
The processes that control cell fate (Fig. 1) occur across varying 
timescales. A cell must first detect and integrate multiple extracellular 
signals. Early responses (such as calcium signalling) can occur within 
a few seconds or minutes of ligation of a receptor at the cell surface 
(Fig. 2a). The consequent second messenger signalling and protein 
interaction and modification cascades often involve feedback loops, 
with spatially compartmentalized interactions and reversible reactions. 
A crucial step is transmission of the signal to the nucleus (Fig. 2b), 
through the translocation of proteins and/or the controlled genera-
tion of modified nuclear proteins that can modulate gene expression. 
Multiple gene expression processes are altered as a result, including 
transcription (Fig. 2c), translation, and epigenetic processes such as 
chromatin modifications. This, in turn, alters the concentrations of 
specific proteins (and non-coding RNAs such as microRNAs)1. These 
changes then lead to new cell phenotypes that determine a cell’s fate (for 
example, to undergo commitment to cell division) (Fig. 2d).

The integrated measurement of all components involved in these pro-
cesses in single cells is not possible with current technologies, although 
in the past 30 years there has been a marked increase in the number of 
experimental tools that are available for carrying out single-cell measure-
ments. Almost 20 years ago, it was argued that molecular biologists needed 
to collect more quantitative data if complex cellular processes were to be 
understood2. Genome sequencing has since provided access to the genetic 
database that underlies these processes. So far, however, the biochemical 
processes in a cell can be only poorly quantified, limiting the ability to 
resolve the dynamic molecular processes that underlie important cell-
fate decisions such as differentiation (or dedifferentiation), cell division 
and cell death. 

Cellular heterogeneity is a feature that is intrinsic to many cell-fate 
processes, including cell division, apoptosis3 and the generation of 
induced pluripotent stem (iPS) cells4 (see pages 704 and 713). Cell sig-
nalling5 and transcription6 are also surprisingly dynamic, often resulting 
in heterogeneous responses among cells. At the cell population level, 
this heterogeneity can be discerned only when the process of interest 
has been synchronized between cells (for example in studies of the cell 
cycle7, the circadian clock8, transcriptional cycles9 and cell-signalling 
dynamics10). Often cell synchronization is neither possible nor desirable 
when studying physiologically relevant processes. 

Even if all of the relevant molecular measurements could be made, the 
great complexity of the data makes it difficult to process, integrate and 

interpret the information. Intrinsic stochastic events, which are associ-
ated with small numbers of molecules and gene copies11, generate ‘noise’. 
This noise might need to be minimized by the cell, but it might also be 
used as part of the mechanism of decision-making3. 

Here, we review the experimental tools that can be used to measure 
different stages in the regulation of cell signalling, transcription, plast-
icity and fate in single cells (as summarized in Fig. 1). We also describe 
current methods for experimentally manipulating single-cell function 
and for improving experimental throughput by using microfluidic tech-
nologies. We then outline mathematical modelling tools that are available 
for predicting, quantifying and understanding these complex dynamic 
pro cesses. Finally, we discuss how the integration of complex infor-
mation and the iterative generation and testing of hypotheses are becom-
ing increasingly important for understanding new roles for molecular 
dynamics in cell function. 

Measuring early signalling events
Numerous receptors are present at the surface (and in the nucleus) of 
each cell. Ligation of a receptor activates one or more intracellular sig-
nalling pathways. Early responses to signals at the cell surface include 
the activation of ion channels and the release (or entry to the cell) of 
second messengers such as calcium. The development and application 
of the calcium-sensitive photoprotein aequorin12,13, as well as improved 
chemical fluorescent sensors of calcium14 (Fig. 2a), revealed that the 
frequency of calcium oscillations is one of the main mechanisms that 
the cell uses to encode information in a spatio-temporal manner15,16. 
From these observations, the important roles of molecular dynamics 
and frequency encoding of information in cell signalling were first 
characterized. 

Studying the electrophysiology of ion channels in single cells has 
been facilitated by the patch-clamp method17. This technique allows 
researchers to record the currents passing through single ion chan-
nels, demonstrating the role of specific channels in cellular processes, 
such as action potential conduction. Recently, automated patch-clamp 
approaches18 have allowed experiments to be carried out with consider-
ably greater throughput. Calcium imaging and patch-clamp techniques 
have also been successfully integrated in many studies. For example, one 
such study used patch-clamp electrodes to impose specific patterns of 
calcium spike activity on differentiating neurons19. Subsequently, the 
maturing neurons produced inappropriate neurotransmitters, which did 
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not match the corresponding cell identities as determined from marker 
expression profiles.

Measuring protein translocation
In 1994, it was discovered that green fluorescent protein (GFP) from 
the jellyfish Aequorea victoria could be fused with other proteins in 
many cell types to form fluorescent fusion proteins20. This finding led 
to the rapid development of tools for tracking intracellular proteins21, 
which resulted in considerable progress in analysing the spatiotemporal 
dynamics of signalling proteins in single cells.

Given the typical dimensions of a mammalian cell (10 μm in diam-
eter), and given that protein diffusion in water is a rapid process (about 
10 ms μm–1)22, each protein molecule could traverse the entire diameter 
of the cell ten times each second. In practice, many proteins are restricted 
in their diffusion, although some proteins are also actively transported. 
The movement of fluorescently labelled proteins within a cell can be 
quantified with the help of time-lapse microscopy (Fig. 2b).

Rates of protein movement within and between cellular compartments 
can be measured by photobleaching or photoconverting a fluorophore 
on a protein in a specific region of the cell and then measuring the rate 
at which the fluorescence recovers or disperses. Variations of these tech-
niques include fluorescence recovery after photobleaching (FRAP)23, 
fluorescence loss in photobleaching (FLIP) and the use of photoconvert-
ible fluorescent proteins21 (Box 1). For quantitative analysis, diffusion 
in the z plane is difficult to accommodate; therefore, mathematically, 
these approaches are most suitable for flat cells (such as many adherent 
cell types). An alternative approach, fluorescence correlation spectros-
copy (FCS)24, measures the time that fluorescent molecules take to pass 
through the confocal volume of laser light, allowing the diffusion rates 
and absolute concentrations of fluorescent molecules to be calculated in 
specific cellular regions (Box 1). 

Findings from fluorescent-protein translocation studies have recently 
indicated that, like calcium signalling, protein-based signalling (often 
through nonlinear dynamics) might exploit the timing of protein 
movement and protein modification to control downstream cellular 
events10,25,26. For example, fluorescence time-lapse imaging of single cells 
has shown that the transcription factors nuclear factor-κB (NF-κB)5 
(Fig. 2b) and p53 (ref. 27) undergo out-of-phase oscillations between 
the nucleus and the cytoplasm with a typical frequency of about 100 min 
for NF-κB and 5–6 h for p53 (see Box 2 for other examples).

Photobleaching experiments also led to another key discovery about 
the dynamics of intracellular processes: that the hormone-occupied 
gluco corticoid receptor undergoes rapid exchange between the nucleo-
plasm and the chromatin28. These and similar studies showed that the 
interaction of regulatory proteins with target sites in the chromatin is a 
more dynamic process than had previously been thought.

Measuring protein interactions and modifications
Protein–protein interactions have traditionally been assessed either 
in vitro by using purified proteins or by co-purification in biophysical 
assays (for example by immunoprecipitation of cell lysates) or in cells 
by using yeast or mammalian two-hybrid assays29. These assays do not 
take into account the physical separation of proteins within cells and 
give no indication of the dynamics of interactions.

To overcome this limitation, protein–protein interactions in cells 
can be studied by labelling candidate protein binding partners with 
compatible fluorophores and then measuring the efficiency of fluores-
cence resonance energy transfer (FRET)30 between the labelled proteins 
(Box 1). Because FRET has an effective range of ~1–10 nm, interactions 
that occur over a longer range cannot be detected. Thus, FRET can only 
confirm that protein interactions are occurring but cannot exclude the 
possibility that they are not. Another technique, fluorescence lifetime 

mRNA

mRNA
processing

Translation

Pre-mRNA
DNA

Protein levels

Receptors

Transcription

• Calcium  imaging
Ca2+

• Patch-clamp methods

• Proteomics
• Fluorescent labelling 

methods

Protein modifications

• FRET and FCS

Cell fate
Di�erentiation
Apoptosis
Cell division 

• Fluorescent protein imaging
(photoconversion and photobleaching)

• Antibodies and dyes
• Cell morphology
• Flow cytometry

• FUCCI technology

Signals

Cytoplasm

Nucleus

Ion channels

Protein–protein interactions

Protein turnover • Fluorescent protein
imaging (photoconversion)

• Luciferase imaging
• Destabilized fluorescent

protein imaging

• Quantitative PCR
• Deep sequencing
• MS2 tagging of transcripts
• RNA FISH

Protein translocation

Figure 1 | Dynamic processes in living cells. The diagram summarizes the 
sequence of events from signal recognition to cell fate and indicates some 
of the measurement technologies used for quantifying these processes. 
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imaging microscopy (FLIM)31 (Box 1), has the advantage that the signal 
measured is independent of fluorophore concentration (a factor that 
can confound interpretation of FRET results). Recently, FRET donor 
proteins with improved single exponential decay rates32, as well as non-
fluorescent FRET acceptor proteins, have been developed33. As a result, 
it will now be possible to carry out multiplex (many simultaneous) 
measurements with FRET sensors by using time-lapse FLIM. 

FRET has been exploited to develop several sensors based on intra-
molecular interactions. One of the earliest such fluorescent sensors to 
be developed was the Cameleon set of probes for sensing calcium34. 
Subsequently, probes for a wide range of intracellular processes have 
been developed35. A non-FRET-based approach can also be taken: one 
such technique makes use of circularly permuted fluorescent proteins36, 
which, for calcium sensing, show a higher dynamic range than FRET 
sensors. These proteins are encoded by genetic reporters, so their advan-
tage lies in their steady-state expression, which allows extended time-
lapse measurements to be made. They can also be targeted to specific cell 
compartments and to particular cell types and tissues in vivo.

More quantitative methods for measuring protein–protein inter-
actions in living cells are fluorescence cross-correlation spectroscopy 
(FCCS) and its variant known as image cross-correlation spectroscopy 
(ICCS)37, both of which are based on FCS (Box 1). Recently devised tech-
niques that increase the spatial resolution of light microscopy beyond 
the optical diffraction limit38 (about 200 nm) might ultimately enable 

protein–protein interactions to be inferred through direct measurement 
of protein co-localization at molecular resolution. 

Protein–protein interaction studies in single cells have often con-
firmed the physiological relevance of other biochemical studies of cell 
populations and other in vitro studies, and they have been particularly 
useful for studying the interactions of cell-surface receptors. It seems 
probable that single-molecule FRET studies will be increasingly impor-
tant for analysing molecular dynamics and function39.

Analysing transcriptional control in single cells
The regulation of transcription is central to cell-fate determination 
(see page 704). Transcription in single cells is measured directly, 
by measuring messenger RNA levels, or indirectly, by the imaging 
of non-invasive reporters such as firefly luciferase40 or destabilized 
fluores cent proteins41. Several of these indirect techniques — lucif-
erase imaging42–46 (Figs 2c and 3), β-galactosidase imaging47,48 and 
RNA fluorescent in situ hybridization (RNA FISH)49 — provided the 
first evidence that transcription was more dynamic and stochastic 
than had been suspected. Carrying out RNA FISH on single fixed cells 
allowed the transcription burst size to be mathematically quantified 
in mammalian cells50, and the dynamics of transcriptional pulsing in 
single cells51 can be directly visualized by using a fluorescent protein 
fused with the coat protein of bacteriophage MS2. The fluorescent 
fusion protein binds to specific RNA stem–loop structures, which can 
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Figure 2 | Examples of time-lapse imaging of single cells. a, Early signalling 
events. Calcium imaging of pituitary cells (of the GH3 cell line) is shown after 
treatment with thyrotropin-releasing hormone. Fluctuations in the amount 
of calcium in the cytoplasm over seconds were visualized by using fluo-4 
dye (green) (Supplementary Movie 1). Scale bar, 20 μm. b, Transcription-
factor translocation. Fluorescent protein imaging of neuroblastoma cells 
(of the SK-N-AS cell line) treated with tumour-necrosis factor-α is shown. 
The protein RELA (which is a subunit of the transcription factor nuclear 
factor-κB) was fused to the fluorescent protein DsRed-Express (red). RELA 
oscillates between the cytoplasm and the nucleus of cells with a period 
of about 100 min. Concurrently, the RELA inhibitor IκBα, labelled with 
enhanced green fluorescent protein (green), shows cycles of synthesis and 
degradation that have an inverse phase to the cycles of RELA translocation5 
(Supplementary Movie 2). Scale bar, 20 μm. c, Transcription analysis. 

Low-light-level imaging of pituitary cells (of the GH3 cell line) expressing 
luciferase under the control of the promoter of the human prolactin gene is 
shown. The substrate of luciferase, luciferin, was added to the medium, and 
images were taken at 15-min intervals over hours. The colour scale indicates 
the range of light emission, from low (blue) to high (red). The cycles of 
transcription are heterogeneous across the cells65 (Supplementary Movie 3). 
Scale bar, 50 μm. d, Cell division. Imaging of epithelial cells (of the HeLa cell 
line) by using FUCCI technology, over hours, is shown. Cells transiently 
express FUCCI proteins, depending on their differing stability at different 
phases of the cell cycle: G1 phase (red), S phase (green); G2 phase (reduced 
green fluorescence) and M phase (no fluorescent signal)75. Blue labels indicate 
the cell-cycle phase of a single cell in this image series, and yellow labels 
indicate that of another single cell. Each of these cells divides over the course 
of the experiment (Supplementary Movie 4). Scale bar, 20 μm. 
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be engineered into any RNA molecule of interest, allowing fluorescent 
protein labelling of the RNA molecule in cells52. The dynamic nature 
of transcription may be important in the acute response of cells to 
signals.

Static (single time point) measurements (for example single-RNA 
counting in single cells50) have greatly aided the quantification of 

transcription in single cells. Multiplex measurement of gene expression 
in single cells can be achieved by using RNA FISH53, PCR54, transcrip-
tomic analysis55 or RNA-Seq56. Applying more sensitive sequencing 
methods to single-cell analysis is likely to have a large impact on the 
ability to analyse transcription initiation, as well as measuring transcrip-
tion elongation and mRNA processing.

Fluorescence recovery after photobleaching (FRAP) and 
fluorescence loss in photobleaching (FLIP)
These techniques involve the photobleaching of fluorescent molecules 
within a specific region of the cell. FRAP involves recording the 
subsequent recovery of fluorescence as the fluorescent molecules 
repopulate the photobleached region (a, black arrows indicate 
the direction of fluorescent molecule movement)23, whereas FLIP 
involves observing the reduction in fluorescence outside a repetitively 
bleached region (indicated with blue arrows), caused by the continual 
repopulation and destruction of fluorophores that enter the bleached 
region from outside (b). This allows information to be derived on the 
rates of movement of the fluorescent species. In inverse FRAP (c), 
cellular fluorescence in the whole cell area outside a small region is 
photobleached, and the subsequent decrease in fluorescence in the 
unbleached region (intense green area) is then recorded. 

Photoactivation and photoconversion
These methods use derivatives of fluorescent proteins that can be 
switched on or off, or can change their fluorescence emission intensity 
(photoactivation) or spectrum (photoconversion), in response to 
light21 (d). These approaches can provide similar data to FRAP and 
FLIP, but they can be used over longer timescales in ‘pulse–chase’-type 
experiments to determine protein turnover rates because they do not 
involve fluorophore photobleaching. 

Fluorescence correlation spectroscopy (FCS)
This technique measures the number of fluorescent molecules and the 
time that they spend in a diffraction-limited volume of light, by using 
a detector that observes a confocal region24. The trajectory of a single 
fluorescent molecule is shown before (grey, t�=�0), during (blue, excited) 
and after (grey, t�=�7) entering the illuminated region, with the measured 
fluorescence (blue line) during this time period shown below (e). From the 
correlation function that is produced, the rate of diffusion of the fluorescent 
species in e can be calculated, together with the absolute number of 
molecules in the confocal volume. By extrapolation, the concentration of 
the protein can be estimated for a given cellular compartment. 

Image correlation spectroscopy (ICS)
Whereas FCS collects data from one or a small number of observation 
volumes, ICS analyses point-to-point fluorescence fluctuations from 
the multiple observation volumes present in raster-scanned laser 
confocal microscopy images. It has been developed for time-lapse 
imaging of single cells37. 

Fluorescence cross-correlation spectroscopy (FCCS) 
This is a derivative of FCS, in which temporal correlations of the 

intensity fluctuations of two or more fluorophores are measured within 
a confocal volume (f). Blue and red trajectories show the movement of 
two transiently interacting molecules, from t�=�0 to t�=�7. Each molecule 
shows fluorescence when within the exciting confocal beam. The blue 
and red lines, below the diagram, show the fluctuations in fluorescence. 
This can be used to derive the binding relationships of different 
molecules through the correlation between the times that they spend 
together in the imaging volume. 

Image cross-correlation spectroscopy (ICCS) 
This method is an extension of ICS (equivalent to FCCS) that produces 
similar data but for protein–protein interactions37.

Fluorescence resonance energy transfer (FRET)
This method measures whether two spectrally compatible 
fluorophores (blue and yellow in g; arrows depict excitation and 
emission), and therefore two proteins of interest, are in close proximity 
(1–10�nm)30. The fluorophores need to be in a favourable dipole–dipole 
orientation, allowing non-radiative transfer of energy from the excited 
donor fluorophore to the acceptor fluorophore. In this way, the 
binding interaction between donor and acceptor can be followed by 
determining the efficiency of this energy transfer, through measuring 
changes in the intensity of acceptor fluorescence emission or through 
an associated reduction in donor fluorescence (donor quenching). The 
interpretation of such intensity-based measurements is limited by 
experimental artefacts such as the relative concentration of the two 
fluorophores, signal cross-contamination and variations in excitation 
intensity. These limitations can be ameliorated by combining FRET 
with FLIM.

Fluorescence lifetime imaging microscopy (FLIM)
This method measures the rate of decay of donor emission31. Increased 
energy transfer (FRET) decreases this parameter. This rate of decay 
is unaffected by many of the factors that negatively affect intensity-
based FRET measurements.

Protein-fragment complementation assay (PCA)
These assays120 rely on the expression of two ‘half’ domains of a 
reporter protein fused to separate proteins. The reporter protein 
can be either a fluorescent protein, in the case of bimolecular 
fluorescence complementation (BiFC)121 (h), or another measurable 
enzyme such as a luciferase122. If the two proteins interact, then the 
split domains of the reporter protein are reconstituted, and a signal is 
observed (green in h). PCA has a low background signal and compared 
with FRET has a greater tolerance for separation of the interacting 
proteins.

Box 1 | Methods for measuring molecular dynamics and interactions 
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Another important aspect of the control of gene expression lies in the 
epigenetic organization of nuclear structure. Knock-in transgenic cells57,58 
or bacterial artificial chromosomes have been used to study the regula-
tion of genes in their native chromatin context59,60 (Fig. 3). Epigenetic 
modifications — DNA methylation and histone modifications — have 
recently been found to be more dynamic than previously suspected61, and 
transcriptionally active genes are now known to be directed to spatially 
organized transcription factories62, where coordinately regulated genes 
can be co-transcribed63. Chromatin immunoprecipitation studies of popu-
lations of tightly synchronized cells have suggested that organized cycles of 
transcription can occur at certain promoters9. There is therefore a need for 
improved approaches to relate the dynamic aspects of nuclear architecture 
(for example chromosome topology, and DNA and histone modifications) 
to gene expression and cell fate in single cells. It has recently been shown 
that cells must divide and undergo the associated DNA demethylation64 
for changes in gene expression that are associated with commitment of a 
cell to an induced pluripotent state4.

The importance of stochasticity in dynamic and unstable transcription 
was uncovered by using single-cell RNA FISH, which showed stochastic 
switching between the expression of alleles in cells undergoing the tran-
sition from fetal to adult globin gene expression49. Some cells expressed 
unprocessed fetal globin transcripts while adult globin mRNA was present 
in the cytoplasm from a previous round of transcription. In another exam-
ple, luciferase imaging studies showed dynamically stochastic transcrip-
tion from an HIV-1 promoter46. More recent studies suggest that there is 
plasticity (that is, controlled dynamic variability) in expression of the gene 
encoding the hormone prolactin in the anterior pituitary gland45,65, where 
a mixed population of cells produces a set of physiologically important 
hormones that are regulated acutely (Figs 2c and 3).

Measuring protein levels
Cellular plasticity depends ultimately on changes in protein expression 
levels. These changes are most commonly measured by assaying protein 
expression from just one (or a few) marker gene(s) and are often measured 
at only one (or a few) time point(s). The measurements are generally 
poorly quantitative and expressed only in terms of relative protein lev-
els. Absolute quantification of protein levels in cells is a non-trivial task. 
Most assays rely on antibody-based detection of proteins in an extract 
from a cell population and are rarely calibrated with the purified pro-
tein of interest. Such assays include western blotting, enzyme-linked 
immuno sorbent assays (ELISAs) and radioimmunoassays66. Epitope 
tagging67, by contrast, avoids the complication of using many antibodies 
but at the expense of the tag possibly causing perturbations. Recently, 
elegant proteomic mass spectroscopy methods have been developed, 
allowing the absolute levels of many proteins to be measured in paral-
lel68. None of these techniques, however, has the sensitivity required to 
measure protein concentrations directly in a single cell. 

In single cells, immunocytochemistry, whether in conjunction with 
flow cytometry or microscopy, has often been used to assess the rela-
tive protein levels and gives an indication of the intercellular hetero-
geneity of the proteins. Microscopy can provide information about the 
intracellular distribution of the proteins, but these data must be back-
calibrated to those from bulk-cell analysis in order to derive information 
about protein concentrations. This strategy ultimately relies on the qual-
ity and specificity of the antibodies used, the purity of the calibration 
protein, and the consistency of cell-sample processing. To measure the 
intracellular levels of proteins, cells generally need to be fixed, permea-
bilized or lysed, to allow access of the antibody to the antigen. These 
processing steps can lead to protein degradation, differential protein loss 
and/or destruction of the antibody-binding epitope(s). Despite these 
caveats, there are many elegant studies examining the relative abundance 
of proteins, their localization in cells69 and their relative expression levels 
in different tissues and tumour types70 (see also the Human Proteome 
Resource database, http://www.proteinatlas.org/intro.php).

For the future, one of the most promising approaches for localizing 
and counting specific individual macromolecular complexes in intact 
cells is visual proteomics. This technique computationally matches 

Many cell-signalling and transcriptional processes show pulsatile, or 
even oscillatory, behaviour. If such processes occur out of phase in cells 
across a population, then techniques that measure biological parameters 
in the whole population of cells result in these dynamics being averaged 
out across the cell population and thus not being observable. This 
is illustrated in the schematic graph (a), which shows out-of-phase 
oscillations in a process occurring in single cells (each indicated by a 
different colour). Measuring this process in the cell population would 
result in a stable profile (black), the average across the cell population. 
Similar results are obtained from a real example (b). Translocation of 
NF-κB from the cytoplasm to the nucleus, and back, was imaged in single 
neuroblastoma cells (of the SK-N-AS cell line) after stimulation with 
tumour-necrosis factor-α5 (see also Fig. 2b and Supplementary Movie 2). 
Data for four cells are shown. After the first peak of fluorescence in 
the nucleus, the cells show out-of-phase oscillations. In recent years, 
numerous key signalling and cellular processes have been found to show 
such pulsatile or oscillatory dynamics. Examples of such systems are 
listed in the table.

Box 2 | Oscillatory signal dynamics
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structures in cryo-electron tomographs with high-resolution reference 
structures obtained by electron or X-ray diffraction71.

An alternative method for single-cell protein quantification is to 
use genetic constructs from which are expressed fusion proteins with 
either a fluorescent protein21 or another genetically expressed tag that 
can allow fluorescent marking of the protein of interest. In this con-
text, engineered biarsenical ligands that bind to specific tetracysteine 
motifs72 and the enzyme-based SNAP-tag system for protein label-
ling73 have been used. The tag, however, can alter the properties of the 
original protein, and the tagged proteins are typically overexpressed 
from viral promoters. More relevant measurements can be made if the 
tagged protein is expressed from its native promoter, most commonly 
from a bacterial artificial chromosome59,60 or knocked into the relevant 
genomic locus57,58. Fluorescence levels can be assessed by calibrated 
flow cytometry or fluorescence microscopy, and the absolute concen-
tration of fluorescent proteins in specific cell compartments can be 
quantified by FCS24 (Box 1). 

When assessing cell phenotype, the level of specific protein markers 
needs to be measured accurately (for example, the level of stem-cell 
markers is important for accurately distinguishing pluripotent cells from 
differentiated cells4,74). Whether a cell is undergoing cell death or cell 
division is often assessed by using time-lapse morphology studies or 
by flow cytometric analysis of DNA content. More precise single-cell 
assays for these heterogeneous processes are required3. In this respect, 
fluorescent, ubiquitylation-based cell-cycle indicator (FUCCI) technol-
ogy, which was developed recently, identifies cells at different phases of 
the cell cycle more accurately75 (Fig. 2d).

Label-free measurements
Given the issues arising from the labelling or tagging of molecules, it 
would be advantageous to be able to analyse single cells in a manner 
that does not involve such modification. One such method is stimu-
lated Raman scattering (SRS)76, which uses two laser beams tuned to 
different frequencies. If the difference in frequency between the beams 
matches the vibration of specific chemical bonds, then one beam (the 
Stokes beam) will experience stimulated Raman gain, whereas the 
other beam (the pump beam) will experience stimulated Raman loss. 
These measurements of Raman gain and loss can be used to detect 
specific molecules in tissues and cells, which can be used to generate an 
image. A similar illumination regime generates a coherent anti-Stokes 
Raman scattering (CARS) signal, which can also be used to generate an 
image77. More recently, stimulated emission from naturally occurring 
chromophores such as haemoglobin78 has also been used to provide 
image contrast. These techniques have great potential for cell imaging 
and molecular quantification, because they provide information about 
unmodified samples. At present, however, the spectral signatures of 
the chemical bonds must be relatively abundant to be detected, and the 
signal might arise from these bonds in multiple biochemical entities, 
making it difficult to interpret the data. 

Manipulating single cells
To further study coordination of the cellular processes in single cells, 
it is often useful to examine the effects of experimental perturbations. 
These perturbations can take several forms, including the manipulation 
of gene expression and the cell-signalling environment. More specific 
changes can be induced by introducing chemical or optical switches into 
cells. As experiments to measure the relationship between early signal-
ling events and cell fate become more complex and more physiological 
in their scope, the use of such tools for manipulating cells in a targeted 
manner will become increasingly important.

A relevant recent example of how cell fate can be manipulated is the 
induction of pluripotency in differentiated cells (see pages 704 and 713). 
The initial studies in which differentiated cells were reprogrammed 
involved the transfer of somatic-cell nuclei into enucleated oocytes79,80, 
which led to animal cloning81. Recently, overexpression of a set of just 
four defined genes was found to generate iPS cells in mice and humans4. 
Moreover, it has now been shown that these iPS cells can be generated 

by delivering the proteins encoded by these four genes directly to the 
nucleus82, indicating that the proteins are needed only up to a key 
commitment point. This procedure can therefore be used to generate 
pluripotent cells without requiring gene transfer.

The growing importance of RNA-interference technology83 illustrates 
the usefulness of genetic perturbation in single-cell analysis. Numerous 
high-throughput genome-wide screens have used RNA interference to 
identify the functions of particular genes in single cells84. 

Another tool that is often used in combination with single-cell analysis 
is uncaging technology85. Caged compounds sequester molecules in a 
functionally inactive state that is reversed on irradiation of the cell. Initi-
ating uncaging during an imaging experiment provides precise control of 
molecule release and allows particular cellular responses to be observed86. 
In a similar approach, a fused photoreactive domain has been used to 
generate a photoactivatable version of the protein Rac87,88. This technol-
ogy allowed an exquisite temporal analysis of the function of Rac in living 
cells. Another strategy for controlling the state of a molecule of interest 
involves generating a fusion protein with FK506-binding protein, allow-
ing protein stability to be regulated by exposure to the small molecule 
FK506 (ref. 89). 

Microfluidic technologies
For single-cell studies, there is a considerable need for a platform that 
allows integrated multiparameter measurement and manipulation 
of cells. Microfluidic technologies are increasingly bringing new and 
improved protocols to single-cell analysis strategies. These technologies 
can be broadly divided into two classes: miniaturized, high-throughput 
and sensitive biochemical assays, with the scope for multiplexing analyt-
ical techniques that are difficult, or impossible, to link together by other 
means90; and single-cell trapping and manipu lation systems that allow 
the long-term measurement of gene expression within gene networks91,92 
(Fig. 4). Microfluidic systems allow researchers to make temporally 
precise perturbations to the cellular environment (including gener-
ating static or dynamic gradients of molecules of interest). Such refine-
ments can greatly simplify the interpretation of cell-signalling pathways 
and gene expression responses. Advances in combining elements 
from imaging analysis with biochemical assays, and with envir onmental 
control, promise to create a ‘one-stop shop’ for single-cell analysis — the 
often-cited ‘lab-on-a-chip’ approach.

In vivo Single dissociated cells

a

b c

Intact pituitary gland

Figure 3 | Luminescent imaging in vivo and in vitro. a, A transgenic rat 
expresses luciferase in the pituitary gland under the natural control of the 
promoter of the human prolactin gene60. b, A cultured intact pituitary gland 
from a transgenic rat (a) shows localization of gene expression within the 
pituitary gland65. Scale bar, 100 μm. c, Single primary rat pituitary cells 
from disaggregated tissue, in culture, showing heterogeneity between 
individual cells, which show independent dynamic behaviour65. Scale 
bar, 100 μm. The luminescence intensity is shown in each image on a 
scale from low (blue) to high (red). These data show how individual cell 
heterogeneity must be considered when studying overall organ phenotype 
and whole-animal physiology.
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Adapting traditional biochemical assays for single-cell analysis 
has proved problematic, because the true signal is often swamped by 
sample-handling variability and contamination when the raw material 
from single cells is diluted to microlitre volumes. Such problems can be 
overcome by using microfluidic devices, which comprise an interlinked 

series of channels, reaction chambers, microvalves and sample read-out 
devices, all of which are physically integrated on a microfabricated solid 
substrate. They allow reaction volumes to be scaled down to nanolitres 
or picolitres, improving the speed, sensitivity and throughput of the 
biochemical assay and reducing the reagent consumption.

The features of microfluidic devices have paved the way towards com-
plete de novo genome sequencing from a single template copy. Using a 
microfluidic Sanger sequencing procedure, and refinements in DNA 
capture and nanolitre-droplet encapsulation of individual DNA template 
molecules, accurate sequence reads were generated from 100 attomoles 
of template93. This is sensitive enough to allow the sequencing of single 
templates. This technology is likely to be especially useful for analysing 
somatic variation between individual cell genomes.

The inherent advantages of microfluidic technologies have also been 
exploited for single-cell gene expression analysis. Through integrating 
single-cell trapping, mRNA extraction and reverse-transcription PCR 
steps on a single chip, steady improvements in efficiency have led to 
the profiling of almost the complete transcriptome (corresponding to 
~5,000 genes) of individual neural progenitor cells94.

In addition to biochemical assays, microfluidic devices have been 
adapted to the imaging analysis of gene expression. Being able to con-
fine and manipulate single cells is a great improvement for long-term 
imaging experiments, for which various designs of channel, microjail or 
microwell arrays have been used91,92 (Fig. 4). After cells have been iso-
lated, the environmental conditions are often manipulated to change the 
steady-state conditions or to establish (or alter) concentration gradients. 
Cellular responses such as chemotaxis, intracellular signal transduction 
and transcriptional regulation have been measured in this way, as has 
the stability of transcripts95–97. 

Model-led data integration and analysis
The quantities of experimental data and the number of reactions that 
regulate cell fate pose a major challenge to understanding cellular 
plasticity. Mathematical modelling and model-based data analysis are 
required to understand the behaviour and design principles of complex 
systems that show nonlinear behaviour in space and time (for example 
patterns, oscillations, switching and stochasticity). Modelling is also 
crucial for processing, integrating and interpreting complex high-
dimensional data sets. It is therefore key for predictive biology and for 
rational experimental design5,98. 

Time-lapse measurements of single cells are ideal data sets from which 
to develop dynamic mathematical models. Deterministic mathematical 
models (for example using differential equations) can accurately simu-
late dynamic cellular subsystems such as the circadian clock99, the cell 
cycle100 and many signalling systems10,101,102. Cellular heterogeneity, how-
ever, is a common problem, and deterministic models cannot accurately 
simulate population-level or single-cell data unless the cells are relatively 
synchronous. Deterministic models basically assume that all cells are 
the same, which has the same outcome as experimental measurements 
of cell populations, which essentially average the data. Single-cell data 
are fundamentally noisy and can be fitted to deterministic models (for 
example by least squares) in only a limited set of circumstances. There-
fore, stochastic models often need to be used in combination with deter-
ministic models, in order to take into account cell-to-cell variation and 
noise, as well as to explain cellular heterogeneity10. For example, analysis 
of the noise structure (incorporating intrinsic and extrinsic noise) has 
been shown to be important in recent studies of the stochasticity that 
occurs in transcription and translation11,50.

Stochastic simulations often use the Gillespie algorithm and its deriva-
tives103. In this approach, a simplified mechanistic description of a bio-
logical system uses individual molecular reactions, which are assumed to 
have exponentially distributed half-lives (waiting times). Using stochastic 
differential equations is a powerful alternative. However, to be applica-
ble to the modelling of real cellular systems, these equations require a 
minimum number of molecules to be present in the system. Also, the 
general mathematical theory for these approaches is underdeveloped for 
application to the high-dimensional and nonlinear systems found in cells. 
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Figure 4 | Example of a microfluidic device for single-cell manipulation and 
long-term observation. a, The diagram shows a cell-trapping chamber 
containing 440 individual cell ‘micro-jails’. The total volume of each 
chamber is less than 20 nl (a single chamber is shown in the magnification 
on the right). Suspensions of single cells are flowed through the chamber 
from the top such that individual cells become trapped in the micro-jails, 
facilitating their long-term observation. b, A promyelocytic leukaemia cell 
(of the HL-60 cell line) trapped in a micro-jail is exposed to staurosporine, 
an inducer of apoptosis. The medium contains propidium iodide (PI), 
a fluorescent dye that is normally excluded from viable cells. Over time, 
the PI-based fluorescence steadily increases, indicating the dynamic 
progression of the cell into apoptosis. Composite images of the bright-field 
and fluorescence micrographs are shown on the right. c, The cumulative 
percentage of cells dying over time is plotted for independent micro-jail 
arrays. Simultaneous monitoring of multiple micro-jails demonstrates the 
use of the microfluidic device to show the stochastic nature of the apoptotic 
process, as demonstrated by the varying incidence of cell death in the cell 
population over time (despite cells being exposed to the same environmental 
conditions). Such microfluidic devices have potential for drug-screening 
studies, because they allow the controlled delivery of candidate drugs. 
(Figure reproduced, with permission, from ref. 92.)
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Models can be broken down into those concerned with temporal or spatial 
aspects of cellular dynamics. Many studies of stochastic transcriptional 
dynamics use measurements from multiple single cells at a single time 
point. Dynamic stochastic models allow temporal dynamic information 
to be deduced from this static spatial information. Nevertheless, temporal 
aspects are best probed by direct time-series measurements, for exam-
ple by using transcriptional reporters and fluorescently tagged proteins. 
Sophisticated algorithms have been developed to fit such data to models, 
and these algorithms can therefore provide estimates of hidden variables, 
for which data are unavailable104. For example, reporter genes provide 
an indirect measure of transcription, and the level of reporter activity 
depends not only on the rate of transcription (which is the parameter of 
interest) but also on the rate of RNA processing, the stability of the mRNA, 
the rate of translation, the formation of functional proteins (for example 
fluorescent protein formation) and the stability of the proteins. Each of 
these parameters needs to be taken into account to estimate transcrip-
tion rates and to compare the results obtained with different reporters 
(which have different properties)104. The use of such algorithms together 
with techniques that directly probe mRNA levels in cells is likely to be 
particularly powerful.

Modelling is also important for the analysis of spatial data in single 
cells. For example, FRAP and FCS time-series data often need to be fit-
ted to a model to deduce accurately the rates of protein translocation, 
diffusion and binding23. Spatio-temporal models have also been used 
to analyse the dynamics of fluorescent markers and to relate them to 
spatial physiological events such as pattern formation, cell movement 
and architecture reorganization105.

As the complexity of the processes being studied grows, there is 
an increasing need for tools to analyse models106 and for techniques 
to optimize or guide experimental design. Much of the current activ-
ity in this field relies on unguided simulation, but more sophisticated 
approaches use searching algorithms107 that allow iterative improvement 
in the accuracy of simulations. There are promising approaches based 
on the Fisher information matrix, which allows rational identification 
of which variables to measure experimentally and what time resolution 
is required. However, these approaches require a model for the system 
to be developed and, at present, are local in parameter space and do not 
account for the information that is contained in the noise structure. 

All of these models need to be in a common format so that they can be 
more easily understood and integrated together into larger models. For 
example, the Systems Biology Markup Language (SBML) is a machine-
readable programming language that is based on Extensible Markup 
Language (XML) and is used for representing models of biological pro-
cesses, including signalling and metabolic networks108. Data standards 
are also being developed for many types of ‘omics’ data. Time-lapse 
image analysis of living cells offers a particular challenge because the 
automated tools that are available are limited109,110. In systematic imaging 
screens for genome function84, enormous quantities of image data can 
be generated, up to hundreds of terabytes of data from a single experi-
ment. To manipulate and analyse such a large amount of data, automatic 
image handling becomes essential111. To this end, the development of 
common open access data standards for imaging112 and other data types 
is an important priority.

Conclusions
The diverse technologies used for single-cell measurements reflect the 
complexity and variety of the processes that need to be probed if we 
are to understand the basis of cellular plasticity. There remain many 
areas where the technologies that are available have limited the abil-
ity to make accurate measurements of important processes, including 
the quantification of protein–protein interactions, post-translational 
modifications and the absolute levels of key proteins. The challenge is 
that the assays must be non-invasive to report on the dynamics of these 
processes in single living cells.

Cellular decision-making depends on the integration of single mol-
ecular events, as well as on interactions between cells. Averaging the 
molecu lar events within single cells can obscure dynamic single-molecule 

information in much the same way in which cell-population data mask 
the behaviour of individual cells. Isolated cells in vitro lack the correct 
environment that organizes and directs their behaviour in vivo. It is 
therefore important to consider how cellular plasticity is affected by 
regulation across biological scales. Several new fluorescent tomographic 
technologies now allow improved measurements of biological processes 
in vivo113,114. 

Populations of cells are characterized by a level of heterogeneity both 
in vitro and in vivo. Many signalling systems generate nonlinear dynam-
ics through systems-level feedback. Observed cellular heterogeneity may 
be due, in part, to unsynchronized dynamics in single cells, possibly 
involving oscillatory processes26. Oscillations have been observed in 
key signalling pathways, including those that involve calcium15,16, the 
transmembrane receptor Notch115, the protein kinase ERK2 (ref. 101), 
and the transcription factors STAT3 (ref. 102), NF-κB5, p53 (ref. 27) 
and yeast Crz1 (ref. 25) (which is similar to mammalian NFAT). Other 
processes such as the cell cycle100, segment formation116 and the cir-
cadian clock117 are also oscillatory systems with varying periods. In most 
cases, oscillations have been shown to be (or are thought to be) masked 
at the population level by cellular heterogeneity, although in the case 
of the circadian clock this heterogeneity is overcome by intercellular 
communication118 or by entrainment by external signals such as light or 
temperature. There is growing evidence for the importance of an oscil-
lator’s frequency in controlling downstream biological events10,15,16,25,26. 
It is now crucial to further develop experimental tools and mathemati-
cal models to understand better the roles and functional integration of 
these different processes. It will be interesting to explore how biological 
robustness is achieved within cell populations, despite heterogeneous 
and dynamic single-cell behaviour.

A key challenge is to understand the systems-level control of long-
term cell-fate decisions. For instance, commitment to apoptosis is often 
extremely heterogeneous among cells in a population3 and may take 
several days (indicating the presence of time-delayed and stochastic 
steps in the process). In the cell cycle, apparently irreversible transitions 
are regulated by systems-level feedback119. During development, differ-
entiation takes place in a spatially and temporally organized and robust 
manner, as is also the case for segmentation (which involves multiple 
interconnected levels of feedback regulation)116. Do the seemingly oppo-
site processes of reprogramming (during nuclear transfer or iPS-cell 
generation) and differentiation occur through the reversal of the same 
mechanisms and intermediate cell states? In addition, does the low effi-
ciency of iPS-cell generation result from a low stochastic efficiency of the 
process, or is it caused by just a few ‘elite’ cells being capable of becoming 
pluripotent?74 The former hypothesis is favoured at present, and there 
is considerable interest in understanding the stochastic processes that 
underlie these cellular decisions. In this way, there is an increasing need 
for single-cell analysis of molecular and cellular dynamics, coupled to an 
integrative and interdisciplinary systems-biology approach. This seems 
to be the most promising way to understand these important cellular 
decision-making processes. ■
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