UNCLASSIFIED

UTC 2296－FR

MEASUREMERTI OF PARTICLE DRAG COEFFICIENTS IN FLOW REEIMES ENCOUNTERED BY PARTICLES IN A ROCKET NOZZLE

bijar fechaical repgat
 รท⿺辶寸ย 28 feberaty 1968

by
CT．Crove，W．，R．Babceck，P．G．Willoughiby，R．L．Carlson

Preparied for
Dopartment of the Army
U．S．Arny Rosearch Office Durham，North Carolina

Conaser No．DAH－C0A－67－C－0057

Thit cocumant is aublect to spectil sexport controls，and asch trakemittal to fortion

surnted，2aith Caralima 2.7706
 Army position untees es designsted by other authorized doruments．

United Tecinnology Center sunnyvale，california

MEASUREMENT OF PARTICLE DRAG CORFFICIENTS IN FLOW REGIMES ENCOUNTERED BYPARTICLES IN A ROCKET NOZZEE

FINAL TECHNICAL REPORT
FOR THE PERIOD 1 SEPTEMBER 1967 THROUGH 28 FEBRUARY 1969
by
C. T. Ciowe, W. R. Rabcock, P. G. Willoughby, R. L. Carlson

Prepared for
Department of the Army
U.S. Army Research Office Durham, Noith Carolina

Contract No. DAH-C 0 4-67-C-0057
Project 6656-E

This document is sublect to special export controls, and esch transmittal to foreign and Govarnmerits or foralign na

United Technology Center ansenconerate

21 April 1969

ERRATUM

UTC 2296-FR
MEASUREMENT OF PARTICIE DR̈AG COEFFICIENTS IN FLOW REGIMES ENCOUNTERED BY PARTICLES IN A ROCKET NOZZLE

Final Technical Report for the Period
1 September 1967 through 28 February 1969

Contract No. DAH-C04-67-C-0057

Report mailed 9 April 1969

The exponent 0.7 sell out from the Knudsen number (Kn) in an expression occurring in equation 39 (page 40) and in the lower center of figure 17 (page 4i). Flease add the exponent in these two places. The expression will then correctly read:

$$
\ldots-\exp \left[-K_{\Omega} 0.7 e^{K_{n}} \ldots\right.
$$

C. T. Crowe Project Scientist

Abstract

Under cinntract to the Army Research Office, United Tech.rology Center has conducted an experimental investig ation to determine the drag coefficient of particles in flow regimes encountered in a rocket nozzle. The acquisition of these data leads to more reliable predictions of nozzle purformance inefficiencies owing to gas-particle flow.

The Mach number-Reynolds number regime traverse. by a particle in a rocket nozzle is described. The experiment to determine drag coefficient data in this flow regime consists of the electrostatic acceleration of micronsize particles to sonic velocities and detection of their velocity decsy in a chamber conditioned to provide the desired flow parametes. The operation of the experiment, method of data reduction, and anajiz of tie experimental exror are presented.

The data are reduced in terms of a nondimensional dra , ccefficient and are correlated with comparable data obtained in other flot regimes. An ompfrical relation is generated for the drag coefficient as .- function of Reynolds and Knudsen numbers. This relation is recommi, led for use in calculations of gas-particle flow in rocket nozzles.

CONTENTS

Section Page
1.0 Introduction 1
2.0 Design and Development of the Experimental Technique 4
2. 1 Aceleration Chamber 7
2. 2 Differential Pumping and Tracking Chambers 12
2. 3 Tracking System 14
3. 0 Operation or the Apparatus 21
4. 0 Data Reduction 27
4.1 Carculation of the Drag Coefficient from Data 27
4.2 Ercor Analysis 29
4. 3 Reduction of a Data Point from a Typical Test 32
5.0 Data Analysis 37
6.0 . Conclusion 45
7. 0 Literature Cited 46
8.0 Participating Personnel 48

ILLUSTRATIONS

Minase No. Page
1 . Flow Regimes Traversed By a Particle :n a Rocket Nozzle
2 Schematic Diagram of Experimental Apparisus 6
3 Schematic Diagram of Acceleration Section 8
A Electron-Microscope Thotograph of Carbonyl-Iron 9
Particles on the Tip of a Magnetized Needle
5. Experimental Apparatus 10
6. Removable Top of the Acceleration Chamber 11
7 Voltage Divider and Back Side of Experimental Apparatus 13
8 Manometer 15
9. Faraday Cage Assembly 17
10 Typical Trace from Particle Tracking System 18
11. Experimental Opération: 26
12
Electron-Microscope Photograph of Carboayl-Iron 24
Particles
Electron-Microscope Photograph of Nickel Particles 25
13
14 Mach Number-Reynolds Number Regime Covered by 26 the Experiment
15. Trace from a Typical Experimental Run 33
16 $C_{D_{1}}$ versusi Mach Number 38
17
Nondimensional Drag Coefficient for a Sphere 41
Versue
18 Comparison of Proposed Expressions for Particle Drag Coefficient 44
TABLES
cable No. Page

1. Summary of Experimental Data 35

SYMBOLS

Latin

a	speed of sound
A	representatiwe area
C_{D}	drag coefficient
${ }_{C D}$	nondimensional drag coefficient
$\mathrm{C}_{\mathrm{D}_{\text {inc }}}$	dxag coefficient for incompressible fiow
$\mathrm{C}_{\mathrm{D}_{\mathrm{I}}}$	"inviscid" drag coefficient
$\mathrm{C}_{\mathrm{D}_{\mathrm{FM}}}$	free-molecule-flow drag coefficient
d_{c}	distance between Faraday cages
$\mathrm{d}_{\boldsymbol{r}}$	total range distance
$\mathrm{E}_{\text {S }}$	signal voltage
E_{D}	drag force
i	current
Kn	Knudsen number
N	number of measurement stations in tracking section
N_{v}	number of measurement stations in velocity-measuring section particle mass
M	Mach number
p	pressure
Q	statistical factor
q	particle charge
${ }^{\text {r }}$	marticle radius
R	resistance
Re	Reynolds number
S	speed ratio
s	distance traveled by particle
T_{g}	gas temperature
T_{p}	particle temperature
t	time
t_{0}	zero yeference time
\mathbf{u}_{f}	particle velocity in velocity-measuring section
${ }^{u}{ }_{g}$	gas velocity
u_{0}	initial particle velocity
${ }^{1} \mathrm{p}$	particle velocity
V	accolerating potential

α
γ
η
μ_{g}
constant related to drag cosfficient
ratio of specific heats
variable
gas viscosity

σ^{2}	variance
ρ_{g}	gas density
ρ_{p}	particle density
λ	mean free path

BAMTR PACR

1.0 INTRODUCTION

The use of a metallic fuel, such as aluminum, in rocket propellants augments the available energy per u..it mass and improves performance. The improvement is not as large as thermodynanic calculations indicate because the micron size particles of metal oxide produced upon combustion of the metal and carried out by the exhaust gases are unableto maintainkinetic and thermal equilibrium with the exhaust gases; this results in a performance inefficiency. Analyses of gas -particle flow in rocket nozzles have been developed to predict this inefficiency (1)) but fundanental data for the aerodynamic drag force on the particles have not been available. The aim of this project was the experimental determination of this aecodynamic force in flow regimes encountered in a rocket nozzle.

The nondimensional parameter which characterizes the aerodynamic drag force on a particle in a gas stream is the drag coefficient, C_{D}, defined as

$$
C_{D}=\frac{F_{D}}{\frac{1}{2} \rho_{g}\left(u_{g}-u_{p}\right)^{2} A}
$$

where F_{D} is the drag force, p_{g} the gas density, u_{g} the gas velocity, u_{p} the particle velocity, and A a represcntative particle area. In general, the drag coefficient of an object is dependert on several parameters such as shape and orientation with respect to the flow, $M, R_{\text {e, }}$ and turbulence level. Expeximents ${ }^{(1)}$ have shown that particies found in rocket nozzles are spherical in shape, and order-of-magnitude analyses indicate that the particle drag coefficient is primarily a function of M and Re.

The M-Re regime traversed by a particle in a typical rocket nozzle is illustrated in figure 1 . A complite gamut of flow regimes from continuum to free-molecule fow are encountered as the particle moves from the nocket chamber, through the throat, and into the expansion section. No data exist for the drag coefficient of a sphere is the flow regimes bounded loy Re less than 1,000 and M less than 2. 1 reasonable formula for the drag coefficient inthis

[^0]
region has been duvised ${ }^{(2)}$ but its validity is questionable until confirmed by cxperimental data.

The following sections describe the development and operation of an exsperiment to obtain the desired drag, coefficient data. The results are discussed and an empirical equation representing the data is presented.

2.0 DESIGN AND DEVELOPMENT OF THE EXPERIMENTAL TECFINIQUE

There are two primary methods by which the drag coefficient of an object can be rncasured; one is to suspend the object in a gas stream (e.g., in a wind turnal) and measure the drag force directly, and the other is to fire the object in a ballistic range end deduce the drag coefficient from time-distance fata. The major difficulty in using the wind-tunnel technique to obtain data in the flow regime of intereat lies in the requirement for accurate measurement of very small forces. The design complexities of a large, low-density wind tunnel and suspension syatem, together with extremely sensitive force-measuring instrumentation, suggest the impracticality of the wind-tunnel technique for this study.

The small drag for ces that are characteristic of the M-Re regime of intorobt alvo preclude the use of a conventional ballistic range. The difficulty lies in the prohibitively long distances that a reasonably sized projectile rould travel before a detectable change in velocity occurs. Employing Stokes' drag law to provide indicative results and suggest the significant parameters, yielda

$$
\begin{equation*}
s=\frac{2}{9} u_{0} \frac{\rho_{p} r_{p}^{2}}{\mu_{g}}\left(1-\frac{u_{p}}{u_{0}}\right) \tag{2}
\end{equation*}
$$

Where S is the distance traveled by a spherical projectile with radius r_{p} before its velocity has decayed to μ_{p}. The projectile's initial velocity is u_{0}, cad P_{p} the projectile's density, and μ_{g} the gas viscosity. The equation indicetes that a 1 -mm projectile with a density of $3 \mathrm{gm} / \mathrm{cc}$ and fired in air at $300 \mathrm{~m} / \mathrm{sec}$, will travel 250 m before a 10% velocity decay ensues. The above equation auggeste, however, that the ballistic range method is effective if very amall grojectiles can be accelerated to a sufficiently large velocity and if their time histories during deceleration can be recorded accurately. The calculations show that the poojectiles must be between 1 micron and 50 mic rons in ciameter and must achieve velocities up to $300 \mathrm{~m} / \mathrm{sec}$ to provide data in the flow regine of interest.

Acceleration of micron-sized particles to kigh velocities has been accompliencdin expeximental investigations ${ }^{(3,4)}$ of meteoric impact. Briefly, the tcekwiqu convisted of charging particles by subjecting them to a large
potential gradient while in contact with a conducting surface, and then accellerating these charged particles through a large potential difference. Assuming charge-to-mass ratios typical of these experiments, calculations show that a potential difference of 100 kv is sufficient for drag-coefficient experiments. The size of the particles impacting on a metal sample was determined by measuring the charge and velocity of the accelerated particles and using the work-energy equality

$$
\begin{equation*}
q V=\frac{1}{2} m u_{f}^{2} \tag{3}
\end{equation*}
$$

where q is the particle charge, V the accelerating potential, m the particle's mass, and \mathfrak{u}_{f} the finai particle velocity. The velocity and charge were measured using Faraday cages which are small tubes through which the particles pass and on which they induce their charge. The Faraday cages were connected to the grid of a cathode-follower circuit and the particle passage was detected as a voltage signal on an oscilloscope. This scheme was directly adaptable to measuring particle size in the present study.

A schematic diagram of the experimental apparatus is given in figure 2. The acceleration section, differential pumping sections, and tracking section were connected by 400 -micron orifices through which the particle passed as it proceeded from the acceleration to the tracking section. The acceleration section was connected to a diffusion pump, while mechanical pumps were sufficient for the differential pumping sections.

In order to produce the range of Re desired, the pressure in the tracking section ranged between 1 and 100 torr. The acceleration section, however, was maintained at 10-4 torr for maximurn electrical insulation. (5) Feasibility calculations indicated that this pressure differential could be maintained by using two differential pumping chambers and orifices smaller than 500 microns in diameter between the four chambers. The differential pumping chamber adjacent to the acceleration chamber served as the space where the charge and velocity of the particle were measured in order to determine its size:

It was initially postulated that a Faraday cage tracking technique would be ineffective in the tracking section because the particles would rapicly lose their charge in the higher pressure environment. Thus, it was initially decided to use a tracking scheme in which the particles traversing a laser beam would reflect light onto a photomultiplier tube. However, a pilot experiment performed early in the program demonstrated that a charged particle at atmospheric conditions would not lose its charge fast enough to make the Faraday cage technique ineffective. It was also decided to use a series of
$\frac{8}{0}$

Faraciay cages to measure che particle's time history in the tracking section, in lieu of the more complex optical technique. The Jetails of each section of the apparatus are desuribed below.

2.1 ACGELERATION CHAMBER

A diagram indicating the essential components of the acceleration chime ber is shown in figure 3. A magnetized needle was mounted on a micrometer drive directly above a sriall hole (~ 80 microns in diameter) in a thin ditiphragm. Magnetic part.cles aligned themselves in strings along the megrelic lines of force from the meedle. A potential difference of from 15 to 20 kv was maintained betweer the needie and the diaphragm. As the needle was advanced toward the hole by the micrometer drive, the electrostatic forces overcame the magnetic ones, and one charged particie was removed from the extremity of the particle string. The charged particle proceeded through the hole and iuto the lower part of the chamber where it was accelerated through an adain tional 30 to 60 kv . A sharp conical section was used for the ground electrode to aid in alignment of the particle trajectory by causing the electrical lines of force to converge toward the cone. It was found that the sharp-edged cone was not sufficient to align the particle trajectory; probably local charge accumulations on the plexiglass walls of the container disturbed the electric field symmetry and caused trajectory misalignment. The problem was overcome by locating a copper cylinder in the chamber coaxial with the centerline of the system, which ensured a uniform charge distribution.

Carbonyl-iron particles forming strings on the tip of a magnetized needie are shown in figure 4. Generally, only one particle at a time was removed by electrostatic forces. When the supply of particles on the needle became depleted, the needle was withdrawn into the particle reservoir and acquired a new supply.

The acceleration chamber mounted in place can be seen in figure 5. It was fabricated of plexiglass to ensure sufficient electrical insulation of the high voltages. The copper cylinder inserted to make the electric field symmetric is visible. The chamber was connected to an oil diffusion pump through an angle valve and liquid-nitrogen baffle. Design calculations using the manufacturer's specifications for the speed of the diffusion pure p and conductance of the baffle predicted that a pressure of 10^{-4} torr could be maintainea in the acceleration chamber. However, under actual operation no pressure lower than 10^{-3} torr was achievable. At this pressure nc serious electrical discharge problems were encountered at veltages up to 70 kv .

The acceleration chamber was designed for easy removal of the top to facilitate cleaning. The removed top is shown in figure 6. The plate which

0_{0}^{35}

Figure A. Electron-Microncope Photograph of Carbonylminon
Particles on the Tip of a Magnetized Needie

Figure 6. Removable wop of the Acceleration Chamber

Figure 7. Voltage Divider and Back Side of Experimental Ayparatus

[^1]The velocity-measuring section wis closed on one side by a brass plate which extexded the entire length of the differ ential pumping and trackng Bectiond. The Faraday cage system and cathode-follower amplifiexs were

 ~in -

The Eenta djacent to the tracking chamber was cunaected to a mechan-

Ths Low is Saction of the apparatus was the tracking chamber. It was en-
 Gitante cien is a ghata wh which another Pirani gauge, a thermometer, ani

" Tu nessugre tap was connected to the manometer (shown in figure 8) on Whit taz cxaching-chamber pressure was measured. The two working fle lo in whationatar lega were mercury and diffusion pump oil, the datter enaldis

Can 23 wace fad into the tracking section through the base plate. The "In of jons and, correspondingly, the pressure were controlled by a fine cdivitwa dra needle valve between the tracking chamber and the gas supply.
 6spitin Th three 400-micron orifices had to be positioned accurately on a Wha dicics consuded to the point of the magnetized needle and coincided with Nasesticorlins of the Faraday cage system. Each 400 -micron orifice was witcontina larger plug which fitted loosely into $3 / 8$-in. holes between the fatich eactions. This loose fit permitted positioning of the orifice by lateral afinument ccicas. Sealing was accomplished through an 0 -ring face seal. rixa oligronent of the orifices and the needie point was carried out with a lught cerareso

2.3 TMACXITG SYSTEM

A. 3 zites of Faraday cages was the fundamental element of the tracking Zys:ban. As the charged particle passed through each cage, its charge, or a fraction thersof, was induced on the cage and appeared as a voltage change on the $5+5$ of ca catiode follower. Thus, as the particle passed each cage, a sibnal cond in ciserfod onam obeilloscope.

Figure 8. Manometer

The Feraday cages for the velocity-measuring and tracking chambers wexe mounted on a single plate to facilitate alignment with the system, as clawn is figure 9. The series of cages on the left fitted into the velocitynas reximg chamber while those to the right comprised the tracking section.

Thy crges for the relocity-measuring section consisted of a wire stab, faree ringe, and a tube. The stub, one ring, and the tube are mounted on a.vire conmected direutly to the grid of a miniature high- μ triode (6CW4). Tus texcinimg tro rings were grounded. The signal generated by the wire Wtat on gasecge of a paxticle served to trigger the oscilloscope.

Refeven ringe made up the tracking-section cages. Five of these were connceted in common to the grid of another 6CW4, and the other six were grounzed. The cages were separated by $1-\mathrm{cm}$ distance in "- tracking section cad by 1/2-cka in the velocity-measuring section. The distance was measured to widas $1 / 10$ of 1% by attaching the system to a machine bed with a fine sirev ferm and noting when each ring, viewed by a stationary microscope, recictad the cexter of the view field.

A typical oscilloscope trace from the Faraday cage system is shown in tigure 10. The ecope was triggered by the small wise stub; then the signal Dext through a minimum as the particle passed the grounded cage. A maximusse sad a mininaum signal were produced as the particle travarsed the next ofscil axd grounded cages, and then a longer duration signal was produced as the particle traveled thraugh the tube. The length-diameter ratio of this tube pas 80 darge that the particle's entire charge was induced on the tube; therefore, the signal magnitude was directly proportional to the charge on the warticle. Ae the particle proceeded through the tracking section, alternating cifugl minima and maxima were produced as the particle passed through growated and signal cages, respectively. The increasing time interval between elgral panks correaponds to the particle deceleration produced by zorotynamic arag.

The guestion ariges as to whethe: or not the transfer of charge in the Forcaizy cage system may constitute a decelerative force on the particle. This cax be evaluated by comparing the electrical work dissipated to the tetcl clange in the kinetic energy of the particle, which is expressed by the ratio

$$
\begin{equation*}
\frac{i^{2} \mathrm{Rt}}{\mathrm{E}_{\mathrm{Km}}}=\frac{\mathrm{i}^{2}}{\frac{1}{2} \mathrm{~m}\left(\mathrm{u}_{0}^{3}-u_{\mathrm{p}}^{2}\right)} \tag{4}
\end{equation*}
$$

where i is tho current, R is the resistance of the Faraday cage system, and t is the time for the particle to pass through the range. The current is estimated by

$$
\begin{equation*}
i \simeq \frac{q u_{o}}{d_{c}} \tag{5}
\end{equation*}
$$

where d_{c} is the distarse between edch cage. Using this approximation and realizing that $u_{p} / u_{0} \sim 1$, the above ratio becomes

$$
\begin{equation*}
\frac{E_{e l e c}}{E_{K E}}=\left(\frac{q}{m}\right)^{2} \frac{\operatorname{md}_{R} R}{u_{0} d_{c}^{2}\left(\frac{\Delta u}{u_{0}}\right)} \tag{6}
\end{equation*}
$$

where d_{R} is the total range distance. The values of the parameters are

$$
\begin{array}{rlrl}
\mathrm{q} / \mathrm{m} & <1 \text { coulombs } / \mathrm{kg} & \mathrm{R} & <1 \text { ohm } \\
\mathrm{m} & <k \times 10^{-11} \mathrm{~kg} & \mathrm{u}_{\mathrm{o}} & >10 \mathrm{~m} / \mathrm{sec} \\
\mathrm{~d}_{\mathrm{R}} & =10^{-1} \mathrm{~m} & \frac{\Delta u}{u_{0}}>10^{-1}
\end{array}
$$

which yields

$$
\begin{equation*}
\frac{E_{\text {elec }}}{E_{K E}}=\sigma^{\circ}\left(10^{-7}\right) \tag{7}
\end{equation*}
$$

and demonstrates that the effect of the electrical losses on the deceleration of the particle is insignificant.

As discussed above, a high- μ miniature triode is employed in the gathodefollower circuits. The customary grid resiọtor was omitted, thus allowing a maximum input impedance ($\sim 10^{14} \Omega$) and power gain ($\sim 10^{11}$). A low pass filter is inserted in the output to reduce false triggering of the oscilloscope by fast transients originating in other equipment. The voltage gain of the cathode-follower in the velocity-measuring section was measiured to be 0.953 to within $1 / 2$ of 1%.

To interpret the voltage signal from the tubular cage in terms of the charge on the particle, it is necessary to know the capacitance of the system. A special capacitance bridge was designed and developed to measure
capacitanced as low as $4.38 \times 10^{-2} \mathrm{pF}$. The capacitance of the velocitysoction Fareday cago systom, positioned in place and under operating conditione, was faused to be 6.00 pF to within $1 / 2$ of 1%. Thus, the charge on the waricle (O) is rolated to the voltage signal from the tubular cage (E_{B}) by

$$
\begin{equation*}
q=5.72 \mathrm{E}_{8} \times 10^{-12} \times 1 \% \text { (coulombs) } \tag{8}
\end{equation*}
$$

Tro rolercace signals are put on each oscilloscope trace for measurensont patactac. A signal from the internal voltage calibration of the oscilloccege, ruch ras calibrated against a standard cell, provides a reference for mescurcment of the digmal magnitude from the tubular cage. A trace from a tinncosasik geacrator (Tektronix 180A) serves to x eference the instant of pricicto posesge through each cage. These calibration signals are also shown ca figure 10.

3.0 OPERATION OF TEE APFARATUS

Ihe aim of the experment was ro obtain drag coefficient data over the entire M-Re regime encountered by particles in a rocket nozzle. The value of M is determined by the particle velocity and the speed of sound in the trackiag section gas. The value of Re is a function of the particle's velocity end ste, the pressure in the tracking section, and the working gas.

Each series of experiments was preceded by a thorough cleaning of the acceleration chamber and replenishing of the particle supply. After reassembly the tracking section was flushed and the desired pressure set by a careful adjustment of the needle valve. A period of approximately 30 min was required to stabilize the pressure. The electronic instrumentation was then set and the accelerating potential applied to the system. The micrometer needle was screwed down by a long plastic rod attached to the micronater handle until the nost favorable location was a eached and particles of the desired charge and velocity were observed.

The signals from the cathode-followers were fed into a Tektronix 549 storage oscilloscope, and undesirable signals were erased. When a particle of the desired velocity and charge was observed, the oscilloscope intensity was quickly turned down to prevent additional traces from appearing on the screen. An electronic circuit was also developed to translate the base line of each new sigral a small amouni vertically so that the base lines of several traces could be distinguished.

After selecting and isolating the desired signal, the accelerating voltage, tracking-chamber pressure, and temperature were recorded. Then the voltage and time calibrations were put on the oscilloscope screen. An X-Y plotter, adadted to the oscilloscope, was used to write an identifying number on the screen. Polaroid ano $35-\mathrm{mm}$ photographs were then taken of the trace,

Operation of the experiment is illustrated in figure 11. The operator is turning the micrometer drive to feed more particles into the accelerating chamber while prepared, with his left hand, to erase undesired traces.

Usually a series of experiments were conducted at one pressure level by selecting velocities ranging from the smallest to the largest possible. The pressure range was established by the observed velocity decay. If the pressure was too low, insufficient decay occurred for accurate deceleration determination; and if the pressure was too high, the velocity change becarne

too large to represent the test by single values of M and $R e$. The velocify decays for the data reported here varied between 10% and 40%. Atter eact
 numbe; to the flow regime of 'n' ereat.

 sound ind enabled highe* M to be achieved. The preeoure in the tractsay
 1 and 10 torr with Freon.

Two kinds of magnetic particles, carbonyl iron and nickel, were wos ith the experiments. A scanning electron micrograph of the carbomylizon paricies is shown iv. figure 12. It is evident thet the particles were not. perfect spheres; tome appear to have blisters. However the data otratocid should btill be indicative of the duag coefficients of particles in a rocket nozule. The nickel particleg, on the other band, were quite spherical as illustrated in figure 13. The size of carbonyl-izon particles measured in the tests ranged from 1.6 microns to 8 microns and the rickel particles from 5 microns to 17 microns in dianseter. This agrees reasonably with the sizes observed in the photomicrograph.

The range of $M-R e$ covered ${ }^{\text {r }} \mathrm{y}$ the experiment is illustrated in figure $i \mathrm{~A}$: A flow regime which extended from free-molecule flow through transition and just into slip flois was investigated. Thus, the trajectory of a pzrticle in a typical rocket nozzle lies within the range covered.

Figure 13. Electron-Microscope Photograph

4.0 DATA REDIICTION

The fundamental parameters to be reduced from the data vere tha partor drag coefficient and the corresponding in and Re. The followisg eactions fisio cuss the data reduction technique, its accuracy, and its application to a tymesi test.

4.1 CALCULATION OF THE DRAG COEFFICIENT FROM DATA

The aerodynamic drag force on a particle is equal to whe product of ito mass and deceleration. The particle mass is detex...ined when it passes through the velocity*measuring section, and its deceleration is determined from the velocity decay in the tracking section.

Two differentiations of time-distance data to deduce deceleration can lead to significant exrors. It is more desirable to use an axpression which directly relates drag coefficient and the time-distance data. Equating the aerodynamic drag on a particle and its deceleration yields*

$$
\begin{equation*}
m \frac{d u p}{d t}=-C_{D} \frac{1}{2} \rho_{g} u_{p}^{2} A \tag{9}
\end{equation*}
$$

Ovex the range of velocity decay in these experiments, it was reasonable to assume that the drag coefficient was, in essence, constant. The above equation then can be integrated to give the following relation for the time-distance history of the particle

$$
\begin{equation*}
t=\frac{1}{u_{0}}\left(\frac{e^{\alpha s}-1}{\alpha}\right)+t_{0} \tag{10}
\end{equation*}
$$

where u_{0} is the initial velocity of the partivie, s the distance traveled in time t, and to the time when $s=0 . \alpha$ is a constant related to the drag coefficient by

$$
\begin{equation*}
\alpha=\frac{3}{8} \frac{\rho_{g}}{\rho_{P}} \frac{C_{D}}{Z_{p}} \tag{1.4}
\end{equation*}
$$

[^2]Whare ρ_{p} and Σ_{p} are the particie density and radius, respectively. It is convenient to introduce a new variable η where

$$
\begin{equation*}
\eta=\frac{e^{\alpha_{s}}-1}{\alpha} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
t=\frac{1}{u_{0}} \eta+t_{0} \tag{13}
\end{equation*}
$$

$\hat{\Gamma}^{\circ} \operatorname{or}^{\circ} \approx$ given α, the least-squares technique can be used to determine values of os and to, corresponding to a straight line on a plot of t versus η, auch thest

$$
\begin{equation*}
E(\Omega)=\sum_{K=1 .}^{N}\left(t_{K}-t\right)^{2} \tag{14}
\end{equation*}
$$

is a minimum. This was repeated for different values of α to find thai value of a for which $E(G)$ is a minimum. (Because the spatial location of each coge mas meamured to 0.1% there was no need to consider deviations in s.) Ervizg determined the value of α which represented the best fit of the data, the drac coefficient was determined from

$$
\begin{equation*}
C_{D}=\frac{8}{3} \frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{g}}} \mathrm{r}_{\mathrm{p}} \alpha \tag{15}
\end{equation*}
$$

A compuitar program was developed to calculate u for the minimum squared deviation of the data.

An experimental determination of the particle density, using standard - awalytical techniques, showed that

$$
\begin{aligned}
& P_{p}\left(\text { carbonyl irou) }=7.26 \mathrm{~g} / \mathrm{cm}^{3}\right. \\
& P_{\mathrm{p}} \text { (nickel) }=8.52 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

知"做hin $1 / 10$ of 1%.
Tha gas density was calculated from the temperature and pressure rapacuronents in the tracking chamber, using the equation of state for an ficed ges:

The remaining parameter, r_{p}, was found from the data obrained by means of the velocity-measuring section. Representing the particles as spheres, one can rewrite equation 3 as

$$
\begin{equation*}
r_{p}=\left(\frac{3}{2 \pi} \frac{q V}{\rho_{p} u_{f}^{2}}\right)^{1 / 3} \tag{16}
\end{equation*}
$$

The measurement of q, V, and the particle velocity, u_{f}, has been discussed above.

Values of M and Re were calculated using the average particle velocity, i.e., the distance between the first and last tracking cages divided by the transit time.

4.2 ERROR ANALYSIS

The accuracy of the calculated drag coefficient depends on the accuracy with which $\rho_{\mathrm{p}}, \rho_{\mathrm{g}}, \mathrm{I}_{\mathrm{p}}$, and α can be determined. The variance $\left(\sigma^{2}\right)$ of the drag coefficient is related to that of the independent variables through

$$
\begin{equation*}
\frac{\sigma_{C_{D}}^{2}}{c_{D}^{2}}=\frac{\sigma_{\rho_{g}}^{2}}{\rho_{g}^{2}}+\frac{\sigma_{r_{p}}^{2}}{r_{p}^{2}}+\frac{\sigma_{\alpha}^{2}}{\alpha^{2}} \tag{17}
\end{equation*}
$$

where the contribution due to p_{p} has been neglected because of the high accuracy with which it was determined. Following standard statistical procedures, the variance, or standard deviation, can be related to the magnitude of error at a chosen confidence level.

The variance of α is determinable from the tracking-section data. It is reiated to the variance of the time deviation $\left(\sigma_{t_{K}}^{2}\right)$ about the least square
curve by

$$
\begin{equation*}
\sigma_{\alpha}^{2}=\sum_{K=1}^{N}\left(\frac{\partial \alpha}{\partial_{t_{K}}}\right)^{2} \sigma_{t_{K}}^{2} \tag{18}
\end{equation*}
$$

Accuming the variance is the same for all points yields

$$
\begin{equation*}
\sigma_{\alpha}^{2}=\sigma_{t_{K}}^{2} \sum_{K=1}^{N}\left(\frac{\partial \alpha}{\partial t_{K}}\right)^{2} \tag{19}
\end{equation*}
$$

Siccu bie shown that the sum of the derivatives of α with respect to t_{K}, chiject to the congitraint of a minimum sum of squared deviations about the Hins, if

$$
\begin{equation*}
\sum_{K=1}^{N}\left(\frac{\partial \alpha}{\partial t_{K}}\right)^{2}=\frac{N \sum_{K=1}^{N} \eta_{K}^{2}-\left(\sum_{K=1}^{N} \eta_{K}\right)^{2}}{\Delta} \tag{20}
\end{equation*}
$$

minese
the embscripts K refer to the various distance stations, and N is the number of staitions in the tracking section.

The best estimate of the variance of the time deviations is

$$
\begin{equation*}
\sigma_{t_{K}}^{2}=\frac{\sum_{K=1}^{N}\left(t_{K}-t\right)^{2}}{N-3} \tag{21}
\end{equation*}
$$

because of the three degrees of freedom remc ved by fitting the data with a three-parameter curve. Thus, the variance of α becomes

$$
\begin{equation*}
\sigma_{\alpha}^{2}=\frac{\sum_{K=1}^{N}\left(\frac{\partial \alpha}{\partial t_{K}}\right)^{2} \sum_{K=1}^{N}\left(t_{K}-t\right)^{2}}{N-3} \tag{22}
\end{equation*}
$$

The variance of the particle radius, $\sigma_{r_{p}}^{2}$, was obtained from

$$
\begin{equation*}
\frac{\sigma_{r}^{2}}{r_{p}^{2}}=\frac{1}{q}\left[\frac{\sigma_{q}^{2}}{q^{2}}+\frac{\sigma_{V}^{2}}{v^{2}}+\frac{\Delta \sigma_{u_{f}}^{2}}{u_{f}^{2}}\right] \tag{23}
\end{equation*}
$$

The values of catge q and accislerating potential V were determined from a single reading and, consequently, no information was available on their variance. However absolute errors; ΔV and $\Delta q_{\text {s }}$ were known and were used as upper limits of the variance

$$
\begin{aligned}
& \sigma_{\mathrm{q}}^{2}<(\Delta q)^{2} \\
& \sigma_{V}^{2}<(\Delta V)^{2}
\end{aligned}
$$

The variance of the veincity can be found by fitting the time-distance data in the velocity-measuring section to a straight line and performing the same operations as above for $\sigma_{u_{f}}^{2}$. Thus

$$
\begin{equation*}
\left.\frac{\sigma_{r}^{2}}{r_{p}^{2}}<\left(\frac{\sigma_{p}^{2}}{r_{p}^{2}}\right)_{p}\right)_{\max }=\frac{1}{9}\left\{\left(\frac{\Delta q}{q}\right)^{2}+\left(\frac{\Delta V}{V}\right)^{2} \cdot \Delta \frac{u_{f}^{2} N_{v} \sum_{K=1}^{N}\left(t_{K}-t\right)^{2}}{\left(N_{v}-2\right)\left[N_{v} \sum_{K=1}^{N_{v}} s_{K}^{2}-\left(\sum_{K=1}^{N} s_{K}\right)^{2}\right]}\right\} \tag{24}
\end{equation*}
$$

Visure if is the number of stations in the velocity-measuring section. For ibs"e"ta of the prepent tests it wae found that

$$
\begin{equation*}
\left(\frac{\sigma_{r_{p}}}{r_{p}}\right)_{\max }^{2} \ll\left(\frac{\sigma_{\alpha}}{\alpha}\right)^{2} \tag{25}
\end{equation*}
$$

and the crios is r_{p} could be neglected.
The wrinnce of the gas density is related to the uncertainty in prossure wed toryperciure miocourements by

$$
\begin{equation*}
\left(\frac{\rho_{\mathrm{g}}}{\rho_{\mathrm{g}}}\right)^{2}<\left(\frac{\Delta \mathrm{T}}{\mathrm{~T}}\right)^{2}+\left(\frac{\Delta \mathrm{P}}{\mathrm{P}}\right)^{2} \tag{26}
\end{equation*}
$$

Onse ocein it was found that this variance is much smaller than $\left(\frac{\sigma_{\alpha}}{\alpha}\right)$ and ccutales neglected.

That, the vaxiance of the drag coefficient becomes simply

$$
\begin{equation*}
\left(\frac{{ }_{C_{D}}}{C_{D}}\right)^{2} \simeq\left(\frac{\sigma_{\alpha}}{\alpha}\right)^{2} \tag{27}
\end{equation*}
$$

and thic orror is

$$
\begin{equation*}
\left(\frac{\Delta C_{D}}{C_{D}}\right)=Q\left(\frac{\sigma_{\alpha}}{\alpha}\right) \tag{28}
\end{equation*}
$$

There Q was determined from the Student -t 1istribution for the 75% confidence level.

4.3 REDUCTION OF A DATA FOINT FROM A TYPICAL TEST

The trese from a typical test, using carbonyl-iron particles in nitrogen, is shown in figure 15. The small time divisions represent $50 \mu \mathrm{sec}$, the lerger divietons 0.5 msec intervals. The voltage calibration repreeagse 10 mv . The pressure for this test was measured as 2.24 cm of 4

$$
\therefore \text { n }
$$

$$
\text { Figúre } 15
$$

$\cos 4 x^{\circ}$

$$
\begin{gathered}
\circ \\
\because \\
\therefore \infty
\end{gathered}
$$

$$
\text { race from } \text { Typical }
$$

ExperimientalRun

Sifiocion max oil, the temperarure was $25.5^{\circ} \mathrm{C}$, and the potential on the

Fivench paxameter calculated was the particle radius which was deterthe isis the tose of the velocity measuring section. In measuring the dis-

 4. nioy $163 \mathrm{~m} / \mathrm{sec}$. Muliplying the electromete. voltage by the calibration L. - 0^{3} fea the voltoge divider, 1.281×10^{3}, gives an acceleraticn potential of 51.45 . The magnitude of the potential induced on the tubular Faraday cogeis mongured as 11.35 mv from the trace and the particle charge calculow from equation 4 is $q=6.5 \times 10^{-14}$ coulombz. Substitution of these ctis and the deasisy of carbonyl iron into equation 16 yields

$$
r_{p}=2.2 \text { microns }
$$

Tho gon donsity is derived from the pressure and temperature measuremoxte. The dongity of the diffusion pump oil was measured to be $0.9825 \mathrm{~g} /$ cm ${ }^{3}$, mix, therefore, 2.24 cm of oil is equivalent to 1.62 torr, or $2,16 \times 10^{3}$ dyoclem . This value and a temperature of $25.5^{\circ} \mathrm{C}$ give

$$
\rho_{\mathrm{g}}=2.44 \times 10^{-6} \mathrm{~g} / \mathrm{cm}^{3}
$$

Fecding the time-distance data measured from the tracking-section signs trece into the computer program to determine α and the corresponding grsos loads to

$$
\alpha=0.00858 \pm 1.1 \%
$$

ate 75% confidence level.
Subotinuting the above valuse into equation 15 results in

$$
C_{D}=15.0 \times 11 \%
$$

The averige velocity in the tracking section was found to have beon $134 \mathrm{~m} /$ sec which yieles
$\otimes_{0} \quad \therefore \quad$ Re $=0.081$ and $M=0.38$

The corrasponding Kn is 7．1，and is related to M and Re by

$$
\begin{equation*}
\mathrm{Kn}=1.26 \sqrt{\gamma} \mathrm{M} / \mathrm{Re} \tag{29}
\end{equation*}
$$

After completion of the experiments，it was discovered that a leak had developed in the tracking section and the lower－pressure Freon results were appreciably affected．The magnitude of the leak was determined by comparing nitrogen and F．ond data，which overlapped in certain flow regimes，and all the Freon data were corrected accordingly．

A summary of the data is given in table I．

TABLE I

SUMMARY OF EXPERIMENTAL DATA

Test No．	Particie Type and Gas	M	Re	$\underline{\mathrm{Kn}}$	Particle Drag Coefficient
1	Carbonyl－Iron	0.65	0.36	2.7	7．4 $\pm 12 \%$
2	Nitrogen	0.88	0.27	4.8	5． $5 \pm 15 \%$
3		0.97	0.18	8.0	$6.3 \pm 16 \%$
4		0.25	0.09	4.1	17£13\％
5		0.18	0.042	6.4	28土6\％
6		0.11	0.032	5.1	52 $\times 6 \%$
7		0.061	0.014	6.5	90土22\％
8		0.45	0.19	3.5	9． $9 \pm 14 \%$
9		0.21	0.22	1.4	21111\％
10		0.37	0.45	1.2	11土9\％
11		0.16	0.14	1.7	27 $\pm 14 \%$ 。
12		0.11	0.010	16	$61 \pm 11 \%$
13		0.18	0.067	3.9	$30 \pm 10 \%$
14		0.62	0.11	8.4	$8.3 \pm 7 \pm$
15		0.53	0.11	7.2	$12 \pm 13 \%$
16		0.84	0.13	9.6	7． $7 \pm 17 \%$
17		0.38	0.080	7.1	$15 \pm 11 \%$
18		0.30	0.045	9.9	$18 \pm 16 \%$
19		0.48	0.15	4.8	9． $9 \pm 11 \%$
20		0.13	0.071	2.7	$38 \pm 13 \%$
21		0.25	0.13	2.8	$2 \mathrm{l} \pm 10 \%$
22		0.82	0.21	5.8	$6.8 \pm 2 \%$
23		0.092	0.075	1.8	$62 \pm 12 \%$
24	Carbonyl－Iron	0.060	0.032	2.8	79 $\pm 9 \%$
25	Nitrogen	0.28	0，020	21.4	21 $\pm 8 \%$

TABLE I

STPTMAASY OF EXPERIMENTAL DATA（Continued）

$\begin{gathered} \because \text { Priald Type } \\ \because \operatorname{cac} \text { Gas } \end{gathered}$	M	Re	$\underline{\mathrm{Kn}}$	Particle Drag Coefficient
－．Cax bosy－troa	0.65	0.33	2.6	8．0 212%
Et＝Ereon	1.48	0.97	2.0	3．7x 12%
$22 \ldots$ ．．${ }^{\circ}$	1.77	0.69	3.4	$4.0 \pm 11 \%$
29	0.97	－0．23	5.5	$5.8 \pm 8 \%$
30.	0.78	0.41	2.5	7．8土12\％
31	0.96	0.82	1.55	$5.3 \pm 7 \%$
\therefore－32．${ }^{\text {\％Caxagnyl－Iron }}$	1.3	1.20	1.42	4．9̇4\％
－ 33 Freor	1.22	0.064	26	6．6 $\times 18 \%$
	0.048	1.18	0.061	21 $\pm 10 \%$
35.0 atitacgen	0.067	0.82	0， 11	306\％
$36^{\prime \prime}$	0.22	1.25	0.26	16さ4\％
37	0.27	0.91	0.44	16× 9%
38	0.10	0.43	0.35	$31 \pm 15 \%$
34	0.036	0.087	0.62	98 $\times 13 \%$
80°	0.058	0.10	0.86	$82 \pm 10 \%$
81.	0.22	0.32	1.0	25 $\ddagger 11 \%$
42\％\％Nické	0.14	0.27	0.77	29土11\％
－43．Nitrogen	0.046	0.23 ．	0.30	$63 \pm 13 \%$
2te ${ }^{\text {N }}$ Nickel．	0.23	0.67	0.48	20 213%
45 Freon	0.29	0.41	0.93	18 $\pm 10 \%$
AB ： 10	0.30	0.30	1.32	1826\％
47	0.19	2.3	0.11	9．8＊14\％
－ 480°	0.58	3.0	0.26	6．1 $1 \pm 8 \%$
49	0.16	2.3	0.089	11．7 $\pm 8 \%$
50 －Nickel	0.40	5.1	0.10	5．3土10\％
\bigcirc 51．Freon	0.57	1.63	0.46	8．5 $\pm 4 \%$

5.0 DATA ANALYSES

Sherman ${ }^{(7)}$ has shown that drag coefficient data ${ }^{(8,9,10)}$ of apherea ct high $M(M>4)$ can be reduced to a nondimensional drag coefficient which depends only on Kn , i. e., the ratic of the mean-free path of the gas molocular. to the particle diameter. The nondimensional coefficient is

$$
\begin{equation*}
\overline{C_{D}}=\frac{C_{D}-C_{D_{I}}}{C_{D_{F M}}-C_{D_{I}}} \tag{30}
\end{equation*}
$$

where $C_{D_{I}}$ * is the drag coefficient for $\operatorname{Re} \rightarrow \infty$ and $C_{D_{F M}}$ the free-molecule-flow value.

Ballistic- range data ${ }^{(11)}$ at high Re indicate a constant drag coefficient of 0.92 for M greater than 2 . This value was used $k \cdot C_{D_{I}}$ in this M range. However no data are available for the drag coeficicient at extremely large Re ($\mathrm{Re}>10^{7}$) and low M. For purposes of the present she lysis, the variation of drag coefficient with M at Re $\sim 10^{5}$, shown in figure ${ }^{1} 6_{\text {; }}$ will be used for the $C_{D_{I}}$ in equation 30.

The drag coefficient of a sphere in free-molecule flow, assuming diffuse reflection of the molecules, is given by

$$
C_{D_{F M}}=\frac{\exp \left(-S^{2} / 2\right)}{\sqrt{\pi} S^{3}}\left(1+2 S^{2}\right)+\frac{4 S^{4}+4 S^{2}-1}{2 S^{4}} \operatorname{erf}(S)+\frac{2 \sqrt{\pi}}{3 S}(31)
$$

where S is the speed ratio, which is related to M by

$$
\begin{equation*}
s=\sqrt{\frac{\gamma}{2}} M \tag{32}
\end{equation*}
$$

[^3]

The above equation assumes thermal equilibrium between the particles snu*, the gas. For low M it can be shown that

$$
C_{D_{F M}}=\frac{6.3}{\sqrt{\gamma M}}(M \ll 1)
$$

Drag coefficient data obtained in the present experimental studies heven been reduced to the nondimensional parameter given by equation 30 and axe plotted versus Kn in figure 17. Data from other experiments at high $\mathrm{M}^{(8,9,10)}$ Millikan's results $^{(12)}$ from the classical oil drop experiment, ${ }^{(12 d}$ low Re data collected with a magnetic suspension system (13)
(13) are shown ont tho same graph. At high Kn , the data converge to one value, the free moleculeflow limit. Alsc, for decreasing Kn the data for high M tend to group axoumd a single curve. However, the drag coefficients corresponding to low Re tend to break away from the high M limit with decreasing Kn.

At very low Re in continuum flow where Stokes' law is valid, the drag coefficient is

$$
\begin{equation*}
C_{D}=\frac{24}{R e} \tag{34}
\end{equation*}
$$

Correspondingly, the free-molecule-flow result is given by equation 33 and the nondimensional drag coefficient approaches

$$
\bar{C}_{D} \simeq \frac{24}{6.3} \frac{\sqrt{\gamma} M}{R e} \simeq 3 \mathrm{Kn}
$$

as $K n \rightarrow 0$. Thus, at low Re, the curve must break away to become asymptotic to the above relation.

Similarly, the necessary asymtote at low Kn for curves at higher Re is

$$
\begin{equation*}
\bar{C}_{D}=\operatorname{Kn} \operatorname{Re} \frac{\left(C_{D_{\text {inc }}}-0.48\right)}{8} \tag{36}
\end{equation*}
$$

where $\mathcal{C}_{D_{\text {inc }}}$ is the drag coefficient for incompressible flow.
No theoretical analysis is available which provides an analytic expression for the variation of \bar{C}_{D} with $K n$ and Re. Some ana"yses $(14,15)$ have been published assuming near-free molecule flow, but these are valid only for Kn
of anty and greater. A complex Monte-Carlo technique has been developed by Vorexite, of al. (16) to treat flows from continuum to free-molecule flow. Thiv tochsique succecsfally predicts the measured drag coefficientz at high Mi bet dege rot yigh an analisic expression for $\overline{\mathrm{C}}_{\mathrm{D}}$ versus Kn .
\because Xf is interesting to note that Vogenitz, et. al., predict a drag coefficient ot. $\mathbb{K}_{\mathrm{K}}{ }^{\prime \prime}=100$ swmewhat higher than the anaiytic result calculated from the courontional free-molecule-flow analysis. The same tendency is observed in ths reculis of the peesent'study. Millikan's results fall somewhat below the predieted $C_{D_{F M}}$, which is probably attxibutable to specular reflection from the mmooth oil drops.

An empirical expression which reasonably fits the high M data .s

$$
\begin{equation*}
\bar{C}_{M \rightarrow 1}=\left[\frac{1.1}{1+1.1 K_{n^{-0.3}} \exp \left(-\mathrm{Kn}^{1 / 2}\right)}\right]=G(\mathrm{Kn}) \tag{37}
\end{equation*}
$$

and is shown in figure 17. It is assumed that the \bar{C}_{D} approaches 1.1 as the Kn extends to infinity.
${ }^{\circ}$. In onder to obtain an equation representing all of the data, equation 37 can be multiplied by an empirical factor expressing the break-away of the lovi Re curves. In the low Kn region, the function $\mathrm{G}\left(\mathrm{Kn}_{\mathrm{n}}\right)$ is closely represented by

$$
\begin{equation*}
G(\mathrm{Kn}) \simeq 0.82 \mathrm{Kn}^{0.3}\left(10^{-3}<\mathrm{Kn}<10^{-1}\right) \tag{38}
\end{equation*}
$$

By comparing equations 38 and 36 , it is secn that at low Kn the empirical fáctor must approach.

to give the correct asymptore. A factor incorporating this feature and providing anfoceptable fit with the data is

$$
\begin{equation*}
\left.\left.G_{i K n} \operatorname{Kie}\right)=\left\{1-\exp \left[-K_{n} e^{K n} \frac{\left(C_{D_{i n c}}-0.48\right)}{6.6}\right)\right]\right\} \tag{39}
\end{equation*}
$$

KNUDSEN NUMBE

C

Carbonyl-iron, Nitrogen $(0.06<M<1,0.01<\operatorname{Re}<0.5$)
Nickel, Nitrogen ($0.03<M<0.3,0.09<\operatorname{Re}<1.25$)
Carbonyloiron, Freon ($0.6<M<1.8,0.06<\operatorname{Re}<1.2$)
Nickel, Freon ($0.20<M<0.6,0.3<\operatorname{Re}<5$)
Aroesty $(M \sim 4, \quad 100<\operatorname{Re}<2,500) \operatorname{Ref} 8$
Wegener ($M \sim 4,50<\operatorname{Re}<1,000$) Ref 9
Millikan ($M \sim 10^{-5}, R e \sim 10^{-6}$) Ref 12
Aroesty: ($M \sim 2,20, \operatorname{Re}<800$) Ref 8
Sreekanth (M~2,4 <Re <30) Ref 10
Sivier ($0.16<M<0.52, \operatorname{Re}=200$) Ref 13
TRAJECTORY OF A PARTICLE IN A

- TYPICAl ROCKET NOZZLE
Sivier $(0.16<M<0.52, \operatorname{Re}=150)$ Ref 13

\because						
$:$						

$\frac{1.1}{\left.0.3_{\exp (-K n} 1 / 2\right)}\left\{1-\exp \left[-K n e^{K n_{n}\left(C_{D_{i n c}}-0.48\right)} \frac{\text { Re }}{6.6}\right]\right\}$
$\%$

10^{-1}
KNUDSEN NUMBER, $\frac{\dot{\lambda}}{\frac{2}{2} r_{p}}$
10^{1}
10^{2}

Figure 17. Nondimensional Drag Coefficient for a Sphere vs Knudsen Number

BLANR PACE

Thus, the complete empirical equation for $\overline{\mathrm{C}}_{\mathrm{D}}$ is

$$
\begin{equation*}
\bar{C}_{D}=G(K n) \cdot D(K n, R e) \tag{40}
\end{equation*}
$$

Empirical curves for $R e=200,10$, and less than unity, calculated from equation 40, are shown in figure 17. Agreement with the available data is good and equation 40 is recommended for calculating the dsag coefficients of particles in a rocket nozzle.

It is enlightening to trace the trajectory of a particle in a rocket nozzle with reference to figure 17. The Kn of a particle is given by

$$
\begin{equation*}
K n=1.26 \frac{\sqrt{\gamma} \mu_{g}}{2 r_{p} \rho_{g}^{a}} \tag{41}
\end{equation*}
$$

where μ_{g} is the gas viscosity and a the local speed of sound. Because the gas density decreases monotonicaily with distance through the nozzle, the Kn monotonically increases. The Kn of a 3 -micron particle in a 200 -psi rocket chamber is 0.031 . Thus, the trajectory begins on the Re <1 line at the chamber Kn, goes through the maximum Re in the throat region where Kn $\because 0.06$, and proceeds back toward the Re $\leqslant 1$ curve with increasing Kn, traversing the whole flow regime covered by this study.

It is interesting to compare the data with expressions devised for drag coefficient versus M and $Z e$ before the data were available. Crowe ${ }^{(2)}$ proposed

$$
\begin{aligned}
& C_{D}=\left(C_{D_{\text {inc }}}-2\right) \exp \left[-3.07 \sqrt{\gamma} \frac{M}{R e} g(R e)\right]+\frac{h(M)}{\gamma^{1 / 2} M} e^{-\frac{R e}{2 M}}+2(42) \\
& \text { where } \log _{10} g(R e)=1.25\left[1+\tanh \left(0.77 \log _{10} \operatorname{Re}-1.92\right)\right]
\end{aligned}
$$ and

$$
h(M)=\left[2.3+1.7\left(\mathrm{~T}_{\mathrm{p}} / \mathrm{T}_{\mathrm{g}}\right)^{1 / 2}\right]-2.3 \operatorname{tank}\left(1.17 \log _{10} \mathrm{M}\right)
$$

$T_{\mathrm{p}} / \mathrm{T}_{\mathrm{g}}$ is the particle temperature - gas temperature ratio which, for this comparison, is unity. Carlson ${ }^{(17)}$ suggested the formula

$$
\begin{equation*}
\frac{C_{D} \operatorname{Re}}{24}=\frac{\left(1+0.15 \mathrm{Re}^{0.687}\right)\left[1+\exp \left(-0.427 / \mathrm{M}^{4.83}\right) \exp \left(-3 / \mathrm{Re}^{0.88}\right)\right]}{1+\frac{\mathrm{M}}{\operatorname{Re}}[3.82+1.28 \exp (-1.25 \mathrm{Re} / \mathrm{M})]} \tag{43}
\end{equation*}
$$

based on various analytic and empirical trends. Kliegel ${ }^{(18)}$, in his twophase flow analysis, has used the drag coefficient predicted by solving the 13 moment equations for flow over a sphere, namely

$$
\begin{equation*}
C_{D}=C_{D_{i n c}}\left[\frac{(1+7.5 K n)(1+2 K n)+1.91 \mathrm{Kn}^{2}}{(1+7.5 K n)(1+3 K n)+(2.29+5.16 K n) K n^{2}}\right] \tag{44}
\end{equation*}
$$

The above three expressions for drag coefficient are plotted on figure 18. The various data are also shown for reference. All the curves correspond to an Re of unity. It is noted that all the curves become parallel with the asymptotic line for Stokes flow at low Kn $\left(\bar{C}_{D} \because 3 \mathrm{Kn}\right)$, but are somewhat higher because the drag coefficient at $R e=1$ is slightly larger than predicted by Stokes drag law. With increasing $K n$, the drag coeificient expres sions used by Carlson and Kliegel diverge significantly from the data; The expression proposed by Crowe shows better agreement but displays an undesirable inflection in the near-free-molecule flow regime, near $\mathrm{Kn}=6$. Such an inflection is not predicted by present theories, and the use of equation 42 is not recommended.

6.0 CONCLUSION

Drag coefficients for spherical particles weze measured over a range of M and Re corresponding to flow regimes encountered by particles in a rocket nozzle. The data were reduced in terms of a nondimensiunal drag coefficiont and correlated, together with available data obtained under other flow conditions, in terms of two fundamental parameters: Re and Kn. An empirical equation, valid for all Re and for Kn from 0.001 to infinity, was developed for the nondimensional drag coefficient. This equation is recommended for use in calculations of gas-particle flow in rocket nozzles.

7.0 LITEPATURE CITED

2) Crema, C. T., "Drag Cosficiont of Particles in a Rocket Nozzle,"

3) NGiman E. F., D. R. Farricon, and R. W. Grow, "Charging, Initial Acsolarasion and Detection of Micron Diameter Particles, " TR No.

4) Dbotion, Ho, G. D, Hendricks, Jr., and R. F. Wuerker, 'Electrostatic Simaloretion af Microparticles to Hypervelocities", Journal of Applied phepice, 31, 7 , pp. 1243-1246, July, 1960.
5) Alpost, D., ©t. al., "Initiation of Electrical Breakdown in Ultrahigh Vocssm," The Jonrnal of Vacuum Science and Technology, I, p. 35, 1985:
6) "Fumdamontels of Gas Dynamics," High Speed Aerodynamics and Jet Propslsisn, Vol 3, edited by if. W. Emmons. Princeton University presp.
7) Shorman, F.S., "A Survey of Experimental Results and Methods for Tho Tramition Regime of Rarefied Gas Dynamics, " Rarefied Gas Qypartics, Vol 2, Supplement 2, pp. 228-259, 1963.
8) Arooaty, J. "Syhere Drag in a Low-Density Supersonic Flow," TR HE-150-1 92. University of California, Institute of Engineering - Regearch ypaz
9) " Wegenor, Pis. P, and H. Ashkenas, "Wind Tunnel Measurements of Sphere Drag at Supersonic Speeds and Low Reynolds Numbers," JPL Tech. Release No: 34160 , NASA Contract No. NASW -6, Nov. 1960.
10) Sreektanth, A.K., "Drag Measurements on Circular Cylinders and Skhequa, in the Transition Regime at a Mach Number of Two, "UTIA Ropart 74. University of Toronto, 1961.
11) May, A., and W. R. Witt, "Free Flight Detarmingtionc of the Dras Coefficients of Spheres," Journal of the Acrosexsical frsions? , Tht pp. 635-638, 1953.
12) Millikan, R. A., "The Genexal Law of Fall of a Smanl Sphoricel Eocy Through a Gas, and its Bearing upon the Neture of Molecazsa nefledtra. from Surfaces," The Phy ical Reviev, 22, p. 1, 1923.
13) Sivier, K. R., "Subsonic Spho e Drag Measurements at Intemmedinte Reynolds Numbers," Ph.D. Thesis, University of Michegeng 1967.
14) Rose, M. H., "Drag on an Object in Nearly Frec Molecular Flow," Pl.ysics of Fluids, 7, pp. 1262m 1269, 1964.
15) Baker, B., and A. Chargat, "Transitional Correction to tha Dreg on a Sphere in Free Molecule Flow, " Physics of Fluids; 1, 73,1958,
16) Vogenitz, F. W., et. al., "Theoretical and Experimental Study of Low Density Supersonic Flows about Several Simple Shapes," ALAA paper 68-6. Sixth Aerospace Siciences Meeting, New York, 22 through 24 January 1968.
17) Carlson, D. J., and R. F. Hogland, "Particle Drag and Heat Tranefor in Rocket Nozzles," ALAA Journal 2, pp. 1980-1984, 1964.
18) Kliegel, T. R., "Gas Particle Nozzle Flows," Ninth International Symposium on Combustion, Academic Press. pp. 811-827, 1963.
8.0 PARTICIPATING PERSONNEL

The grok gotcon ceroonnel tho actively perticipated in this project Woar C. Cra, W. Babcock, P. Willoughby, R. Carlson, and

[^0]: *Parenthetical superscript numbers denote references appearing on page 16.

[^1]: case3

[^2]: *It can be shown that the acceleration due to gravity can be neglected for the range of particle decelerations of these tests.

[^3]: *Sherman refers to this parameter as the "inviscid" drag coefficient.

