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Quantum weak values

G. J. Pryde,1, ∗ J. L. O’Brien,1, ∗ A. G. White,1, ∗ T. C. Ralph,1 and H. M. Wiseman2

1Centre for Quantum Computer Technology, Physics Department,

The University of Queensland, Brisbane, QLD, 4072, Australia
2Centre for Quantum Computer Technology and Centre for Quantum Dynamics,

Griffith University, Brisbane, QLD, 4111, Australia

We experimentally determine weak values for a single photon’s polarization, obtained via a weak
measurement that employs a two-photon entangling operation, and postselection. The weak values
cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We
observe the variation in the size of the weak value with measurement strength, obtaining an average
measurement of the S1 Stokes parameter more than an order of magnitude outside of the operator’s
spectrum for the smallest measurement strengths.

PACS numbers: 03.67.Hk, 03.65.Ta, 03.65.Ud

It is commonly thought that the mean value of a quan-
tum mechanical measurement must be bounded by the
extrema of a spectrum of eigenvalues, a consequence of
statistical mathematics and the measurement postulate
of quantum mechanics. However, there exist certain mea-
surement outcomes for which this is not the case – these
results are called weak values, since they arise as the out-
comes of weak measurements on certain pre- and posts-
elected quantum systems [1–11]. The canonical example
of weak values is the gedanken experiment of Aharanov,
Albert and Vaidman (AAV) [1], who described how it
would be possible to use a weak measurement to mea-
sure (say) the σz eigenvalue of a spin-1/2 particle, and
determine an average value 〈σz〉 = 100.

Weak values are an important and interesting phe-
nomenon, because they assist us in understanding many
couterintuitive results of quantum mechanics. For in-
stance, weak values form a language by which we can
resolve certain paradoxes and model strange quantum
behaviour. Important examples include: Hardy’s para-
dox [12, 13], in which two particles that always annihi-
late upon meeting are sometimes paradoxically measured
after this annihilation event; the apparent superluminal
transport of pulses in optical fibres displaying polariza-
tion mode dispersion [9]; apparently superluminal parti-
cles travelling in vacuum [8]; and quantifying momentum
transfer in twin-slit “which-path” experiments [14–16].
Weak values are useful in simplifying calculations wher-
ever a system is weakly coupled to a monitored envi-
ronment [7, 9]. They also are an example of a manifestly
quantum phenomenon, in that the analysis of weak values
can lead to negative (pseudo-) probabilities [12], an effect
never observed in analogous classical measurements.

Here we present the first unambigously quantum-
mechanical experimental realization of weak values,
where we use a nondeterministic entangling circuit to en-
able one single photon to make a weak measurement of
the polarization of another, subject to certain pre- and
postselections. Previous demonstrations of weak values
using electromagnetic radiation [17–20] have used coher-

ent states and weak measurements arising from the cou-
pling of two degrees of freedom of the photon. They
can thus be explained semiclassically using a wave equa-
tion derived from Maxwell’s equations [21]. A cavity
QED experiment [22] has been performed that was sub-
sequently analyzed in terms of weak values [7], but the
continuous spectrum precluded observations of anoma-
lously large average values. By using two single photons,
and realizing the weak measurement with a two-particle
entangling operation, the weak values we measure (in-
cluding extra-spectral weak values) are not able to be
described in semiclassical terms—a crucial result in the
experimental verification and study of the phenomenon.

The observable we measure is the polarization of a sin-
gle photon in the horizontal-vertical (H-V ) basis, i.e. the
quantum operator corresponding to the S1 Stokes param-
eter [23], Ŝ1 = |H〉〈H | − |V 〉〈V |, with expectation value
〈Ŝ1〉 = 〈µ|Ŝ1|µ〉 for some state |µ〉. According to the
standard quantum mechanical formulation of measure-
ment [24], −1 6 〈Ŝ1〉 6 1 for any single photon polar-
ization state. We will find that it is possible, using weak
measurements, to obtain average values for S1 far outside
this range.

By analogy with the scheme of AAV, we prepare the
polarization of a single photon in the state

|ψ〉 = α|H〉 + β|V 〉, (1)

where |α|2+|β|2 = 1. Subsequently, we make a weak, non-
destructive measurement on the photon’s polarization in
the H-V basis. The weak measurement is made using
a nondeterministic generalized photon polarization mea-
surement device [25, 26], which is deemed to have worked
whenever a single photon is present at each of the signal
and meter outputs. The generalized measurement device
works by entangling the signal photon polarization with
the polarization of a meter photon prepared in the state
γ|H〉+ γ̄|V 〉, before measuring the meter photon’s polar-
ization. Without loss of generality we choose γ to be real;
γ2+ γ̄2 = 1. The setup we use for our present experiment
is shown in Fig. 1.
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FIG. 1: Conceptual representation of the experiment. A sin-
gle photon, from a downconversion pair, is input to the top
(signal) arm of the apparatus, where it is prepared in a state
of form Eq. (1) using a polarizing beam splitter (PBS) and
half waveplate (λ/2). A weak measurement of the polariza-
tion is made by interacting the photon with another (me-
ter) photon in a weak measurement device, which operates
via measurement-induced nonlinearity (see Ref. [25]). The
interaction of the two photons can be controlled using the
measurement strength waveplate. The initial single photon
is then postselected in the state |A〉 = 1√

2
(|H〉 − |V 〉) us-

ing a half waveplate, PBS and photon counter. The value
of the weak measurement can be obtained by rotating the
output half waveplate and counting photons. A coincidence
count flags successful postselection of the signal photon, and
weak measurement with an outcome corresponding to the fi-
nal meter waveplate setting. The signal and meter photons
are produced in pairs by spontaneous parametric downconver-
sion from a beta-barium borate (BBO) crystal, pumped by an
Ar+ laser operating at 351.1nm. We deliver the photons to
the experiment through single mode optical fibers to provide
Gaussian spatial modes for improved spatial mode matching.

When operating with balanced modes [26], the state of
the system in two-qubit Hilbert space, after signal and
meter photons interact but before either is measured, is:

|φ〉 = (αγ|H〉s + βγ̄|V 〉s) |H〉m+(αγ̄|H〉s + βγ|V 〉s) |V 〉m
(2)

where s,m denote the signal and meter photons respec-
tively. It follows that, with measurement of the meter
photon in the H-V basis, the weak measurement device
implements a POVM {Π̂H , Π̂V } on the signal photon,
with

Π̂H = 1
2

(

1̂ +
(

2γ2 − 1
)

Ŝ1

)

,

Π̂V = 1
2

(

1̂ −
(

2γ2 − 1
)

Ŝ1

)

. (3)

Eq. (3) gives the measurement strength as 2γ2−1, which
is set by the initial state of the meter photon. For a
strong, projective measurement, γ = 1, and weak mea-
surement occurs when γ is close to 1/

√
2. A single weak

measurement provides little information about the po-
larization of the signal photon—the result is dominated
by the randomness of measuring a meter state close to
(|H〉 + |V 〉)/

√
2 in the H-V basis. However, for a suffi-

ciently large number of measurements on identically pre-

pared photons, the average signal polarization can be re-
covered with arbitrary precision. The expectation value
for Ŝ1 can be written in terms of probabilities of measur-
ing H or V in the meter output:

〈Ŝ1〉W =
〈ψ|Π̂H |ψ〉 − 〈ψ|Π̂V |ψ〉

2γ2 − 1
=
P (H) − P (V )

2γ2 − 1
, (4)

where the subscript W refers to the fact that 〈Ŝ1〉 is
obtained from a weak measurement, although the mea-
surement strength in the denominator leads to identical
strong and weak values.

After making the weak measurement, we postselect in
a basis mutually unbiased with respect to H-V (specif-
ically, on the state |A〉 = 1√

2
|H〉 − 1√

2
|V 〉). It is the

selection of a subensemble of measurement results that
can lead to the strange results of weak values. This leads
to an expression for the postselected weak value of Ŝ1:

A〈Ŝ1〉W =
P (H |A) − P (V |A)

2γ2 − 1
, (5)

where, for example, P (H |A) denotes the probability of
measuringH in the meter output given that postselection
on signal state |A〉 was successful. Using Eq. (2), it can
be shown that if γ → 1/

√
2, then

A〈Ŝ1〉W = Re
α+ β

α− β
, (6)

so that when α−β ≈ 0, the weak value of Ŝ1 can be arbi-
trarily large. In practice, it is necessary to operate with
nonzero measurement strength and postselection proba-
bility, so that a precise experimental value for 〈Ŝ1〉 can
be obtained in a finite acquisition time. In this case, the
expression for the expected weak value reduces to

A〈Ŝ1〉W =
α∗α− β∗β

1 − 4γγ̄Re[αβ]
. (7)

More detail on the theory of qubit weak values can be
found in Ref. [27].

We measured the weak value of the single photon po-
larization for a range of measurement strengths, with a
nominal input state |ψ〉 = cos(42◦)|H〉 + sin(42◦)|V 〉 ≈
0.743|H〉+0.669|V 〉. In principle, the experimental value
of γ can be determined from the meter input wave-
plate settings. However, since the calculated values of
〈Ŝ1〉W are very sensitive to γ, it is desirable to obtain
the actual measurement strength from additional coin-
cidence measurements, to deal with errors in the in-
put waveplate setting and the remainder of the optical
setup. The measurement strength is identical to the
knowledge of the generalized measurement device [25],
K = PHH+PV V −PHV −PV H = 2γ2−1, where, e.g., PHV

is the probability of observing a horizontally and a verti-
cally polarized photon at the signal and meter outputs of
the device respectively, and where these probabilities are
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measured with a signal input state |D〉 = (|H〉+|V 〉)/
√

2,
and without postselecting the state |A〉. Due to Poisso-
nian counting statistics in the measurement of K, the
relative size of the error bar is quite large when the mea-
surement strength is close to zero.

The weak values for Ŝ1 were determined using Eq. (5)
over a range of measurement strengths (Fig. 2). P (H |A)
and P (V |A) were obtained from experimental coinci-
dence measurements. For the smallest measurement
strength, 2γ2 − 1 = 0.006, we observed 〈Ŝ1〉W = 47,
which is much larger than would be expected for a strong
QND measurement followed by postselection on |A〉, i.e.

A〈Ŝ1〉 = α∗α − β∗β ≈ 0.1, and also well outside the
spectrum of Ŝ1. The errors in K = 2γ2 − 1 of approx-
imately ±0.015 lead to substantial error bars on largest
weak values due to Eq. (5). In fact, for the smallest
measurement strengths, the uncertainty in 2γ2 − 1 en-
compasses 2γ2 − 1 = 0, and the error in |A〈Ŝ1〉W | is
unbounded above. However, the lower bounds of the ab-
solute value are well above 1 over a range of measurement
strengths, as shown by the triangles in Fig. 2. In prin-
ciple, the errors, which are all derived from Poissonian
photon counting statistics, could be reduced arbitrarily
by collecting larger samples of data. However, the low
probability of the postselection, along with the very small
correlation between the signal and meter photons, leads
to very long collection times—a practical restriction on
the size of the data set [28]. As the strength of the mea-
surement is increased, we observed that the weak value
of S1 is decreased until it is no longer greater than the
strong value |α|2 − |β|2 ≈ 0.1. As noted in Ref. [25], the
generalized measurement device does not exhibit perfect
correlations between signal and meter due to imperfect
mode matching. In the present case, this leads to a sys-
tematic offset in the weak value at larger measurement
strengths, so that in fact it drops below this value.

The slight imperfections of the generalized measure-
ment device mean that the theoretical weak value of
Eq. (7), which is calculated assuming no mixture, does
not completely describe the measurement. Instead, we
determine the actual transfer matrix of the device—the
process matrix—using quantum process tomography (in
the manner of Ref. [30]), and use it to obtain an expres-
sion for the theoretical weak value. As with Eq. (7), this
expression is parametrized by α, β, γ and γ̄, although the
slight mixture leads to a lengthier form. The theoretical
curve for A〈Ŝ1〉W , plotted for our nominal input state of
Eq. (1), is shown in Fig. 2.

From a classical point of view, or even a typical quan-
tum measurement point of view, it is quite strange that
the measured expectation value of the Ŝ1 Stokes oper-
ator lies outside the interval [-1,1]. The strangeness is
perhaps more dramatic when we consider the results in
terms of mean photon number. In the dual-rail picture,
we can think of our input state as a superposition over
two spatially degenerate modes with orthogonal linear

40
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A
〈S

1
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FIG. 2: Variation of experimentally observed weak values of
Ŝ1 (circles) with measurement strength, 2γ2 − 1. The er-
ror bars plotted arise from the effect of Poissonian counting
statisitcs on P (H |A) and P (V |A). Bars not shown are smaller
than the marker dimensions. In addition, errors in 2γ2 − 1 of
approximately ±0.015 lead to correlated errors in A〈Ŝ1〉W via
Eq. (5)—i.e. a displacement in 2γ2 −1 due to error leads to a
displacement in the weak value such that a given data point
moves along a hyperbola. The triangles show the effect of this
error—they represent the data points obtained when we apply
a pointwise displacement of the measured value of 2γ2 − 1 by
the error magnitude, in a direction that minimizes the mag-
nitude of the weak value. The dashed line is the theoretical
prediction, based on a model of the generalized measurement
device obtained from quantum process tomography.

polarizations {H,V }. Then the expectation value of Ŝ1

can be thought of as the difference in mode occupation
between the H and V modes. For instance, in the case
of a strong measurement of a single photon in a super-
position of |H〉 and |V 〉,

〈Ŝ1〉 = [α∗〈H | + β∗〈V |] Ŝ1 [α|H〉 + β|V 〉]
= [α∗〈1|H〈0|V + β∗〈0|H〈1|V ] (n̂H − n̂V )

× [α|1〉H |0〉V + β|0〉H |1〉V ]

= 〈n̂H〉 − 〈n̂V 〉. (8)

It follows that in the weak postselected case, σ〈n̂H〉W −
σ〈n̂V 〉W = σ〈Ŝ1〉W , for postselection on the state |σ〉.
That is to say, we experimentally predict that conditional
on preparing a single photon superposed across two po-
larization modes, and conditional on the measurement of
|A〉 in the signal arm, there is a net difference of as many
as 47 photons between the two modes when we measure
with the weakest generalized measurement! This seems
nonsensical when we know that one photon was sent into
the signal mode [31].

The resolution to this problem is to note that the weak
values we measure are not to be directly interpreted as
the actual expectation value for Ŝ1, but rather as the ap-
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parent expectation value according to the measurement
results. The actual expectation value for Ŝ1 in terms of

A〈Ŝ1〉W can be calculated from Eqs. (2) and (4):

〈Ŝ1〉 = A〈Ŝ〉W P (A) + D〈Ŝ〉W P (D)

= 2 A〈Ŝ1〉W P (A)

=
2 [P (H,A) − P (V,A)]

2γ2 − 1

= αα∗ − ββ∗, (9)

where e.g. P (A) is the probability of postselecting on the
state |A〉 regardless of the weak measurement outcome,
|D〉 is the state orthogonal to |A〉, and e.g. P (H,A) is
the joint probability of measuring H and postselecting
on |A〉. The factor of 2 arises because, in this particular
case, the weak measurement basis and the postselection
basis are mutually unbiased—in general, this factor will
depend on the Hilbert space angle between the measure-
ment and postselection bases.

Postselected weak values are an important indicator
of quantum behaviour, since the bizarre results that we
obtain for the weak values of Ŝ1 and photon number are
not paralleled in the probabilities of analogous classical
measurements. Large weak values arise from a quantum
interference effect that results from the postselection of
the signal photon state. The interference effect is most
easily seen by referring to the entangled state in Eq. 2:
consider the result when the meter photon is detected
in the state |H〉m, but no postselection is employed in
the signal arm. The probability of this event is given
by the expectation value of the projector 1̂ ⊗ |H〉m〈H |,
with the value |αγ|2 + |βγ̄|2. This simply corresponds
to the probability of measuring H in the signal and H
in the meter, plus the probability of measuring V in the
signal and H in the meter—i.e., the probabilities add,
and there is no quantum interference. If we postselect on
|A〉 in the signal arm, the probability of measuring H in
the meter, conditional on the postselection, is given by
(|αγ − βγ̄|2)/(|αγ − βγ̄|2 + |αγ̄ − βγ|2). It can be seen
in the numerator that now the amplitudes add before
squaring, allowing the possibility of a quantum interfer-
ence effect. Combined with the similar expression for a
V measurement result, this leads to Eqs. (6) and (7).

In conclusion, we have demonstrated a completely
quantum realization of weak values. The weak measure-
ment step relies on a nonclassical interference between a
signal and meter photon, meaning that the results cannot
be explained by Maxwell’s equations alone. We demon-
strate that using this technique, we can observe expecta-
tion values of quantum mechanical observables far out-
side the range generally allowed by quantum measure-
ment theory, including mean values of the single-photon
S1 Stokes parameter of up to 47.

We thank S. D. Bartlett for stimulating discussions.
This work was supported by the Australian Research
Council and the State of Queensland.
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