristic algorithms has been realized by
many researchers. For example, in [8], Yakowitz and Lugosi stud-
ied a formulation of random search in the presence of noise for the
machine learning domain. The effect of noise has also been studied
in such domains as stochastic approximation [7]. In the VLSI CAD
domain, some early discoveries about noise in placement tools are
presented in [5]. In this study, Hartoog showed the existence of
solution variants obtained by reordering the cells and/or nets in the
netlist. He used this source of variation to create a class of isomor-
phic circuits. These sets of isomorphic circuits were then used to
compare two algorithms more effectively (compared to the tradi-
tional method that uses benchmarks with distinct circuits).

A similar analysis of variation due to ordering is also given by
Harlow and Brglez [4]. They presented a class of isomorphic cir-
cuits created by randomizing the names and the node orders for the
BDD representation. The use of noise from cell/net orderings and
naming for creatingisomorphism classeswas extended by Ghosh
[3], who explored the effect of random ordering on various VLSI
design tasks including standard-cell placement and routing, FPGA
placement and routing, partitioning, wire crossing minimization,
logic optimization, BDD variable ordering, and technology map-

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02) 
0-7695-1561-4/02 $17.00 © 2002 IEEE 



ping. These variations are used to create isomorphism classes. In
addition to the random ordering of cells/nets and the random nam-
ings, Ghosh also proposed circuit mutation as another method for
generatingequivalentcircuits that belong to the same class. The
circuit classes are determined by the “similarity” of such circuit at-
tributes as number of crossings, fanout and fanin distributions, etc.

While the above-mentioned studies used the concept of noise to
generate isomorphic circuits for tool benchmarking, Bodapati and
Najm [1] analyzed noise in tools from a different perspective. Start-
ing from the premise that noise due to cell/net ordering and naming
has a negative effect on estimators, the authors of [1] proposed a
pre-layout estimation model for individual wire length, and noted
that the accuracy of their estimations are worsened by inherent tool
noise (with respect to ordering and naming). The inaccuracy due
to noise was quantified by comparing estimated values with actual
values.

In summary, although several noise sources in EDA tools have
been identified and have been used for specific purposes, the over-
all range of noise effects on design quality has not been well under-
stood. In the following sections, we attempt to explore the concept
of noise sources and effects more holistically.

3 Behavior Criteria for Tools

Most the EDA tools that use heuristic searches will have inherent
noise. In this section, we propose several behavior criteria which
EDA tools should, ideally, follow. These criteria essentially mea-
sure the stability of tools with respect to noise sources; these may
be viewed as one set of potential quality metrics for EDA tools. The
motivation for our behavior criteria is orthogonal to the analysis of
noise: tool sensitivities should be understood and characterized,
and behaviorsshould be “sensible” even if noisy.

3.1 Monotonicity

Tools should givemonotonesolutions with respect to input or op-
erational parameters. In other words, expected solution qualities
based on such parameters should be monotone. For example, if
a tool has an option that controls the “granularity of the search
step”2, the solution quality should increase with decreasing search
step size. Thus, the designer can expect a better but more time-
consuming solution if he makes the search steps finer.

3.2 Smoothness

Tools should produce similar results for “very small” perturbations
of their inputs. For example, if a buffer is added into the netlist, the
resulting placement should be similar to the previous placement
with the exception of the new buffer and its immediate neighbor-
hood. This is one of the behaviors that is important for tools that
have incremental optimization (ECO mode) capability. Some per-
turbations are more significant than others, e.g., changing a timing
constraint by 1 ns may result in greater change to the solution than
inserting a single buffer into the netlist.

3.3 Scaling

When the input design is scaled up/down with the same charac-
teristics, the tool should be able to maintain the solution quality
with the expected scale. For example, if a design is “doubled” with
all design characteristics remaining the same (e.g., Rent parame-
ter, fanout/fanin distributions, etc.), the expected solution should
be about “twice” the original solution. Similarly, if we scale down
the feature size on the same design without perturbing the netlist,
the new expected solution should be similar to the original solution
(with all quality measures scaled accordingly).

2In this example, we assume that the global optimization performed with a large
step size will yield a fair solution with short runtime, while optimization with a small
step size will give a better solution with longer runtime.

4 Taxonomy of Possible Perturbations

In this section, we propose a taxonomy of possible perturbations
that may contribute to noise in EDA tool outcomes without com-
promising the legality of solutions.

4.1 Randomness

The first and most obvious type of perturbation relates to the use of
randomization in the algorithm or tool. Typically, the random num-
ber generator (RNG) depends on an initial seed which determines
the ensuing list of random numbers generated during the tool op-
eration. Hence, we can generate noise by varying this seed value.
In addition to the seed value, the implementation of the RNG can
also be changed. This is done either by changing the library that
implements the RNG on one machine or by running the same tool
on different machine/operating system.3

4.2 Ordering and Naming

Some algorithms are order dependent, i.e., a different solution can
be obtained if we change the order of the data. For example, a KL-
FM netlist partitioning implementation [2] will search for the cell
to be moved to a different partition based on the order of the cells in
the gain bucket data structure. If there are several cells that have the
same movement cost, the first cell in the “bucket” will most likely
be chosen as the one that is to be moved. Therefore, any change
in the ordering of the cells will eventually lead to possibly widely
different solution qualities. Note that in the KL-FM example, the
gain bucket data structure is often initially populated based on the
order in which cells/nets appear in the input file.

Although some tools use the orderings that are defined in the
input sources (data files), the majority of industry tools that we are
familiar with apply some data reordering when the data are read
into memory. Typically, the data are sorted according to some cri-
teria, and this reordering lends some immunity to noise triggered
by different ordering of the inputs. One of the keys that is typi-
cally used in the sorting phase is the name of the instances (e.g.,
cell names, net names, etc.). Thus, changing the names for the
instances may produce different solution.

Finally, some tools exploit extra information that is encoded
in the naming. For instance, designers usually encode functional
hierarchy in the cell names; thus, it is possible to infer some rela-
tionship between two cells by looking at the longest common prefix
of their names. Inferred hierarchy information might be used, e.g.,
by a placement tool to put cells that are purportedly in the same
hierarchy closer together.4 Therefore, changing the hierarchy for
the input (if it exists) may also change the solution.

4.3 Coarseness and Richness of Libraries

Libraries are a noise source that can be perturbed by the designer.
Examples includes the cell library and the timing library. In stan-
dard cell design, the richness of the cell library will affect the so-
lution: synthesis, place and route with a large number of standard
cells and many variants for each cell type will have a different (not
necessarily better) solution than with a limited number of master
cells in the library.

Timing libraries can also be perturbed to create noise. In a typ-
ical timing library, the timing specification of a cell is usually de-
fined by a set of timing models that characterize delays between
input pins and output pins, as well as slew times for output tran-
sitions. Common approaches are table-lookup based, with inter-
polating from values provided in the table. The dimensionality of
the table is defined by the number of axes: a typical delay model
is specified by a 2-dimensional table, with axes corresponding to
output load capacitance and input slew time. Changing the table

3The RNG is dependent on the machine and/or operating system: the same random
seed with the same RNG may create two different sequences of random numbers on
two different platforms.

4This is not always a good thing. Classic sources of ill-advised inferences include
repeaters, clock buffers, and generated memory blocks.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02) 
0-7695-1561-4/02 $17.00 © 2002 IEEE 



dimensionality will change the timing model, e.g., by making cell
delays independent of input slews. The table size (i.e., the number
of points and entries in the table) determines the accuracy of the
timing model, and can also be adjusted.

4.4 Constraints

Besides design data and libraries, the designer can also perturbcon-
straints. Design rules capture physical process limits that in gen-
eral cannot be violated without risking incorrect solutions. Hence,
tightening of design rules is the only available perturbation. Design
constraints, on the other hand, are imposed by the designer in order
to meet a certain performance, power or area target. For example,
in order to meet the target clock speed, a designer may add a num-
ber of timing constraints on timing arcs. If these constraints are
met, the resulting design will likely meet targets; however, if there
are violations in the constraints, the design may still work. Per-
turbations such as relaxing or tightening constraints, or choosing
different sets of constraints, will give different solutions.5

4.5 Geometric Properties

Our last type of perturbation concerns geometric properties of the
design. Since cells and nets must be embedded in a geometrical
layout, perturbations to the geometric context may also give rise to
variations in the solution. There are many possible perturbations
that belong to this category; for brevity, we mention only some
examples.

The first perturbation in geometric space is the change in offsets
(or locations) of design instances. There are many design instances
for which offsets can be perturbed, such as cell sites, cell rows,
routing tracks, global cell grids for global routing, etc.

Changes in orientations are a second possible perturbation in
geometric space. Perturbations with respect to orientations include
changes in site orientations, pin orientations, row directions, and
preferred direction of routing layers.

A third possible perturbation is the scaling of the instances. In-
stance scaling includes changes in layout size, cell sizes, routing
pitches, row sizes, etc. A variety of considerations such as numeri-
cal accuracy and rounding lead to noise in the solution quality as a
result.

Finally, noise can also be introduced by adding additional
blockages into the design (this may also be viewed as a type of
added constraint). For example, if we intentionally add some ob-
structions, the solution will be affected as cells are no longer place-
able at certain sites, or nets are no longer routable along certain
tracks.

5 Example of Effects of Noise

In this section, we present an example of behavior criteria test for
current tools and some examples of sources of noise with their ef-
fects on solution quality. We focus our experiments on the place
and route domain, and assume that observed effects will have par-
allels in other domains. In all of our experiments, we run Cadence
Design Systems placement (QPlace version 5.1.61.2) and routing
(WRoute version 2.2.28.2) tools. Although the magnitude of the
effects might be different in other tools, we believe that the effects
themselves are similar. The industry designs that we use in our
experiments are outlined in Table 1.

We first assess the monotonicity behavior of the place and route
tools. Second, we give empirical analyses with respect to various
types of noise sources: (i) random seeds, (ii) cell and net initial
ordering, (iii) cell and net naming, and (iv) name hierarchy. The
cell/net ordering and naming experiments are essentially confirma-
tions of most of the previous works (Ghosh, Bodapati et al., etc.).

5Consider that there are many possible “compact SDF” covers in SDF-based flows,
or many combinations of, e.g., skew and path timing constraints that achieve a given
system clock period.

Design Name No. Cells No. Nets
Design01 276 314
Design02 3286 2902
Design03 6145 6006
Design04 7703 5657
Design05 9011 11962
Design06 12133 11828
Design07 12261 13245
Design08 12857 10880
Design09 20577 25634
Design10 25995 28603
Design11 35549 44121
Design12 57275 49582
Design13 85572 87390

Table 1: List of designs used in the experiments.

5.1 Monotonicity Test

In this experiment, we test the place and route tools for their be-
havior against their input parameters. QPlace has a parameter (Op-
timizationLevel) that is used to determine the strength of the opti-
mization algorithm. Its value ranges from 1 to 10, where 1 indicates
the weakest but fast optimization while 10 indicates the strongest
but slow optimization.

Opt Level 1 2 3 4 5 6 7 8 9
QP WL 2.50 0.97 -0.20 -0.11 1.43 0.58 1.29 0.64 1.70
QP WWL 1.98 0.57 -0.24 -0.31 1.34 0.45 1.26 0.70 1.78
QP CPU -59.73 -51.64 -40.43 -39.33 -31.53 -31.32 -17.29 -11.86 -6.73
WR WL 2.95 1.52 -0.29 0.07 1.59 0.92 0.89 0.94 1.52
# Vias 1.59 0.41 -0.08 -0.35 1.39 1.11 0.47 0.76 0.92
Total CPU 4.19 -6.77 -16.21 -15.16 -7.23 -10.57 -6.99 -3.75 -0.51

Table 2: Average percentage effect of OptLevel< 10 on solution
quality and CPU time.

For each test cases, we run the tools 10 times with different
optimization levels. Table 2 shows the average percentage effect of
OptLevel values< 10 on solution quality and CPU time, with all
results normalized against the results for OptLevel= 10. As seen
from the table, the placement tool does not behave monotonically.
Indeed, running the placement tool with its strongest optimization
level does not guarantee the best solution; it appears preferable to
use a weaker optimization level (= 3) that uses less CPU time.

5.2 Random Seeds

Given the heuristic nature of most VLSI algorithms, randomization
and tie-breaking will nearly always play some role. Thus, noise in
therandom number generator(RNG) will also be a noise source for
the corresponding algorithm. A RNG generates a (pseudorandom)
sequence of numbers that is a function of the initial seed value.
Changing the sequence of random numbers changes the sequence
of decisions made within the algorithm, thus creating noise. In our

0

5

10

15

20

25

30

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

N
um

be
r 

of
 R

un
s

% Quality Difference

Figure 1: Frequency distribution (200 runs) of solution quality dif-
ference due to change in random seeds. The dashed line indicates
the average solution quality over all runs.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02) 
0-7695-1561-4/02 $17.00 © 2002 IEEE 



experiment, we run the router 200 times on the same placement of
Design06. For each run, we pick a unique random seed value and
run both global and final routing with this seed value.

Figure 1 shows the frequency distribution of the percentage dif-
ference in solution quality with respect to the original solution (i.e.,
the routed solution using the default seed value). The solution qual-
ity is binned into 20 intervals, and the frequency plot is calculated
based on these intervals. The dashed line on the plot indicates the
difference of the average solution quality over all runs. Note that
in this and all other figures, we equate “quality” with “cost” (e.g.,
routed wirelength cost), so that a negative change in “quality” in-
dicates a better solution. From the figure, we can see that very
slightly better solutions can be achieved just by varying the random
seed values. The average solution quality of the multiple starts with
different random seeds improve the quality by 0.05% for Design06.

5.3 Random Initial Ordering

The next experiment checks the effects of initial ordering of cells
and nets. For each design, we reorder the cells and nets and run
the place and route flow with the new ordering. We use the same
(default) seed value for all runs to eliminate additional noise due
to randomization. For all designs, the tools always give exactly the
same solutions. This indicates that these tools perform an addi-
tional, canonical reordering after reading the data.

5.4 Random Naming

Since the physical ordering of cells and nets in the input files does
not affect the solution, we extend the noise experiments to changes
in naming. We apply three types of name change perturbation, for
cells, nets and master cells.6 For each perturbation (cell names, net
names, and master cell names), we change the appropriate names
in all designs into generic names such asCELL014, NET042, and
MCELL002respectively. This is performed for all instances in the
design, e.g., all cell names are changed into generic names, etc.
Figure 2 shows the distributions of the percentage difference in so-
lution quality (versus the original solution) for the three types of
perturbations, for Design06. The data correspond to sets of 100
runs with each type of perturbation. From the figure, we can see
that there is actually a higher probability to get better solutions
with random naming; the magnitude of the variation is also non-
trivial (e.g., net name perturbations lead to more than 7% spread in
solution quality).

For some designs, hierarchy is encoded in the names. We
perform additional experiments with random naming where
the hierarchy is preserved. For example, if the original
name is/ABC/DDF/DEC/NAND15 , the replacement name may
be /ID0034/ID0067/ID0113/ID0226 where ID#### are
each randomly generated. Since master cell names do not have hi-
erarchical data, we only perform the experiments on cell names and
net names. Figure 3 shows the distributions of percentage differ-
ence in Design06 solution quality for cell name and net name per-
turbations that preserve hierarchy. We have performed additional
experiments that combine changes in cell names with changes in
net names, both with and without hierarchy preservation. We find
that the dynamics of such noise combinations are not easy to eluci-
date; we defer this issue to Section 6.1 below.

5.5 Random Hierarchy

The last experiment that we present in this work tests reordering
of the hierarchy of the cells. This experiment has some similarity
with the previous name changing experiments. However, here we
do not change the names: instead, we swap one existing cell name
with another existing cell name. The resulting netlist will have the
original hierarchical structure, but the assignment of individual in-
stances within this hierarchy will be completely scrambled. Figure

6Names of pins in master cells could be the basis of a fourth type of name pertur-
bation. However, since pin names are typically very simple (e.g.,A, B, Y, etc.) we do
not include them in our experiments.

0

2

4

6

8

10

12

14

16

-3 -2 -1 0 1 2 3 4

N
um

be
r 

of
 R

un
s

% Quality Difference

(a)

0

2

4

6

8

10

12

-3 -2 -1 0 1 2 3 4 5

N
um

be
r 

of
 R

un
s

% Quality Difference

(b)

0

2

4

6

8

10

-4 -3 -2 -1 0 1 2

N
um

be
r 

of
 R

un
s

% Quality Difference

(c)

Figure 2: Frequency distributions over 100 runs of percentage dif-
ference in solution quality for Design06 (with respect to original
solution) due to random naming perturbations: (a) cell names, (b)
net names, and (c) master cell names.

4 shows the distribution of solution quality difference due to this
“hierarchy noise” for Design02. We can see that the original cell
name hierarchy plays an important role in guiding the tools that we
study. When the hierarchy information is corrupted, the solution
quality degrades significantly (by up to 12%); on average, instance
perturbation leads to a 5% loss of solution quality.

6 Noise Properties

In this section, we briefly sketch two examples of how the basic
noise measurements of the previous section may be extended. We
first examine whether noise sources are “additive”. We then con-
sider aspects of solution quality distributions that may make certain
noise sources more useful than others for design optimization.

6.1 Additivity of Noise

To find out whether the effects of various noise sources are addi-
tive, we test the effect of applying two types of name perturbations
simultaneously. We use the randomization in cell naming (CR) and
the randomization in net naming (NR). For each noise source, we

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02) 
0-7695-1561-4/02 $17.00 © 2002 IEEE 



0

2

4

6

8

10

12

-4 -3 -2 -1 0 1 2 3

N
um

be
r 

of
 R

un
s

% Quality Difference

(a)

0

2

4

6

8

10

12

-4 -3 -2 -1 0 1 2 3 4

N
um

be
r 

of
 R

un
s

% Quality Difference

(b)

Figure 3: Frequency distributions of the percentage difference in
solution quality for Design06 due to random naming perturbation
that preserves hierarchy: (a) cell name perturbation, and (b) net
name perturbation.

make 10 different noise generation runs with 10 different random
seeds; there are 100 pairs of seeds for the first noise and for the
second noise, and for each pair we apply the combined perturba-
tion (CR-NR) to the design. Finally, for each solution obtained,
we compare the difference from original solution quality with the
differences induced by each noise perturbation (CR or NR) in iso-
lation.

NR
CR -1.59 -0.29 0.52 3.56 -0.72 -1.08 0.66 4.34 -2.78 1.58
0.83 0.84 1.81 1.03 2.40 2.90 -0.82 1.61 1.32 0.98 0.88
-0.57 -1.14 0.34 1.22 -0.20 0.42 -1.09 -0.34 1.41 -0.12 2.27
-0.85 0.57 -0.18 -0.46 -0.81 0.83 -0.97 0.70 -0.07 1.34 -0.35
-1.92 0.16 -0.69 1.07 1.38 0.86 0.84 -0.07 1.35 1.29 0.31
-0.37 -1.33 -1.00 1.06 0.98 1.26 -2.11 2.58 3.50 1.55 -1.81
1.74 -0.78 -0.72 1.10 -1.02 0.72 -0.82 3.00 0.09 1.39 0.52
-1.23 0.30 -1.10 1.77 1.46 0.77 1.39 -1.62 0.81 -1.04 0.09
-1.79 -0.00 0.73 1.96 1.84 0.72 2.59 -0.92 0.30 -0.17 -0.16
1.14 -0.69 -1.04 0.60 -0.84 1.39 0.51 0.10 -0.72 0.74 2.80
1.89 -0.23 1.02 -0.11 -0.06 0.93 2.20 1.51 1.12 0.42 1.10

Table 3: Comparisons between individual noise (random cell nam-
ing (CR) and random net naming (NR)) and the combination of
those noises (CR-NR) for Design06. Entries are the percentage
differences from original solution (without name change).

Table 3 lists the impacts of the individual perturbations (CR
and NR) along with the impact of the combined perturbations (CR-
NR) for Design06. The noises are not additive (i.e., CR-NR6= CR
+ NR), yet we see mildly positive correlation and rank correlation
(0.1378 and 0.1579, respectively) between CR-NR and (CR + NR).

6.2 Potential for Exploiting Noise

After characterizing a given set of noise sources, it is natural to ask
whether any of these noise sources areusefulin design optimiza-
tion. In this subsection, we examine whether noise can be exploited
in the context of multi-start with a prescribed CPU resource. In
this context, when the CPU budget is a single run, then we would
invoke the noise source that has the best expected (i.e., mean) so-
lution quality. However, if the CPU budget is, say, five runs, then

0

1

2

3

4

5

6

7

8

9

-2 0 2 4 6 8 10 12

N
um

be
r 

of
 R

un
s

% Quality Difference

Figure 4: Frequency distribution of the difference in solution qual-
ity due to hierarchy noise. Data are collected over 50 runs of De-
sign02. The dashed line indicates the average solution quality over
all runs.

we would invoke the noise source that has the best expectedmin-
imumsolution cost over five runs: both mean and variance affect
this decision.

We study the utility of noise for the five variants of name-
changing perturbations: random cell naming (CR), random cell
naming while preserving hierarchy (CH), random net naming (NR),
random net naming while preserving hierarchy (NH), and random
master cell naming (MC). For each type of noise source, we ran-
domly select sets ofk solutions (k= 1;2; : : :30) from 100 runs and
record the best of thek solutions. We do this for 1000 sets ofk
solutions, and calculate the average solution (= expected best ofk
starts) over these 1000 trials.7

Table 4 shows the noise “quality” ranking for Design06. We see
that the noise perturbation that preserves hierarchy almost always
yields superior results for any givenk-run CPU budget. However,
if we only use one run, then changing the master cell name could be
our best choice for exploiting noise in the place and route flow that
we study. We observe that there are five distinct relative orderings
of noise “utility” ask ranges from 1 to 30, depending on the CPU
budget.

k CR CH NR NH MC k CR CH NR NH MC
1 3 2 4 5 1 16 5 1 4 3 2
2 3 1 5 4 2 17 5 1 4 3 2
3 4 1 5 3 2 18 5 1 4 3 2
4 4 1 5 3 2 19 5 1 4 3 2
5 5 1 4 3 2 20 5 1 4 3 2
6 5 1 4 3 2 21 5 1 4 3 2
7 5 1 4 3 2 22 4 1 5 3 2
8 5 1 4 3 2 23 4 1 5 3 2
9 5 1 4 3 2 24 4 1 5 3 2
10 5 1 4 3 2 25 4 1 5 3 2
11 5 1 4 3 2 26 4 1 5 3 2
12 5 1 4 3 2 27 4 1 5 3 2
13 5 1 4 3 2 28 4 1 5 3 2
14 5 1 4 3 2 29 4 1 5 3 2
15 5 1 4 3 2 30 4 1 5 3 2

Table 4: Rank order (with respect to expected best-of-k solution
quality) for five variants of name-changing perturbations, fork=
1; :::;30 runs and the Design06 test case.

7 Conclusions

We have presented behavior criteria for EDA tools with respect to
noise. These criteria allow potential future assessment of tool qual-
ities with respect to noise. We also propose an initial taxonomy
of perturbations that may introduce noise in design solutions. We
believe that this taxonomy can help us better understand noise and
its effects on design quality, e.g., we can build better estimators
that consider the effects of noise. We have also presented results of
several experiments that show effects of various noise sources on
place-and-route solution qualities. The experiments indicate that

7If the number of possible solutions is less than 1000, e.g., thebest-of-1case has
only 100 possible solutions, then the maximum number of possible solutions is used
instead of 1000.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02) 
0-7695-1561-4/02 $17.00 © 2002 IEEE 



noise impact can be quite large (ranges of up to 7% and 12% dif-
ferences in solution quality were observed), and that noise may be
usefully exploited in the multi-start context. Effects of noise are not
additive, and it is unknown how different noise sources interact.

Numerous future directions can be followed. Our ongoing work
includes an in-depth study and analysis of each source of noise to
yield prediction models that include noise effects in their calcula-
tions. We also seek analyses of the relationships between different
sources of noise, and the impact of noise sources on timing-driven
solution quality. In addition, we are trying to uncover relation-
ships between perturbation size and resulting changes in solution
quality. Finally, we are studying thecompositionof noise between
consecutive tools in the design flow (i.e., if each individual noise is
modeled, we seek to model the composition of these noises).

References

[1] S. Bodapati and F. N. Najm, “Pre-Layout Estimation of Individual
Wire Lengths”,Intl. Workshop on System-Level Interconnect Predic-
tion, April 2000, pp. 93-98.

[2] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Design and Imple-
mentation of Move-Based Heuristics for VLSI Hypergraph Partition-
ing”, ACM Journal of Experimental Algorithms5 (2000).

[3] D. Ghosh, “Generation of Tightly Controlled Equivalence Classes for
Experimental Design of Heuristics for Graph-Based NP-hard Prob-
lems”, Ph.D. Dissertation, Dept. of Electrical and Computer Engi-
neering, North Carolina State University, May 2000.

[4] J. E. Harlow and F. Brglez, “Design of Experiments in BDD Vari-
able Ordering: Lessons Learned”,Proc. Intl. Conference on Com-
puter Aided Design, November 1998, pp. 646-652.

[5] M. R. Hartoog, “Analysis of Placement Procedures for VLSI Standard
Cell Layout”, Proc. Design Automation Conference, July 1986, pp.
314-319.

[6] “International Technology Roadmap for Semiconductor”, 2001.

[7] H. J. Kushner, “Asymptotic Global Behavior for Stochastic Approxi-
mation and Diffusions with Slowly Decreasing Noise Effects: Global
Minimization via Monte Carlo”,SIAM Journal on Applied Mathemat-
ics, vol. 47 (1), February 1987, pp. 169-185.

[8] S. Yakowitz and E. Lugosi, “Random Search in the Presence of Noise,
with Application to Machine Learning”,SIAM Journal on Scientific
and Statistical Computing, vol.11 (4), July 1990, pp. 702-712.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02) 
0-7695-1561-4/02 $17.00 © 2002 IEEE 


