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Abstract We present experimental results on inclusive

spectra and mean multiplicities of negatively charged pions

produced in inelastic p+p interactions at incident projectile

momenta of 20, 31, 40, 80 and 158 GeV/c (
√

s = 6.3, 7.7,

8.8, 12.3 and 17.3 GeV, respectively). The measurements

were performed using the large acceptance NA61/SHINE

hadron spectrometer at the CERN Super Proton Synchro-

tron.

Two-dimensional spectra are determined in terms of ra-

pidity and transverse momentum. Their properties such as

the width of rapidity distributions and the inverse slope pa-

rameter of transverse mass spectra are extracted and their

collision energy dependences are presented. The results on

inelastic p+p interactions are compared with the correspond-

ing data on central Pb+Pb collisions measured by the NA49

experiment at the CERN SPS.

The results presented in this paper are part of the NA61/

SHINE ion program devoted to the study of the properties of

the onset of deconfinement and search for the critical point

of strongly interacting matter. They are required for inter-

pretation of results on nucleus-nucleus and proton-nucleus

collisions.

1 Introduction

This paper presents experimental results on inclusive

spectra and mean multiplicities of negatively charged pi-

ons produced in inelastic p+p interactions at 20, 31, 40, 80

and 158 GeV/c. The measurements were performed by the

multi-purpose NA61/SHINE – the SPS Heavy Ion and Neu-

trino Experiment [1] – at the CERN Super Proton Synchro-

tron (SPS). They are part of the NA61/SHINE ion program

devoted to the study of the properties of the onset of de-

confinement and search for the critical point of strongly in-

teracting matter. Within this program data on p+p, Be+Be

and p+Pb collisions were recorded and data on Ar+Ca and

Xe+La collisions will be registered within the coming years.

The started two dimensional scan in collision energy and

size of colliding nuclei is mainly motivated by the observa-

tion of the onset of deconfinement [2, 3] in central Pb+Pb

collisions at about 30A GeV/c by the NA49 experiment at

the CERN SPS. Recently the NA49 results were confirmed

by the RHIC beam energy scan programme and their inter-

pretation by the onset of deconfinement is supported by the

LHC results (see Ref. [4] and references therein).

In addition to the ion programme, NA61/SHINE is con-

ducting precise hadron production measurements for im-

proving calculations of the initial neutrino flux in long-

baseline neutrino oscillation experiments [5–8] as well as for

more reliable simulations of cosmic-ray air showers [9, 10].

An interpretation of the rich experimental results on nu-

cleus-nucleus collisions relies to a large extent on a com-

parison to the corresponding data on p+p and p+A inter-

actions. However, the available data concern mainly basic

features of unidentified charged hadron production and they

are sparse. Many needed results on hadron spectra, fluctu-

ations and correlations are missing. Detailed measurements

of hadron spectra in a large acceptance in the beam momen-

tum range covered by the data presented in this paper ex-

ist only for inelastic p+p interactions at 158 GeV/c [11–13].

Thus the new high precision measurements of hadron pro-

duction properties in p+p and p+A interactions are neces-

sary and they are performed in parallel with the correspond-

ing measurements in nucleus-nucleus collisions. Among the

many different hadrons produced in high energy collisions

pions are the lightest and by far the most abundant ones.

Thus, data on pion production properties are crucial for con-

straining basic properties of models of strong interactions. In

particular, the most significant signals of the onset of decon-

finement (the "kink" and "horn") [14] require precise mea-

surements of the mean pion multiplicity at the same beam

momenta per nucleon as the corresponding A+A data. More-

over, the NA61/SHINE data are taken with the same detector

and the same acceptance.

In the CERN SPS beam momentum range of 10–

450 GeV/c the mean multiplicity of negatively charged pi-

ons in inelastic p+p interactions increases from about 0.7

at 10 GeV/c to about 3.5 at 450 GeV/c [15]. Among three

charged states of pions the most reliable measurements in

the largest phase-space are usually possible for π− mesons.

Neutral pions decay electromagnetically into two photons

and thus measurements of their production properties re-

quire measurements of both photons and then extraction of

the π0 signal from the two-photon mass spectra. Charged

pions are easy to detect by ionisation detectors as they de-

cay weakly with a long lifetime (cτ = 7.8 m). A significant

fraction of positively charged hadrons are protons (25%) and

kaons (5%) [11–13]. Therefore measurements of π+ mesons

require their identification by measurements of the energy

loss and/or time-of-flight. This identification is not as im-

portant for π− mesons because the contamination of neg-

atively charged particles by K− mesons and anti-protons is

below 10% [11–13] and can be subtracted reliably. The latter

method is used in this paper and it allows to derive π− spec-

tra in the broadest phase-space region in a uniform way. Re-

sults obtained using explicit pion identification are planned

in future NA61/SHINE publications.

The paper is organised as follows. In Sec. 2 the NA61/

SHINE experimental set-up is described. Details on the

beam, trigger and event selection are given in Sec. 3. Data

reconstruction, simulation and detector performance are de-

scribed in Sec. 4. Analysis techniques and final results are

presented in Secs. 5 and 6, respectively. These results are

compared with the corresponding data on central Pb+Pb col-

lisions in Sec. 7. A summary in Sec. 8 closes the paper.
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Fig. 1: (Colour online) The schematic layout of the NA61/SHINE experiment at the CERN SPS (horizontal cut, not to scale).

The beam and trigger detector configuration used for data taking on p+p interactions in 2009 is shown. Alignment of the

chosen coordinate system is shown on the plot; its origin lies in the middle of VTPC-2, on the beam axis. The nominal beam

direction is along the z axis. The magnetic field bends charged particle trajectories in the x–z (horizontal) plane. The drift

direction in the TPCs is along the y (vertical) axis.

The pion rapidity is calculated in the collision centre of

mass system: y = atanh(βL), where βL = pL/E is the longi-

tudinal component of the velocity, pL and E are pion longi-

tudinal momentum and energy given in the collision centre

of mass system. The transverse component of the momen-

tum is denoted as pT and the transverse mass mT is defined

as mT =
√

m2
π + p2

T, where mπ is the charged pion mass.

The nucleon mass and collision energy per nucleon pair in

the centre of mass system are denoted as mN and
√

sNN, re-

spectively.

2 The NA61/SHINE facility

The NA61/SHINE experimental facility consists of a

large acceptance hadron spectrometer located in the CERN

North Area Hall 887 (EHN1) and the H2 beam-line to which

beams accelerated in the CERN accelerator complex are de-

livered from the Super Proton Synchrotron. NA61/SHINE

profits from the long development of the CERN proton and

ion sources and the accelerator chain as well as the H2 beam

line of the CERN North Area. The latter has recently been

modified to also serve as a fragment separator as needed to

produce the Be beams for NA61/SHINE. Numerous com-

ponents of the NA61/SHINE set-up were inherited from its

predecessor, the NA49 experiment [16].

The schematic layout of the NA61/SHINE detector is

shown in Fig. 1.

A set of scintillation and Cherenkov counters as well

as beam position detectors (BPDs) upstream of the spec-

trometer provide timing reference, identification and posi-

tion measurements of incoming beam particles. The trigger

scintillator counter S4 placed downstream of the target is

used to select events with collisions in the target area. De-

tails on this system are presented in Sec. 3.

The main tracking devices of the spectrometer are large

volume Time Projection Chambers (TPCs). Two of them,

the vertex TPCs (VTPC-1 and VTPC-2 in Fig. 1), are lo-

cated in the magnetic fields of two super-conducting dipole

magnets with a maximum combined bending power of 9 Tm

which corresponds to about 1.5 T and 1.1 T fields in the

upstream and downstream magnets, respectively. This field

configuration was used for data taking on p+p interactions

at 158 GeV/c. In order to optimise the acceptance of the de-

tector at lower collision momenta, the field in both magnets

was lowered in proportion to the beam momentum.

Two large TPCs (MTPC-L and MTPC-R) are positioned

downstream of the magnets symmetrically to the beam line.

The fifth small TPC (GAP-TPC) is placed between VTPC-1

and VTPC-2 directly on the beam line. It closes the gap be-

tween the beam axis and the sensitive volumes of the other

TPCs.

The TPCs are filled with Ar:CO2 gas mixtures in pro-

portions 90:10 for the VTPCs and the GAP-TPC, and 95:5

for the MTPCs.
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The particle identification capability of the TPCs based

on measurements of the specific energy loss, dE/dx, is aug-

mented by time-of-flight (tof ) measurements using Time-

of-Flight (ToF) detectors. The high resolution forward

calorimeter, the Projectile Spectator Detector (PSD), mea-

sures energy flow around the beam direction, which in

nucleus-nucleus collisions is primarily given by the projec-

tile spectators.

NA61/SHINE uses various solid nuclear targets and a

liquid hydrogen target (see Sec. 3 for details). The targets

are positioned about 80 cm upstream of the sensitive volume

of VTPC-1.

The results presented in this paper were obtained us-

ing information from the Time Projection Chambers, the

Beam Position Detectors as well as from the beam and trig-

ger counters.

3 Beams, target, triggers and data samples

This section summarises basic information on the beams,

target, triggers and recorded data samples which is relevant

for the results presented in this paper.

Secondary beams of positively charged hadrons at 20,

31, 40, 80 and 158 GeV/c are produced from 400 GeV pro-

tons extracted from the SPS in a slow extraction mode with a

flat-top of 10 seconds. The secondary beam momentum and

intensity is adjusted by proper setting of the H2 beam-line

magnet currents and collimators. The beam is transported

along the H2 beam-line towards the experiment. The preci-

sion of the setting of the beam magnet currents is approxi-

mately 0.5%. This was verified by a direct measurement of

the beam momentum at 31 GeV/c by bending the incoming

beam particles into the TPCs with the maximum magnetic

field [17]. The selected beam properties are given in Table 1.

The set-up of beam detectors is illustrated in the inset on

Fig. 1. Protons from the secondary hadron beam are iden-

tified by two Cherenkov counters, a CEDAR [18] (either

CEDAR-W or CEDAR-N) and a threshold counter (THC).

The CEDAR counter, using a coincidence of six out of the

eight photo-multipliers placed radially along the Cherenkov

ring, provides positive identification of protons, while the

THC, operated at pressure lower than the proton threshold,

is used in anti-coincidence in the trigger logic. Due to their

limited range of operation two different CEDAR counters

were used, namely for beams at 20, 31, and 40 GeV/c the

CEDAR-W counter and for beams at 80 and 158 GeV/c the

CEDAR-N counter. The threshold counter was used for all

beam energies. A selection based on signals from the Che-

renkov counters allowed to identify beam protons with a

purity of about 99%. A consistent value for the purity was

found by bending the beam into the TPCs with the full mag-

netic field and using the dE/dx identification method [19].

The fraction of protons in the beams is given in Table 1.

Table 1: Basic beam properties and numbers of events

recorded for p+p interactions at 20, 31, 40, 80 and

158 GeV/c. The first column gives the beam momentum.

The second and third columns list typical numbers of beam

particles at NA61/SHINE per spill (about 10 seconds) and

the fraction of protons in the beam, respectively.

pbeam [GeV/c] particles per spill proton fraction

20 1000k 12%

31 1000k 14%

40 1200k 14%

80 460k 28%

158 250k 58%

Two scintillation counters, S1 and S2, provide beam def-

inition, together with the three veto counters V0, V1 and

V1p with a 1 cm diameter hole, which are defining the beam

before the target. The S1 counter provides also the timing

(start time for all counters). Beam protons are then selected

by the coincidence S1 ∧ S2 ∧ V0 ∧ V1 ∧ V1p ∧ CEDAR ∧
THC. Trajectories of individual beam particles were mea-

sured in a telescope of beam position detectors placed along

the beam line (BPD-1/2/3 in Fig. 1). These counters are

small (4.8× 4.8 cm2) proportional chambers with cathode

strip readout, providing a resolution of about 100 µm in two

orthogonal directions, see Ref. [20] for more details. The

beam profile and divergence obtained from the BPD mea-

surements are presented in Fig. 2. Due to properties of the

H2 beam line both the beam width and divergence at the

NA61/SHINE target increase with decreasing beam momen-

tum.

For data taking on p+p interactions a liquid hydrogen

target of 20.29 cm length (2.8% interaction length) and 3 cm

diameter placed 88.4 cm upstream of VTPC-1 was used. The

Liquid Hydrogen Target facility (LHT) filled the target cell

with para-hydrogen obtained in a closed-loop liquefaction

system which was operated at 75 mbar overpressure with

respect to the atmosphere. At the atmospheric pressure of

965 mbar the liquid hydrogen density is ρLH = 0.07 g/cm3.

The boiling rate in the liquid hydrogen was not monitored

during the data taking and thus the liquid hydrogen density is

known only approximately. It has however no impact on the

results presented in this paper as they are determined from

particle yields per selected event and thus they are indepen-

dent of the target density. Data taking with inserted and re-

moved liquid hydrogen in the LHT was alternated in order

to calculate a data-based correction for interactions with the

material surrounding the liquid hydrogen.

Interactions in the target are selected by the trigger sys-

tem by an anti-coincidence of the incoming beam protons

with a small, 2 cm diameter, scintillation counter (S4) placed

on the beam trajectory between the two vertex magnets (see
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Fig. 2: (Colour online) Top: The beam spot as measured by BPD-3 after the V1 cut described in the text for 20 GeV/c (left)

and 158 GeV/c (right) beams. Bottom: The beam divergence in x and y for 20 GeV/c (left) and 158 GeV/c (right) beams. All

distributions were arbitrarily scaled to the full colour scale. Widths of the distributions are given in the legend.

Fig. 1). This minimum bias trigger is based on the disap-

pearance of the incident proton. In addition, unbiased proton

beam events were recorded with a frequency typically by a

factor of 10 lower than the frequency of interaction events.

4 Data processing, simulation and detector performance

Detector parameters were optimised by a data-based cal-

ibration procedure which also took into account their time

dependences. Small adjustments were determined in consec-

utive steps for:

(i) detector geometry, TPC drift velocities and distortions

due to the magnetic field inhomogeneities in the cor-

ners of VTPCs,

(ii) magnetic field setting,

(iii) specific energy loss measurements,

(iv) time-of-flight measurements.

Each step involved reconstruction of the data required to op-

timise a given set of calibration constants and time depen-

dent corrections followed by verification procedures. De-

tails of the procedure and quality assessment are presented

in Ref. [21]. The resulting performance in the measurements

of quantities relevant for this paper is discussed below.

The main steps of the data reconstruction procedure are:

(i) cluster finding in the TPC raw data, calculation of the

cluster centre-of-gravity and total charge,

(ii) reconstruction of local track segments in each TPC

separately,

(iii) matching of track segments into global tracks,

(iv) track fitting through the magnetic field and determi-

nation of track parameters at the first measured TPC

cluster,

(v) determination of the interaction vertex using the beam

trajectory (x and y coordinates) fitted in the BPDs and
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Fig. 3: (Colour online) An example of a p+p interaction at 40 GeV/c measured in the NA61/SHINE detector. The measured

points (green) are used to fit tracks (red lines) to the interaction point. The grey dots show the noise clusters. Due to the

central gap of the VTPCs only a small part of the trajectory of the negatively charged particle is seen in VTPC-1.

the trajectories of tracks reconstructed in the TPCs (z

coordinate),

(vi) refitting the particle trajectory using the interaction

vertex as an additional point and determining the par-

ticle momentum at the interaction vertex,

(vii) matching of ToF hits with the TPC tracks.

An example of a reconstructed p+p interaction at 40 GeV/c

is shown in Fig. 3. Long tracks of one negatively charged

and two positively charged particles are seen. All particles

leave signals in the ToF detectors.

A simulation of the NA61/SHINE detector response is

used to correct the reconstructed data. Several MC mod-

els were compared with the NA61/SHINE results on p+p,

p+C and π+C interactions: FLUKA2008, URQMD1.3.1,

VENUS4.12, EPOS1.99, GHEISHA2002, QGSJetII-3 and

Sibyll2.1 [17, 22–24]. Based on these comparisons and

taking into account continuous support and documentation

from the developers the EPOS model [25] was selected for

the MC simulation. The simulation consists of the following

steps (see Ref. [26] for more details):

(i) generation of inelastic p+p interactions using the

EPOS model [25],

(ii) propagation of outgoing particles through the detector

material using the GEANT 3.21 package [27] which

takes into account the magnetic field as well as rel-

evant physics processes, such as particle interactions

and decays,

(iii) simulation of the detector response using dedicated

NA61/SHINE packages which introduce distortions

corresponding to all corrections applied to the real

data,

(iv) simulation of the interaction trigger selection by

checking whether a charged particle hits the S4

counter, see Sec. 3,

(v) storage of the simulated events in a file which has the

same format as the raw data,

(vi) reconstruction of the simulated events with the same

reconstruction chain as used for the real data and

(vii) matching of the reconstructed tracks to the simulated

ones based on the cluster positions.

It should be underlined that only inelastic p+p interac-

tions in the hydrogen in the target cell were simulated and

reconstructed. Thus the Monte Carlo based corrections (see

Sec. 5) can be applied only for inelastic events. The con-

tribution of elastic events is removed by the event selection

cuts (see Sec. 5.1), whereas the contribution of off-target in-

teractions is subtracted based on the data (see Sec. 5.4).

Spectra of π− mesons presented in this paper were de-

rived from spectra of all negatively charged hadrons cor-

rected for a small contamination of mostly K− mesons and

anti-protons. The typical acceptance in rapidity and trans-

verse momentum is presented in Fig. 4 for p+p interactions

at 20 and 158 GeV/c. This figure also shows acceptance re-

gions for methods based on explicit pion identification us-

ing dE/dx and tof measurements. They are limited due to
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the geometrical acceptance of the ToF detectors, the finite

resolution of the dE/dx measurements and limited data sta-

tistics.

The quality of measurements was studied by recon-

structing masses of K0
S particles from their V0 decay topol-

ogy. As an example the invariant mass distributions of K0
S

candidates found in p+p interactions at 20 and 158 GeV/c

are plotted in Fig. 5. The differences between the measured

peak positions and the literature value of the K0
S mass [28]

are smaller than 1 MeV/c2. The width of the distributions,

related to the detector resolution, is about 25% smaller for

the Monte Carlo than for the data. This implies that sta-

tistical and/or systematic uncertainties of track parameters

reconstructed from the data are somewhat underestimated

in the simulation. Systematic bias due to this imperfectness

was estimated by varying the selection cuts and was found

to be below 2% (see Sec. 5.7.2).

The track reconstruction efficiency and the resolution

of kinematic quantities were calculated by matching recon-

structed tracks to their generated partners. In only 0.1–0.2%

of cases a single generated track is matched to more than

one reconstructed partner, typically due to failure of match-

ing reconstructed track segments. This effect is taken into

account in the correction described in Sec. 5.6. As exam-

ples, the reconstruction efficiency as a function of rapidity

and transverse momentum for negatively charged pions pro-

duced in p+p interactions at 20 and 158 GeV/c is shown in

Fig. 6. The resolution of rapidity and transverse momentum

measurements is illustrated in Fig. 7. The resolution was cal-

culated as the FWHM of the distribution of the difference

between the generated and reconstructed y and pT. These re-

sults were obtained for negatively charged pions passing the

track selection criteria described in Sec. 5.2. Resolution of

the transverse momentum is worse at low beam momenta.

This is caused by the lower magnetic field and by the fact

that the same rapidity region in the centre of mass frame

corresponds to lower momenta in the laboratory frame.

Figures 8 and 9 show further examples of the compari-

son between data and simulation. Distributions of the z co-

ordinate of the fitted vertex are presented in Fig. 8. Distri-

butions of the distance between the track trajectory extrapo-

lated to the z coordinate of the vertex and the vertex in the

x–y plane (bx and by impact parameters) are given in Fig. 9.

Differences visible in the tails of distributions are partially

due to imperfect simulation of the detector response and,

in case of the impact parameter, partially due to the contri-

bution of background tracks from off-time beam particles

which are not included in the simulation. The difference is

smaller for events selected using more restrictive cuts on the

off-time beam particles. A possible small bias due to these

effects was estimated by varying the impact parameter cuts

and was found to be below 1%.

5 Analysis technique

This section presents the procedures used for data anal-

ysis consisting of the following steps:

(i) applying event and track selection criteria,
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Fig. 5: (Colour online) Invariant mass distribution of re-

constructed K0
S candidates in p+p interactions at 20 (top)

and 158 GeV/c (bottom) for the measured data and EPOS

model based Monte Carlo simulations. The MC plot was

normalised to the peak height of the data. The K0
S candidates

were selected within 0 < y < −1 and 0 < pT < 0.5 GeV/c

for 20 GeV/c and −1 < y < 0 and 0 < pT < 0.5 GeV/c for

158 GeV/c. The distribution was fitted with the sum of a

Lorentzian function (signal) and a second order polynomial

(background).

(ii) determination of spectra of negatively charged hadrons

using the selected events and tracks,

(iii) evaluation of corrections to the spectra based on exper-

imental data and simulations,

(iv) calculation of the corrected spectra.

Corrections for the following biases were evaluated and

applied:

(i) geometrical acceptance,

(ii) contribution of off-target interactions,

(iii) contribution of particles other than negatively charged

pions produced in inelastic p+p interactions,

(iv) losses of inelastic p+p interactions as well as of nega-

tively charged pions produced in accepted interactions

Table 2: Number of events recorded with the interaction trig-

ger (all) and selected for the analysis (selected).

pbeam target inserted target removed

[GeV/c] all selected all selected

20 1 324 k 233 k 123 k 4 k

31 3 145 k 843 k 332 k 15 k

40 5 239 k 1 578 k 529 k 44 k

80 4 038 k 1 543 k 429 k 54 k

158 3 502 k 1 650 k 427 k 51 k

due to the trigger and the event and track selection cri-

teria employed in the analysis.

These steps are described in the successive subsections.

The final results refer to π− mesons produced in inelas-

tic p+p interactions by strong interaction processes and in

electromagnetic decays of produced hadrons. Such pions are

referred to as primary π−. The term primary will be used in

the above meaning also for other particles.

The analysis was performed independently in (y, pT) and

(y, mT) bins. The bin sizes were selected taking into account

the statistical uncertainties as well as the resolution of the

momentum reconstruction. Corrections as well as statistical

and systematic uncertainties were calculated for each bin.

5.1 Event selection criteria

This section presents the event selection criteria. The

number of events selected by the trigger (see Sec. 3) and

used in the analysis is shown in Table 2. The fraction of

events selected for the analysis increases with the interac-

tion energy, mostly due to lower beam intensity (see Table 1)

and resulting smaller off-time particle contamination, and

smaller fraction of the low multiplicity events for which no

tracks are found within the acceptance.

The following event selection criteria were applied to the

events recorded with the interaction trigger:

(i) no off-time beam particle is detected within ±2 µs

around the trigger particle,

(ii) the beam particle trajectory is measured in at least one

of BPD-1 or BPD-2 and in the BPD-3 detector posi-

tioned just in front of the LHT,

(iii) there is at least one track reconstructed in the TPCs

and fitted to the interaction vertex,

(iv) the vertex z position (fitted using the beam and TPC

tracks) is not farther away than 40 cm from the centre

of the LHT,

(v) events with a single, well measured positively charged

track with absolute momentum close to the beam mo-

mentum are rejected. The momentum thresholds are

listed in Table 3.



8

y
0 1 2 3 4

 [
G

e
V

/c
]

T
p

0

0.5

1

1.5

97 98 98 97 97 98 98 96

98 98 98 98 98 99 99 99

99 99 99 98 99 99 98

99 99 99 99 99 99

99 99 99 99 99

99 99 99 99 98

99 99 99 99

99 99 99 99

99 100

20 GeV/c

e
ff

ic
ie

n
c

y
 [

%
] 

95

96

97

98

99

100

y
0 1 2 3 4

0

0.5

1

1.5

100 100 97 98 99 98 98 98 97

100 99 98 99 99 99 99 98

100 100 99 99 99 99 99 99 96

100 99 99 99 99 99 99 99

100 99 99 99 99 99 99 98

99 99 99 99 99 99

99 99 99 99 99 99

99 99 99 99 99 97

99 99 99 100 98

158 GeV/c

 0 
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traction (see Sec. 5.4). The filled area shows the distribution

for the reconstructed Monte Carlo simulation. This distribu-

tion was normalised to the total integral of the data plot. The

dashed vertical lines show the z vertex selection range.

Table 3: Momentum thresholds used to reject elastic inter-

actions (cut (v)).

Beam momentum [GeV/c] 20 31 40 80 158

Threshold momentum [GeV/c] 17 28 35 74 –

The off-line (listed above) and on-line (the interaction

trigger condition, see Sec. 3) event cuts select a large frac-

tion of well measured (cuts (i) and (ii)) inelastic (cut (iii))

p+p interactions. The cut (iii) removes part of elastic interac-

tions. However in some elastic events at beam momenta up

to 80 GeV/c the beam particle is deflected enough to be mea-

sured in the detector. This is demonstrated in the momentum

distributions shown in Fig. 10. Such events are removed by

cut (v).

Moreover cut (iv) significantly suppresses interactions

outside the hydrogen in the target cell. The corrections for

the contribution of interactions outside the hydrogen in the

target cell and the loss of inelastic events are presented in

Secs. 5.4 and 5.6.

5.2 Track selection criteria

In order to select well-measured tracks of primary neg-

atively charged hadrons as well as to reduce the contami-

nation of tracks from secondary interactions, weak decays

and off-time interactions the following track selection crite-

ria were applied:

(i) the track momentum fit at the interaction vertex should

have converged,

(ii) the fitted track charge is negative,

(iii) the fitted track momentum component px is negative.

This selection minimises the angle between the track

trajectory and the TPC pad direction for the chosen

magnetic field direction. This reduces statistical and

systematic uncertainties of the cluster position, energy

deposit and track parameters,

(iv) the total number of reconstructed points on the track

should be greater than 30,

(v) the sum of the number of reconstructed points in

VTPC-1 and VTPC-2 should be greater than 15 or

the number of reconstructed points in the GAP-TPC

should be greater than 4,

(vi) the distance between the track extrapolated to the in-

teraction plane and the interaction point (impact pa-

rameter) should be smaller than 4 cm in the horizontal

(bending) plane and 2 cm in the vertical (drift) plane,

(vii) the track should be measured in a high (≥ 90%) TPC

acceptance region (see Sec. 5.3),

(viii) tracks with dE/dx and total momentum values char-

acteristic for electrons are rejected. The electron con-

tribution to particles with momenta above 20 GeV/c is

corrected using the simulation. The electron selection

procedure is visualised in Fig. 11.

The spectra of negatively charged particles after track

and event selections were obtained in 2-dimensional bins of

(y, pT) and (y, mT). The spectra were evaluated in the centre-

of-mass frame after rotation of the z axis into the proton

beam direction measured event-by-event by the BPDs.

5.3 Correction for detector acceptance

The detection and reconstruction inefficiencies are cor-

rected using the simulation described in Sec. 4. However,

in order to limit the impact of possible inaccuracies of this

simulation, only regions are accepted where the reconstruc-

tion efficiency (defined as the ratio of the number of recon-

structed and matched MC π− tracks passing the track selec-

tion criteria to the number of generated π−) equals at least
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accepted for given y and pT for tracks with px < 0 selected for this analysis.

90%. These regions were identified using a separate, statis-

tically independent simulation in three-dimensional bins of

y, pT or mT and the azimuthal angle φ (5◦ bin width). The

resulting acceptance maps are shown in Fig. 12. The accep-

tance calculated in the y < 0 region, not used for the final

results, is shown also for comparison. We chose an upper

limit of 1.5 GeV/c for the transverse momentum spectra, be-

cause beyond the admixture of background tracks reaches a

level which cannot be handled by the correction procedures

used in this paper. Future publications will be devoted to the

high pT region.

Since neither target nor beam are polarized, we can

assume a uniform distribution of particles in φ . The data

falling into the accepted bins is summed over φ bins and

the (y, pT/mT) bin content is multiplied by a correction fac-

tor to compensate for the rejected φ ranges. The acceptance
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correction also compensates for the px < 0 selection (see

Sec. 5.2, point (iii)).

Even a small deviation of the beam direction from the

nominal axis (z) results in a non-negligible bias in the re-

constructed transverse momentum. The beam direction is

measured in the BPDs, and the particle momenta are re-

calculated to the frame connected with the beam direction.

However, the detector acceptance depends on the momen-

tum in the detector frame. Therefore the acceptance selec-

tion is done in the detector frame, and the acceptance cor-

rection is applied as a weight to each track. The weights are

used to obtain particle spectra corrected for the detector ac-

ceptance in the frame connected with the beam direction.

5.4 Correction for off-target interactions

The spectra were derived for events with liquid hydro-

gen in (I) and removed (R) from the LHT. The latter data set

represents interactions outside the liquid hydrogen (interac-

tions with materials downstream and upstream of the liq-

uid hydrogen). The differential inclusive yield of negatively

charged particles per event in interactions of beam protons

with the liquid hydrogen inside the LHT (nT[h
−]) is calcu-

lated as:

nT[h
−] =

1

1− ε
·
(

nI[h
−]− ε ·nR[h

−]
)

, (1)

where:

(i) nI[h
−] and nR[h

−] is the number of tracks in a given bin

per event selected for the analysis (see Sec. 5.2) for the

data with the liquid hydrogen inserted and removed,

respectively,

(ii) ε is the ratio of the interaction probabilities for the re-

moved and inserted target operation.

ε was derived based on the distribution of the fitted z

coordinate of the interaction vertex. All vertices far away

from the target originate from interactions with the beam-

line and detector materials. Neglecting the beam attenuation

in the target one gets:

ε =
NR

NI
· NI[z >−450 cm]

NR[z >−450 cm]
, (2)

where N[z > −450 cm] is the number of events with fitted

vertex z > −450 cm. Examples of distributions of z of the

fitted vertex for events recorded with the liquid hydrogen

inserted and removed are shown in Fig. 13. Values of ε are

listed in Table 4.

The correction for the off-target interactions changes the

yields obtained from the target inserted data by less than

±5%, except in the regions where the statistical uncertainty

is high.

Table 4: The ratio of the interaction probabilities, ε , for the

removed and inserted target operation for data taking on p+p

interactions at 20, 31, 40, 80 and 158 GeV/c.

pbeam [GeV/c] ε [%]

20 8.0±0.3
31 7.1±0.1
40 10.4±0.1
80 12.7±0.1

158 12.6±0.1

5.5 The correction for contamination of primary π−

mesons

More than 90% of primary negatively charged particles

produced in p+p interactions in the SPS energy range are π−

mesons [11–13]. Thus π− meson spectra can be obtained

by subtracting the estimated non-pion contribution from the

spectra of negatively charged particles and additional parti-

cle identification is not required.

The simulation described in Sec. 4 was used to calculate

corrections for the admixture of particles other than primary

π− mesons to the reconstructed negatively charged particles.

The dominating contributions are primary K− and p̄, and

secondary π− from weak decays of Λ and K0
S (feed-down)

and from secondary interactions, incorrectly fitted to the pri-

mary vertex.

The EPOS spectra were adjusted based on the existing

data [24, 29]. Preliminary NA61/SHINE results were used

to scale double differential spectra of K−, and p̄ [30]. EPOS

spectra of π− were replaced by the preliminary NA61/

SHINE results [31] normalised to the multiplicity from the

world data compilation [32]. Spectra of Λ and K0
S were

scaled by a constant factor derived at each energy using the

world data compilation [33] of total multiplicities. The im-

pact of the adjustments on the final spectra ranges from −2%

to +5% in most regions, except of the low pT region at the

low beam momenta, where it reaches +20%.

As it was found in [24] the yields of K− and p̄ are

strongly correlated with the π− yield. Thus the correction

for the contribution of primary hadrons is performed via the

multiplicative factor cK. On the contrary the contribution

due to weak decays and secondary interactions is mostly lo-

cated in the low pT region, and it is weakly correlated with

the primary pion yield in this region. Thus this feed-down

contribution is corrected for using the additive correction cV.

The total correction is applied in as:

nprim[π
−] =

(

nT[h
−]− cV

)

· cK , (3)

where

cV =
(

n[π−
Λ
]+n[π−

K0
S

]+n[other]
)MC

sel
, (4)
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Fig. 13: (Colour online) Distribution of fitted vertex z coordinate for data on p+p interactions at 40 GeV/c. The distribution

for the data recorded with the removed liquid hydrogen was multiplied by a factor of NI[z >−450 cm]/NR[z >−450 cm].

cK =

(

n[π−]
n[K−]+n[p̄]+n[π−]

)MC

sel

. (5)

The spectrum of a particle x is denoted as n[x] whereas

n[other] stands for all primary and secondary particles other

than K−, p̄, π− and feed-down from Λ and K0
S. The spec-

trum n[other] of all other particles originates mostly from

secondary interactions with >90% occurring in the hydro-

gen target. This contribution was taken from the simulations

without an additional adjustment. The superscript MC marks

adjusted EPOS spectra. The subscript sel indicates that the

event and track selection criteria were applied and then the

correction for the detector acceptance was performed; the

reconstructed tracks were identified by matching.

5.6 Correction for event as well as track losses and

migration

The multiplicative correction closs for losses of inelastic

events as well as losses and bin-to-bin migration of primary

π− mesons emitted within the acceptance is calculated using

the Monte Carlo simulation as:

closs = n[π−]MC
gen / n[π−]MC

sel , (6)

where the subscript gen indicates the generated spectrum of

primary π− mesons binned according to the generated mo-

mentum vector. Then the final, corrected π− meson spec-

trum in inelastic p+p interactions is calculated as

n[π−] = closs ·nprim[π
−] . (7)

The dominating effects contributing to the closs correc-

tion are

– losses of inelastic events due to the trigger and off-line

event selection,

– the pion migration between analysis bins,

– the pion reconstruction inefficiency.

5.7 Statistical and systematic uncertainties

5.7.1 Statistical uncertainties

Statistical errors receive contributions from the finite sta-

tistics of both the data as well as the simulated events used

to obtain the correction factors. The dominating contribution

is the uncertainty of the data which is calculated assuming

a Poisson probability distribution for the number of entries

in a bin. The Monte Carlo statistics was higher than the data

statistics. Also the uncertainties of the Monte Carlo correc-

tions are significantly smaller than the uncertainties of the

number of entries in bins.

5.7.2 Systematic uncertainties

Systematic errors presented in this paper were calculated

taking into account contributions from the following effects.

(i) Possible biases due to event and track cuts which are

not corrected for. These are:

– a possible bias due to the dE/dx cut applied to re-

move electrons,

– a possible bias related to the removal of events with

off-time beam particles close in time to the trigger

particle.

The magnitude σi of possible biases was estimated by

varying values of the corresponding cuts. The dE/dx
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Fig. 14: (Colour online) Statistical and systematic uncertainties in selected bins of pT for 20 (left) and 158 GeV/c (right)

p+p data. The shaded band shows the statistical uncertainty. The coloured thin lines show the contributions to the systematic

uncertainty listed in Sec. 5.7.2. The thick black lines show the total systematic uncertainty, which was calculated by adding

the contributions in quadrature (continuous line) or linearly (dashed/dotted line, shown for comparison).
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cut was changed by ±0.01 dE/dx units (where 1 cor-

responds to a minimum ionising particle, and 0.04 is a

typical width of a single particle distribution), and the

off-time interactions cut was varied from a ±1 µs to

a ±3 µs time window. The assigned systematic uncer-

tainty was calculated as the maximum of the absolute

differences between the results obtained for both cut

values. This contribution is drawn with a long-dashed

red line (– –) in Fig. 14.

(ii) Uncertainty of the correction for contamination of the

primary π− mesons. The systematic uncertainty σii of

this correction was assumed as 20% (for 40, 80 and

158 GeV/c) and 40% (for 20 and 31 GeV/c) of the ab-

solute value of the correction. At the low beam mo-

menta there was less data available to adjust the sim-

ulated spectra, which was the reason to increase the

uncertainty. This contribution is drawn with a dashed-

dotted blue line (-···-) in Fig. 14. The absolute correc-

tion is small thus the related systematic uncertainty is

small also.

(iii) Uncertainty of the correction for the event losses. The

uncertainty was estimated using 20% of the correction

magnitude and a comparison with the correction cal-

culated using the VENUS [34] model:

σiii = 0.2 ·
∣

∣1− cEPOS
loss

∣

∣+
∣

∣cEPOS
loss − cVENUS

loss

∣

∣ . (8)

This contribution is drawn with a short-dashed green

line (- - -) in Fig. 14.

(iv) Uncertainty related to the track selection method. It

was estimated by varying the track selection cuts: re-

moving the impact parameter cut and decreasing the

minimum number of required points to 25 (total) and

10 (in VTPCs) and by checking symmetries with re-

spect to y = 0 and pT = 0. The potential bias is below

2% and the corresponding contribution was neglected.

The total systematic uncertainty was calcu-

lated by adding in quadrature the contributions

σsys =
√

σ2
i +σ2

ii +σ2
iii. This uncertainty is listed in

the tables including numerical values and it is visualised by

a shaded band around the data points in plots presenting the

results. Statistical and systematic uncertainties in selected

example regions are shown in Fig. 14. Systematic biases in

different bins are correlated, whereas statistical fluctuations

are almost independent.

Figure 15 presents a comparison of the rapidity spec-

trum of π− mesons produced in inelastic p+p interactions at

158 GeV/c (for details see Sec. 6) from the present analysis

with the corresponding spectrum measured by NA49 [11].

Statistical and systematic uncertainties of the NA49 spec-

trum are not explicitly given but the published informa-

tion implies that the systematic uncertainty dominates and

amounts to several %. The results agree within the system-

atic uncertainties of the NA61/SHINE spectra.
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Fig. 15: (Colour online) Rapidity distribution of π− mesons

produced in inelastic p+p interactions at 158 GeV/c. The

big blue points show the results obtained with an alterna-

tive method: without vertex fit requirement and rejection of

events with a single very high momentum positively charged

track. The results of NA61/SHINE (this paper, red dots)

are compared with the NA49 measurements [11] (black

squares). The open symbols show points reflected with re-

spect to mid-rapidity. A single NA61/SHINE point mea-

sured at y < 0 is also shown for comparison. The shaded

band shows the NA61/SHINE systematic uncertainty.

The analysis method of p+p interactions at 158 GeV/c

performed by NA49 [11] differed from the one used in this

paper. In particular, pions were identified by dE/dx mea-

surement and the NA49 event selection criteria did not in-

clude the selection according to the fitted z coordinate of the

interaction vertex and the rejection of elastic interactions.

Namely, all events passing the trigger selection and off-line

quality cuts were used for the analysis. For comparison, this

event selection procedure was applied to the NA61/SHINE

data. As a result 20% more events were accepted. Approxi-

mately half of them were unwanted elastic and off-target in-

teractions and half were wanted inelastic interactions. Then

the corrections corresponding to the changed selection crite-

ria were applied (the contribution of elastic events was sub-

tracted using the estimate from Ref. [11]). The fully cor-

rected rapidity spectrum obtained using this alternative anal-

ysis is also shown in Fig. 15. The differences between the

results for the standard and alternative methods are below

0.5% at y < 2 and below 2% at higher y.

Figure 16 shows a comparison of the rapidity dis-

tribution at 31 GeV/c with the MIRABELLE results at

32 GeV/c [35]. A parametrisation of the distribution and the
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Fig. 16: (Colour online) Rapidity distribution of π− mesons

produced in inelastic p+p interactions. The NA61/SHINE

results at 31 GeV/c (blue points) are compared with the

MIRABELLE measurement (parametrised by the black

line) at 32 GeV/c. The shaded band shows the NA61/SHINE

systematic uncertainty.

total π− multiplicity are provided. As the parametrisation

appears to be incorrectly normalised, we normalised it to the

total multiplicity. The results agree within the NA61/SHINE

systematic uncertainties.

The spectra measured in p+p interactions should obey

reflection symmetry with respect to mid-rapidity. As the

NA61/SHINE acceptance extends somewhat below mid-ra-

pidity a check of the reflection symmetry can be performed

and used to validate the measurements. It was verified that

the yields measured for y < 0 agree with those measured

for y > 0 in the reflected acceptance within 1.5%. A simi-

lar agreement was also found at lower beam momenta. The

measurements above mid-rapidity are taken as the final re-

sults. Nevertheless, for comparison the points at y < 0 were

added in Figs. 15 and 20 in the regions where the pT accep-

tance extends to zero.

6 Results

This section presents results on inclusive π− meson

spectra in inelastic p+p interactions at beam momenta of

20, 31, 40, 80 and 158 GeV/c. The spectra refer to pions

produced by strong interaction processes and in electromag-

netic decays of produced hadrons.

Numerical results corresponding to the plotted spectra

as well as their statistical and systematic uncertainties are

given in Ref. [36].

6.1 Double differential spectra

The double differential inclusive spectra of π− mesons

in rapidity and transverse momentum produced in inelastic

p+p interactions at 20, 31, 40, 80 and 158 GeV/c are shown

in Fig. 17. The transverse momentum distributions at 20 and

158 GeV/c are plotted in Fig. 18. Here d2n
dydpT

or d2n
dydmT

were

calculated by dividing the fully corrected bin contents n[π−]
(see Sec. 5) by the bin size. The spectra in (y, mT) are not

shown here but they are given in the compilation of the nu-

merical values [36].

6.2 Transverse mass spectra

The transverse mass spectra at mid-rapidity (0< y< 0.2)

are shown in Fig. 19 (left). A function

dn

dmT
= A ·mT · exp

(

−mT

T

)

(9)

was fitted in the range 0.2 < mT − mπ < 0.7 GeV/c2 and

is indicated by lines in Fig. 19 (left). The fitted parameters

were the normalisation A and the inverse slope T . They min-

imise the χ2 function which was calculated using statistical

errors only. In the χ2 calculation a measured bin content

(dn/dmT) was compared with the integral of the fitted func-

tion in a bin divided by the bin width.

Similar fits were performed to spectra in other rapidity

bins containing data in the fit range. The rapidity depen-

dence of the fitted inverse slope parameter T is presented

in Fig. 19 (right). The T parameter decreases significantly

when going from mid-rapidity to the projectile rapidity

(ybeam = 1.877, 2.094, 2.223, 2.569 and 2.909 at 20, 31, 40,

80 and 158 GeV/c, respectively).

6.3 Rapidity spectra

The rapidity spectra are shown in Fig. 20 (left). They

were obtained by summing the measured mT spectra and us-

ing the exponential function Eq. (9). The function was fitted

in the range ending at the maximum measured mT, and start-

ing 0.9 GeV/c2 below (note this is a different fit from the one

shown in Fig. 19). The correction is typically below 0.2%

and becomes significant (several %) only at y > 2.4. Half of

the correction is added in quadrature to the systematic uncer-

tainty in order to take into account a potential imperfectness

of the exponential extrapolation. The pion yield increases

with increasing collision energy at all measured rapidities.

The rapidity spectra are parametrised by the sum of two

Gaussian functions symmetrically displaced with respect to
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Fig. 17: (Colour online) Double differential spectra d2n/(dydpT) [(GeV/c)−1] of π− mesons produced in inelastic p+p

interactions at 20, 31, 40, 80 and 158 GeV/c.
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Fig. 18: (Colour online) Transverse momentum spectra of π− mesons produced in inelastic p+p interactions at 20 (left) and

158 GeV/c (right) in various rapidity ranges. The legend provides the centres of the rapidity bins, ybin and the scaling factor

c used to separate the spectra visually.

mid-rapidity:

dn

dy
=
〈π−〉(y0,σ0)

2σ0

√
2π

·

·
[

exp

(

− (y− y0)
2

2σ2
0

)

+ exp

(

− (y+ y0)
2

2σ2
0

)]

,

(10)

where y0 and σ0 are fit parameters, and the total multiplic-

ity 〈π−〉(y0,σ0) is calculated from the requirement that the

integral over the measured spectrum equals the integral of

the fitted function Eq. (10) in the range covered by the mea-

surements. The χ2 function was minimised in a similar way

as in case of the mT spectra, namely using the integral of
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Fig. 19: (Colour online) Left: Transverse mass spectra at mid-rapidity (0 < y < 0.2). The fitted exponential function Eq. (9)

is indicated by solid lines in the fit range 0.2 < mT −mπ < 0.7 GeV/c2 and dashed lines outside the fit range. The data points

for different beam momenta were scaled for better readability. Right: The inverse slope parameter T of the transverse mass

spectra as a function of rapidity divided by the projectile rapidity. The fit range is 0.2 < mT −mπ < 0.7 GeV/c2. The results

refer to π− mesons produced in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c.

the function in a given bin. The numerical values of the fit-

ted parameters as well as the r.m.s. width σ =
√

y2
0 +σ2

0 are

given in Table 5.

6.4 Mean multiplicities

Mean multiplicities of π− mesons, 〈π−〉, produced in

inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c

were calculated as the integral of the fitted function Eq. (10).

The extrapolation into the unmeasured region at large y con-

tributes about 1%. Half of it is added in quadrature to the

systematic uncertainty.

The dependence of the produced average 〈π−〉 multi-

plicity per inelastic p+p collision on the Fermi’s energy mea-

sure [37],

F ≡
[

(
√

sNN −2mN)
3

√
sNN

]1/4

(11)

is plotted in Fig. 20 (right). The results of NA61/SHINE are

in agreement with a compilation of the world data [11, 32].

7 Comparison with central Pb+Pb collisions

In this section the NA61/SHINE results on inelastic p+p

interactions are compared with the corresponding data on

central Pb+Pb collisions published previously by NA49 [2,

3]. Pion production properties which are different and simi-

lar in p+p interactions and central Pb+Pb collisions are iden-

tified. For completeness selected plots include the compi-

lation of the world data on inelastic p+p interactions [11,

32], as well as results on central Au+Au collisions from

AGS [38, 39] and RHIC [40–44], as processed in Ref. [3].

Figure 21 shows the ratio of transverse mass spectra of

π− mesons produced at mid-rapidity (0 < y < 0.2) in cen-

tral Pb+Pb collisions and p+p interactions at the same col-

lision energy per nucleon. The spectra were normalised to

unity before dividing. First, one observes that the ratio is

not constant implying that the spectral shapes are differ-

ent in p+p interactions and central Pb+Pb collisions. Sec-

ond, it is seen that the ratio depends weakly, if at all, on

collision energy. The ratio is higher than unity in the left

(mT −mπ < 0.1 GeV/c2) and right (mT −mπ > 0.5 GeV/c2)

parts of the mT range. It is below unity in the central region

0.1 < mT −mπ < 0.5 GeV/c2.

The inverse slope parameter T of transverse mass spec-

tra fitted in the range 0.2 < mT−mπ < 0.7 GeV/c2 is plotted

versus the collision energy in Fig. 22 (left). The T parameter

is larger by about 10–20 MeV/c2 in central Pb+Pb collisions

than in p+p interactions.

The transverse mass spectra measured by NA61/SHINE

and NA49 allow a reliable calculation of mean transverse

mass. A small correction to the measured value for the high

mT region not covered by the measurements was applied

based on the exponential extrapolation of the tail of the dis-
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Fig. 20: (Colour online) Left: Rapidity spectra obtained from sums of the measured and extrapolated mT spectra. Closed

symbols indicate measured points, open points are reflected with respect to mid-rapidity. The measured points at y < 0

are shown for systematic comparison only. The plotted statistical errors are smaller than the symbol size. The systematic

uncertainties are indicated by the coloured bands. The lines indicate fits of the sum of two symmetrically displaced Gaussian

functions (see Eq. (10)) to the spectra. The results refer to π− mesons produced in inelastic p+p interactions at 20, 31, 40,

80 and 158 GeV/c. Right: Dependence of the mean total multiplicity of π− mesons produced in inelastic p+p interactions

on Fermi’s energy measure F (see Eq. (11)). The results of NA61/SHINE are indicated by filled circles and the compilation

of the world data [11, 32] by open circles. The plotted statistical errors are smaller than the symbol size. The systematic

uncertainties are indicated by the coloured band.

Table 5: Numerical values of the parameters fitted to rapidity (see Eq. (10)) and transverse mass (see Eq. (9)) spectra of

π− mesons produced in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c. In case of the rapidity fit parameters

〈π−〉, σ , σ0 and y0, the systematic uncertainty dominates. The uncertainties written in the table are the quadrature sum of

the statistical and systematic uncertainties. All uncertainties are given numerically in [36]. For T and 〈mT〉 the statistical

uncertainty is written first and the systematic one second.

pbeam 〈π−〉 σ σ0 y0 T(y = 0) 〈mT 〉(y = 0)−mπ

[GeV/c] [MeV/c2] [MeV/c2]

20 1.047±0.051 0.981±0.017 0.921±0.118 0.337±0.406 149.1±5.0±4.8 237.8±6.4±2.3
31 1.312±0.069 1.031±0.016 0.875±0.050 0.545±0.055 153.3±2.2±1.2 246.1±2.7±0.9
40 1.478±0.051 1.069±0.014 0.882±0.045 0.604±0.044 157.7±1.7±2.1 247.3±2.0±0.9
80 1.938±0.080 1.189±0.026 0.937±0.019 0.733±0.010 159.9±1.5±4.1 253.5±1.9±1.1
158 2.444±0.130 1.325±0.042 1.007±0.051 0.860±0.021 159.3±1.3±2.6 253.6±1.6±1.4

tributions. Half of the correction was added to the systematic

uncertainty on 〈mT〉. In spite of the different shapes of the

mT spectra the mean transverse mass calculated for p+p in-

teractions and central Pb+Pb collisions is similar, see Fig. 22

(right). This is because the differences shift the mean mT in

opposite directions for different regions of mT and as a re-

sult leave it almost unchanged. Thus the mean transverse

mass appears to be insensitive to the apparent changes of

the pion production properties observed between p+p inter-

actions and central Pb+Pb collisions.

Figure 23 (left) presents the ratio of the normalised π−

rapidity spectra produced in central Pb+Pb and inelastic p+p

interactions at the same collision energy per nucleon. The

spectra are plotted versus versus the rapidity scaled by the

beam rapidity. Only weak, if any, energy dependence of the

ratio is observed. Moreover, the ratio is close to unity in the

central rapidity region (y/ybeam < 0.6), whereas it is higher

closer to beam rapidity (y/ybeam > 0.6).

Consequently the r.m.s. width σ of rapidity distributions

of π− mesons produced in p+p interactions is smaller than
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Fig. 21: (Colour online) The ratio of the normalised trans-

verse mass spectra of π− mesons at mid-rapidity produced

in central Pb+Pb collisions and inelastic p+p interactions at

the same collision energy per nucleon. The coloured bands

represent the systematic uncertainty of the p+p data.

the width in central Pb+Pb collisions. This is seen in Fig. 23

(right) where the energy dependence of σ is plotted. Addi-

tionally, p+p data from [11, 35, 45] are shown; they agree

with the NA61/SHINE results.

Note, that when interpreting differences between results

obtained for inelastic p+p interactions and central Pb+Pb

collisions the isospin effects should be taken into account.

This concerns both the spectra as well as the total multiplic-

ities [11].

In order to reduce their influence the mean multiplic-

ity of pions is obtained from a sum of mean multiplicities

of negatively and positively charged pions using the phe-

nomenological formula [15]:

〈π〉= 3

2

(

〈π+〉+ 〈π−〉
)

. (12)

The results divided by the mean number of wounded nu-

cleons (NW = 2 for p+p) are shown in Fig. 24 as a func-

tion of the Fermi energy measure F . The value of 〈π+〉
for the NA61/SHINE results on inelastic p+p interactions

was estimated from the measured 〈π−〉 multiplicity assum-

ing 〈π+〉 = 〈π−〉+ 2/3. This assumption is based on the

compilation of the world data presented in Ref. [15] and

the model presented therein. At beam momenta lower than

40A GeV/c the 〈π〉/〈NW〉 ratio is higher in p+p interactions

than in central Pb+Pb collisions. The opposite relation holds

for beam momenta higher than 40A GeV/c. The energy de-

pendence for inelastic p+p interactions crosses the one for

central Pb+Pb (Au+Au) collisions at about 40A GeV/c.

8 Summary

We presented experimental results on inclusive spectra

and mean multiplicities of negatively charged pions pro-

duced in inelastic p+p interactions at 20, 31, 40, 80 and

158 GeV/c. Two dimensional spectra in transverse momen-

tum and rapidity and parameters characterizing them were

given. The results agree with existing sparse measurements,

extend their range, accuracy and depth of detail.

The results on inelastic p+p interactions were compared

with the corresponding data on central Pb+Pb collisions ob-

tained by NA49. The spectra in p+p interactions are nar-

rower both in rapidity and in transverse mass, which might

be attributed to isospin effects. The mean pion multiplic-

ity per wounded nucleon in p+p interactions increases more

slowly with energy in the SPS range and crosses the corre-

sponding dependence measured in the Pb+Pb collisions at

about 40A GeV/c.
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Fig. 22: (Colour online) Left: Inverse slope parameter T of the transverse mass spectra at mid-rapidity (0 < y < 0.2) plotted

against the collision energy per nucleon. The parameter T was fitted in the range 0.2 < mT −mπ < 0.7 GeV/c2. The sys-

tematic uncertainty for the two lowest energy points for Pb+Pb, not given in [3] is assumed to be the same as for the higher

energies [2]. Right: Mean transverse mass 〈mT〉 at mid-rapidity (0 < y < 0.2) versus the collision energy. The results on

inelastic p+p interactions are compared with the corresponding data on central Pb+Pb (Au+Au) collisions.
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inelastic p+p interactions at the same collision energy per nucleon plotted versus the rapidity scaled by the beam rapidity. The

coloured bands represent the NA61/SHINE systematic uncertainty. Right: Energy dependence of the width of the rapidity

distribution of π− mesons produced in p+p interactions and central Pb+Pb collisions. The systematic uncertainty for the
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