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Measurement of nondegenerate nonlinearities
using a two-color Z scan
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A simple dual-wavelength (two-color) Z-scan geometry is demonstrated for measuring nonlinearities at
frequency a,,, owing to the presence of light at we. This technique gives the nondegenerate two-photon absorp-
tion (2PA) coefficient 3(w,; we) and the nondegenerate nonlinear refractive index n2 (W,; we), i.e., cross-
phase modulation. We demonstrate this technique on CS2 for n 2 and on ZnSe where 2PA and n 2 are present
simultaneously.

The newly developed Z-scan technique has been used
as an accurate and sensitive tool for determining
nonlinear refraction and absorption in a single-
beam single-wavelength geometry.' Here we intro-
duce a dual-wavelength (two-color) extension of this
technique for measuring changes of refraction An
and absorption Aa induced by a strong excitation
beam at frequency Wg on a weak probe beam
at a different frequency cop; i.e., An(w); we) and
Ac(cwp; we), respectively.2'3 In the lowest-order non-
linearity such quantities are defined through the
third-order susceptibility.

Measurements of these nondegenerate nonlineari-
ties potentially allow determination of material
parameters not available from their degenerate
counterparts. For example, it has been shown4 that
the frequency difference (cop - woe) can be exploited
to obtain information about the dynamics of the
nonlinear response with a time resolution much less
than the laser pulse width. With ultrashort pulses
we can use a time delay between excitation and
probing pulses to further give a detailed time-
resolved picture of the nonlinear interaction. A re-
cent theory based on the nonlinear Kramers-Kronig
transformation predicts dispersion relations be-
tween degenerate and nondegenerate nonresonant
bound-electronic contributions of An and Aa.5
Experiments performed with the single-beam Z
scan strongly support the dispersion relations for
the degenerate case. The two-color Z scan enables
us to investigate the nondegenerate theory experi-
mentally.6 From a practical point of view, investi-
gating nondegenerate optical nonlinearities is of
interest in the area of dual-wavelength all-optical
switching applications in which cross-phase modula-
tion plays an essential role.

The two-color Z-scan experimental arrangement
used in these experiments is shown in Fig. 1. Pi-
cosecond pulses from a mode-locked Nd:YAG laser
(A = 1.06 gim) are used as the excitation beam. The
copropagating probe is generated by inserting a
3-mm-thick, thin KD*P crystal with a =1% conver-
sion efficiency in the beam path. The two beams

are then focused with an achromatic lens of focal
length f : 15 cm. The transmitted beam is split
and sent to two detectors in the far field that each
monitorbonly one wavelength (A = 0.532 or 1.06 4am)
as the sample is scanned along the Z direction (propa-
gation path) near the focal plane. Analogous to the
usual single-wavelength Z scan, with a fully open
aperture (100% transmittance), the measurement is
only sensitive to the induced changes in absorption,
while a partially closed aperture Z scan displays the
induced refractive changes as well. In this geome-
try, perpendicular polarization results from the
type I phase-matched second-harmonic generation.
Parallel polarization is obtained by inserting a cal-
cite polarizer before the focusing lens.

In the case of the two-color Z scan, the field con-
sists of a strong excitation beam at frequency We and
a weak probe at wp,. Thus in the weak-probe ap-
proximation and for thin samples in the external
self-action geometry1' 4 the propagation of the probe
beam within the sample can be fully determined
using the following equations:

dIe - _ -Ie j(w0; w"e)Ie2,
dz'

d4z_dz'f - -2f,B 2 (w~; w~e)Ie Ip,

-=Ap 27Y2(wP; we)Je, 
dz' c

(la)

(lb)

(lc)

where Hep are the irradiances, which are functions of
the depth into the sample z', the radial coordinate r,
the time t, and the sample position Z. The nonlin-
ear phase variation of the probe is given by Aip,
which is also a function of Z, z', r, and t. The lin-
ear absorption coefficient at the excitation wave-
length is ae, f321(0p; we) and I tidwe; We) denote the
nondegenerate and degenerate 2PA coefficients, re-
spectively, and 712 represents the nonlinear refrac-
tive coefficient, which can also be given in terms of
n2 (esu).1 The subscripts 1 and 2 denote the state of
polarization of the excitation and probe beams, re-
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Fig. 1. Two-color Z-scan experimental configuration.
The measured signal is the ratio D2/D1 as the sample is
scanned along the propagation (Z) axis.

spectively, and may correspond to the transverse di-
rections x or y. For example, with the probe and
excitation beams perpendicularly polarized, we have
1 = x and 2 = y. Equation (la) gives the pump de-
pletion caused by 2PA, while Eqs. (lb) and (lc) de-
scribe the cross amplitude and the phase modulation
of the probe caused by the excitation beam. Note
the factor of 2 in front of 712 and 1312 in Eqs. (lb) and
(ic). This factor arises from the interference be-
tween excitation and probe fields,7'8 and its validity
depends on the condition that the response time of
the medium ir must be shorter than the beat period;
i.e., TIjw - We <C< 1? This is true for degenerate
(co, = we) nonlinearities or nonresonant bound-
electronic nonlinearities. For molecular reorienta-
tional nonlinearities, such as those in CS2 (r 2 ps),
this factor of 2 should not be included in the analysis
of the nondegenerate case for which wp - We = We.

The probe is assumed to be sufficiently weak not
to induce any self- or cross-modulation effects. The
linear absorption, refraction, and surface reflec-
tions of the probe beam are immaterial if we nor-
malize the probe transmittance to unity in the
absence of any nonlinearity. Equations (la), (lb),
and (lc) can be solved for a sample of length L to
give the probe field, which is proportional to VTI
exp[-iA4(z, r, t, z' = L)], at the exit surface of the
sample. The far-field electric-field distribution is
then calculated from linear-diffraction theory.'

The measured quantity in a Z-scan experiment is
the normalized transmitted power through the far-
field aperture that has a radius ra with a linear
transmittance S as given by 1 - exp(-2r 0

2 /wW2 ),
where wa is the beam waist of the probe at the aper-
ture when Ih = 0. If we assume pulsed radiation,
the measured quantity is the transmitted pulse en-
ergy. A full analytical expression can be obtained
for the Z-scan transmittance by accounting for the
differences in beam sizes, pulse widths, and focal
lengths (chromatic aberration).2

We first consider liquid CS2 where only nonlinear
refraction is present [i.e., all /3's = 0 in Eqs. (1)].
The measured two-color Z scans for this material at
an excitation irradiance of 2.9 GW/cm2 are shown in
Fig. 2 for cases of parallel and perpendicular po-
larization. The asymmetry in the two-color Z scan
(unequal peak and valley magnitudes) results from
the small chromatic aberration (Af/f = 1%) of the fo-
cusing lens and has been accounted for in the beam
propagation analysis. This aberration causes the
beam with the shorter wavelength (in this case the

probe) to experience a shorter effective focal length,
which leads to unequal peak and valley amplitudes.
The peak and valley configuration shows that self-
focusing (An > 0) results for parallel polarization
and that self-defocusing (An < 0) results for crossed
polarizations. Here the excitation beam aligns the
cigar-shaped molecules along its polarization (for ex-
ample, x), which increases the refractive index for
light that shares its polarization and reduces the in-
dex equally along the other two directions (y and z)
for crossed polarization.

Nonlinear refraction in CS2 arises primarily from
the molecular orientation effect (y7') with a =2-ps
decay time, with small additional contributions
from intermolecular, intramolecular, and electronic
effects.'0 Here we assume that these latter small
contributions, which we denote by 'Y12, are of an
electronic type; i.e., they are instantaneous (1w, -

,elT «< 1) and isotropic. A simple molecular orien-
tational model predicts that yXX = -2yxyj while
symmetry properties for an isotropic electronic non-
linearity dictate that vXx = 3yx'y. Therefore in a
two-color Z-scan measurement we can determine
each contribution by equating the total index change
as the sum of the electronic and the orientational
effects 2yxx = yxx + 2yxx, 2 yxy = -(yAx)/2 + (2yjx)/3,
respectively. The solid curves in Fig. 3 are the
best-fitted results for CS2 by using yr,, = -0.67 x
io'l cm 2 /W and yxx = 2.13 x iol cm2 /W, which
gives y', = 3.3 x 10-14 cm2 /W and yex = 0.47 X
10-'4 cm2/W These values indicate that the elec-
tronic effect contributes =15% to the total nonlinear
refraction.

Although detailed calculations were performed to
fit the above results, such a procedure is not always
necessary for estimating Y12. As was the case for
the degenerate Z scan, for a given aperture trans-
mittance S and input irradiance, it suffices to know
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Fig. 2. Measured two-color Z scans (A = 1.06 and
0.532 ,im) for liquid CS2 for parallel (squares) and perpen-
dicular (circles) polarization. The solid curves represent
theoretical calculations.



260 OPTICS LETTERS I Vol. 17, No. 4 / February 15, 1992

1.4

a) 1.2 XZ~U ~~~~ZnSe
0.0

U) 0

(_0.6 00.6~~~~~~~~~~~
N

Z~~~ZZ
Fig. 3. Normalized transmittance as a function of
sample position Z for ZnSe. The solid circles represent
the open-aperture Z scan, the open circles represent the
closed-aperture Z scan, and the solid squares represent
the division of closed by open data values. The lines are
from the best-fitted calculations.

only the normalized peak-to-valley transmittance
change AT which is defined as the difference be-
tween the peak normalized transmittance and the
minimum (valley) normalized transmittance. This
value is used to extract the peak on-axis phase dis-
tortion of the probe (A(D12) at the exit surface of the
sample as derived from Eq. (1c). A useful feature of
the Z-scan technique is that for a purely refractive
nonlinearity there exists a nearly linear relationship
between AT,-, and A(D12 as in the degenerate case,'

AT,-, P(A(D12), (2)

where A012 = Wtpyl2Ieo(l - e-a',)/c1e, with Ieo being
the peak on-axis irradiance at the beam waist. Nu-
merical analysis indicates that for very small aper-
tures (S = 0) and small chromatic aberration,
p 0.42 for the two-color case, as compared with
p = 0.406 for the degenerate case.' Chromatic
aberration that results in foci separated by one
Rayleigh range can actually increase the sensitivity
by up to =20%. The dependence of the p coefficient
on the aperture transmittance S is numerically
evaluated to approximately follow a (1 - S)03 5

dependence. Attention should also be given to the
time-averaging factor for the pulsed case, where here
(AC12) = (I12/ as opposed to (APDii) = A(DII/2
for the single-frequency Z scan.'

We next consider ZnSe that has a band-
gap energy of Eg 2.6 eV for which the degen-
erate 2PA coefficients are 83(1.06 Am) = 0 and
,3(0.53 Am) = 5.8 cm/GW.' Nondegenerate 2PA
with strong 1.06-Am excitation that is probed at
0.53 pum is allowed; i.e., 3(0.53 Am; 1.06 Atm) • 0.
Figure 3 shows the two-color Z scan of a 2.7-mm-
thick polycrystalline ZnSe sample. These data are
obtained by using orthogonal polarization of the

pump and the probe. From the open aperture
(S = 1), the data /812 can be unambiguously deter-
mined by using Eqs. (1). The closed-aperture
(S = 0.4) Z scan, similar to the degenerate measure-
ments, depends on Y12 as well as on /312.1 The effect
of this cross-phase modulation can be made more
visible by dividing the closed-aperture data by
the open-aperture data as was done for the single-
wavelength Z scan.' The result of this division,
shown in Fig. 3, shows a negative (defocusing) ef-
fect.' The solid curves in Fig. 3 are the results cal-
culated by using Eqs. (1) with 312 = 8.8 cm/GW and
Y12 = 2.7 x 10-14 cm 2 /W at a peak pump irradiance
of lo 1 1.0 GW/cm2. The irradiances used are low
enough that the negative nonlinear refraction from
the 2PA (1.06 Am + 0.53 ,um) generated car-
riers is negligible. Thus this nonlinear refraction is
the third-order nondegenerate bound-electronic
Kerr effect.5

In summary we have demonstrated an extension
of the Z-scan technique to measure nonlinearities
at one wavelength caused by a second. This two-
color Z scan retains the sensitivity and many of the
simple features of the degenerate Z scan and yields
the sign and the magnitude of nonlinear refraction
even in the presence of nonlinear absorption, where
it also yields the nonlinear absorption coefficient.
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