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We present the first measurement of the electron angular distribution parametera2 in W→en events
produced in proton-antiproton collisions as a function of theW boson transverse momentum. Our analysis is
based on data collected using the DØ detector during the 1994–1995 Fermilab Tevatron run. We compare our
results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1
6a1 cosu* 1a2 cos2 u* ), whereu* is the polar angle of the electron in the Collins-Soper frame. In the
presence of QCD corrections, the parametersa1 and a2 become functions ofpT

W , the W boson transverse
momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-
negligible contribution to theW boson mass measurement.

DOI: 10.1103/PhysRevD.63.072001 PACS number~s!: 14.70.Fm, 12.15.Ji, 13.38.Be, 13.85.Qk

I. INTRODUCTION

After the discovery of theW boson@1,2# at the CERNpp̄
collider, early studies of its properties verified its left-handed
coupling to fermions and established it to be a spin 1 particle
@3,4#. These were accomplished through the measurement of
the angular distribution of the charged lepton from theW

boson decay, a measurement ideally suited topp̄ colliders.
The angular distribution was found to follow the well-known
V2A form (16cosu* )2, where the polar angleu* is the
lepton direction in the rest frame of theW boson relative to
the proton direction, and the sign is opposite that of the
charge of theW boson or emitted lepton; this formulation
assumes that only valence quarks participate in the interac-
tion, otherwise the angular distribution is slightly modified.
It is important to note that these measurements were per-
formed on W bosons produced with almost no transverse
momenta. This kinematic region is dominated by the produc-
tion mechanismq̄1q8→W. The center of mass energy used,
As5540 GeV, is not high enough for other processes to
contribute substantially.

At the higher energies of the Fermilab Tevatron (As
51.8 TeV! and higher transverse momenta explored using
the DO” detector@5#, other processes are kinematically al-
lowed to occur. At lowW boson transverse momentum,pT

W ,
the dominant higher order process involves initial state ra-
diation of soft gluons. This process is calculated through the
use of resummation techniques as discussed in Refs.@6–12#.
At higher values ofpT

W , where perturbation theory holds,
other processes contribute@13#, such as:

~1! q̄1q8→W1g
~2! q1g→W1q8

~3! g1g→W1q̄1q8
where only the first two contribute significantly at Tevatron
energies@14#. These two processes change the form of the
angular distribution of the emitted charged lepton to

ds

dpT
2 dy dcosu*

}~16a1 cosu* 1a2 cos2 u* ! ~1.1!

where the parametersa1 anda2 depend on theW bosonpT
and rapidity,y @14#. In Fig. 1, the parametersa1 anda2 are
shown as functions ofpT

W . The angleu* is measured in the
Collins-Soper frame@15#; this is the rest frame of theW
boson where thez-axis bisects the angle formed by the pro-
ton momentum and the negative of the antiproton momen-
tum with thex-axis along the direction ofpT

W . This frame is

chosen since it reduces the ambiguity of the neutrino longi-
tudinal momentum to a sign ambiguity on cosu* .

In this paper, we present the first measurement ofa2 as a
function of pT

W @16#, which serves as a probe of next-to-
leading order~NLO! quantum chromodynamics~QCD!, us-
ing the well-understood coupling betweenW bosons and fer-
mions. This measurement probes the effect of QCD
corrections on the spin structure ofW boson production.

At DO” , the most preciseW boson mass measurement is
made by fitting the transverse mass distribution. However,
since the transverse mass of theW boson is correlated with
the decay angle of the lepton, the QCD effects discussed
above introduce a systematic shift;40 MeV to theW boson
mass measurement for events withpT

W< 15 GeV which must
be taken into account. Presently, the Monte Carlo program
used in the mass measurement models the angular distribu-
tion of the decay electron using the calculation of Mirkes
@14#. During the next run of the Fermilab Tevatron collider
~run II!, when the total error on theW boson mass will be
reduced from the current 91 MeV for DØ@17–22# to an
estimated 50 MeV for 1 fb21 and to about 30 MeV for 10
fb21 @23#, a good understanding of this systematic shift is
important. Therefore, a direct measurement of the electron
angular decay distribution is important to minimize the sys-
tematic error.

The paper is organized as follows: a brief description of
the DO” detector is given in Sec. II, with an emphasis on the
components used in this analysis. Event selection is dis-
cussed in Sec. III. The analysis procedure is described in
Sec. IV. Finally, conclusions are presented in Sec. V.

FIG. 1. The angular parametersa1 ~dashed! and a2 ~solid! as
functions ofpT

W . These parameters are evaluated integrated over the
W boson rapidity,y. In the absence of QCD effectsa1 anda2 equal
2.0 and 1.0, respectively.
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II. THE DO” DETECTOR

A. Experimental apparatus

The DO” detector, described in more detail elsewhere@5#,
is composed of four major systems. The innermost of these is
a non-magnetic tracker used in the reconstruction of charged
particle tracks. The tracker is surrounded by central and for-
ward uranium–liquid-argon sampling calorimeters. These
calorimeters are used to identify electrons, photons, and had-
ronic jets, and to reconstruct their energies. The calorimeters
are surrounded by a muon spectrometer which is composed
of an iron-core toroidal magnet surrounded by drift tube
chambers. The system is used in the identification of muons
and the reconstruction of their momenta. To detect inelastic
pp̄ collisions for triggering, and to measure the luminosity, a
set of scintillation counters is located in front of the forward
calorimeters. For this analysis, the relevant components are
the tracking system and the calorimeters. We use a coordi-
nate system where the polar angleu is measured relative to
the proton beam directionz, and f is the azimuthal angle.
The pseudorapidityh is defined as2 ln@tan (u/2)#, andr is
the perpendicular distance from the beam line.

The structure of the calorimeter has been optimized to
distinguish electrons and photons from hadrons, and to mea-
sure their energies. It is composed of three sections: the cen-
tral calorimeter~CC!, and two end calorimeters~EC!. The
h-coverage for electrons used in this analysis isuhu,1.1 in
the CC and 1.5,uhu,2.5 for the EC. The calorimeter is
segmented longitudinally into two sections, the electromag-
netic ~EM! and the hadronic~HAD! calorimeters. The pri-
mary energy measurement needed in this analysis comes
from the EM calorimeter, which is subdivided longitudinally
into four layers~EM1–EM4!. The hadronic calorimeter is
subdivided longitudinally into four fine hadronic layers
~FH1–FH4! and one course hadronic layer~CH!. The first,
second and fourth layers of the EM calorimeter are trans-
versely divided into cells of sizeDh3Df50.130.1. The
shower maximum occurs in the third layer, which is divided
into finer units of 0.0530.05 to improve the shower shape
measurement.

B. Trigger

The DO” trigger is built of three levels, with each level
applying increasingly more sophisticated selection criteria on
an event. The lowest level trigger, level 0, uses the scintilla-
tion counters in front of the forward calorimeters to signal
the presence of an inelasticpp̄ collision. Data from the level
0 counters, the calorimeter and the muon chambers are sent
to the level 1 trigger, which allows the experiment to be
triggered on total transverse energy,ET , missing transverse
energy,E” T , ET of individual calorimeter towers, and/or the
presence of a muon. These triggers operate in less than 3.5
ms, the time between bunch crossings. A few calorimeter and
muon triggers require additional time, which is provided by a
level 1.5 trigger system.

Candidate level 1~and 1.5! triggers initiate the level 2
trigger system that consists of a farm of microprocessors.
These microprocessors run pared-down versions of the off-

line analysis code to select events based on physics require-
ments. Therefore, the experiment can be triggered on events
that have characteristics ofW bosons or other physics
criteria.

III. PARTICLE IDENTIFICATION AND DATA
SELECTION

This analysis relies on the DO” detector’s ability to iden-
tify electrons and the undetected energy associated with neu-
trinos. The particle identification techniques employed are
described in greater detail in Ref.@24#. The following sec-
tions provide a brief summary of the techniques used in this
paper.

A. Electron identification

Identification of electrons starts at the trigger level, where
clusters of electromagnetic energy are selected. At level 1,
the trigger searches for EM calorimeter towers (Df3Dh
50.130.1) that exceed predefined thresholds.W boson trig-
gers require that the energy deposited in a single EM calo-
rimeter tower exceed 10 GeV. Those events that satisfy the
level 1 trigger are processed by the level 2 filter. The trigger
towers are combined with energy in the surrounding calorim-
eter cells within a window ofDf3Dh50.330.3. Events
are selected at level 2 if the transverse energy in this window
exceeds 20 GeV. In addition to theET requirement, the lon-
gitudinal and transverse shower shapes are required to match
those expected for electromagnetic showers. The longitudi-
nal shower shape is described by the fraction of the energy
deposited in each of the four EM layers of the calorimeter.
The transverse shower shape is characterized by the energy
deposition patterns in the third EM layer. The difference be-
tween the energies in concentric regions covering 0.25
30.25 and 0.1530.15 inh3f must be consistent with that
expected for an electron@5#.

In addition, at level 2, the energy cluster isolation is re-
quired to satisfyf iso,0.15, wheref iso is defined as

f iso5
Etotal~0.4!2EEM~0.2!

EEM~0.2!
, ~3.1!

Etotal(0.4) is the total energy, andEEM(0.2) the electromag-

netic energy, in cones ofR5A(Dh)21(Df)250.4 and 0.2,
respectively. This cut preferentially selects the isolated elec-
trons expected from vector boson decay.

Having selected events with isolated electromagnetic
showers at the trigger level, a set of tighter cuts is imposed
off-line to identify electrons, thereby reducing the back-
ground from QCD multijet events. The first step in identify-
ing an electron is to build a cluster about the trigger tower
using a nearest neighbor algorithm. As at the trigger level,
the cluster is required to be isolated (f iso,0.15). To increase
the likelihood that the cluster is due to an electron and not a
photon, a track from the central tracking system is required
to point at its centroid. We extrapolate the track to the third
EM layer in the calorimeter and calculate the distance be-
tween the extrapolated track and the cluster centroid in the
azimuthal direction,rDf, and in thez-direction, Dz. The
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cluster centroid position is extracted at the radius of the third
EM layer of the calorimeter,r. The z position of the event
vertex is defined by the line connecting the center of gravity
calorimeter position of the electron and the center of gravity
of its associated track in the central tracking system, extrapo-
lated to the beamline. The electronET is calculated using this
vertex definition@24#. The variable

s trk
2 5S rDf

srf
D 2

1S Dz

sz
D 2

~3.2!

wheresrf andsz are the respective track resolutions, quan-
tifies the quality of the match. A cut ofs trk,5 is imposed
on the data. Electromagnetic clusters that satisfy these crite-
ria, referred to as ‘‘loose electrons,’’ are then subjected to a
4-variable likelihood test previously used in the measure-
ment of the top quark mass by the DO” Collaboration@25#.
The four variables are:

A x2 comparison of the shower shape with the expected
shape of an electromagnetic shower, computed using a
41-variable covariance matrix@26# of the energy depositions
in the cells of the electromagnetic calorimeter and the event
vertex.

The electromagnetic energy fraction, which is defined as
the ratio of shower energy in the EM section of the calorim-
eter to the total EM energy plus the energy in the first had-
ronic section of the calorimeter.

A comparison of track position to cluster centroid position
as defined in Eq.~3.2!.

The ionization,dE/dx, along the track, to reduce con-
tamination frome1e2 pairs due to photon conversions. This
variable is effective in reducing the background from jets
fragmenting into neutral pions which then decay into photon
pairs.

To a good approximation, these four variables are inde-
pendent of each other for electron showers. Electrons that
satisfy this additional cut are called ‘‘tight’’ electrons.

B. Missing energy

The primary sources of missing energy in an event in-
clude the neutrinos that pass through the calorimeter unde-
tected and the apparent energy imbalance due to calorimeter
resolution. The energy imbalance is measured only in the
transverse plane due to the unknown momenta of the par-
ticles escaping within the beam pipes.

The missing transverse energy is calculated by taking the
negative of the vector sum of the transverse energy in all of
the calorimeter cells. This gives both the magnitude and di-
rection of theE” T , allowing the calculation of the transverse
mass of theW boson candidates,MT

W , given by

MT
W5A2ET

eE” T@12cos~fe2fn!# ~3.3!

in which ET
e is the transverse energy of the electron andfe

andfn are the azimuthal angles of the electron and neutrino,
respectively.

C. Event selection

The W boson data sample used in this analysis was col-
lected during the 1994–1995 run of the Fermilab Tevatron
collider. This data sample corresponds to an integrated lumi-
nosity of 85.063.6 pb21. Events are selected by requiring
one tight electron in the central calorimeter (uhu,1.1) with
ET.25 GeV. The CC consists of 32f modules. To avoid
areas of reduced response between neighboring modules, the
f of an electron is required to be at least 0.0532p/32 radi-
ans away from the position of a module boundary. In addi-
tion, events are required to haveE” T.25 GeV. If there is a
second electron in the event~loose or tight! and the dielec-
tron invariant massMee is close to theZ boson mass~75
GeV,Mee,105 GeV!, the event is rejected.

To ensure a well-understood calorimeter response and to
reduce luminosity-dependent effects, two additional require-
ments are imposed. The Main Ring component of the Teva-
tron accelerator passes through the outer part of the hadronic
calorimeter. Beam losses from the Main Ring can cause sig-
nificant energy deposits in the calorimeter, resulting in false
E” T . The largest losses occur when beam is injected into the
Main Ring. Events occurring within a 400 ms window after
injection are rejected, resulting in a 17% loss of data. Large
beam losses can also occur when particles in the Main Ring
pass through the DO” detector. Hence we reject events within
a 1.6 ms window around these occurrences, resulting in a
data loss of approximately 8%. After applying all of the de-
scribed cuts, a total of 41173W boson candidates is selected
using electrons found in the central calorimeter.

IV. EXPERIMENTAL METHOD

A. Monte Carlo simulation

For this analysis, a Monte Carlo program with a param-
etrized detector simulation is used. This is the same Monte
Carlo program used in our previous results on theW boson
mass measurement@19# and the inclusive cross sections of
the W andZ bosons@24#, so it will only be briefly summa-
rized here.

In the Monte Carlo program, the detector response is pa-
rametrized using the data from the experiment. This includes
using Z bosons and their hadronic recoil to study the re-
sponse and resolution. The response itself is then param-
etrized as a function of energy and angle.

The kinematic variables for eachW boson are generated
using theRESBOS @12# event generator with the theoretical
model described in Refs.@10,13#, and the CTEQ4M parton
distribution functions~pdf’s! @27#. Finally, the angular distri-
bution is generated according to the calculation of Mirkes
@14#.

1. Hadronic scale

One of the parameters needed for the Monte Carlo pro-
gram used in this study is the response of the calorimeter to
the hadronic recoil, defined as the sum of all calorimeter
cells excluding the cells belonging to the electron. The de-
tector response and resolution for particles recoiling against a
W boson should be the same as for particles recoiling against
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a Z boson. ForZ→ee events, we measure the transverse
momentum of theZ boson from thee1e2 pair,pT

ee, and from
the recoil jet momentum,pT

rec, in the same manner as for
W→en events. By comparingpT

ee and pT
rec, the recoil re-

sponse is calibrated relative to the well-understood electron
response@19#.

The recoil momentum is carried by many particles,
mostly hadrons, with a wide momentum spectrum. Since the
response of calorimeters to hadrons tends to be non-linear
and the recoil particles are distributed over the entire calo-
rimeter, including module boundaries with reduced response,
we expect a momentum-dependent response function with
values below unity.

To measure the recoil response from our data, we use a
sample ofZ boson events with one electron in the CC and
the second in the CC or the EC~CC/CC1EC!. This allows
the rapidity distribution of theZ bosons to approximate that
of the W bosons where the neutrinos could be anywhere in
the detector. Further, we require that both electrons satisfy
the tight electron criteria. This reduces the background for
the topology where one electron is in the EC. We project the
transverse momenta of the recoil and theZ boson onto the
inner bisector of the electron directions (h-axis!, as shown in
Fig. 2. By projecting the momenta onto an axis that is inde-
pendent of any energy measurement, noise contributions to
the momenta average to zero and do not bias the result.

To determine the functional dependence of the recoil sys-
tem with respect to the dielectron system,pW T

rec
•(2ĥ) is plot-

ted as a function ofpW T
ee
•ĥ as shown in Fig. 3. ForpT

ee.10
GeV, the hadronic response is well described by a linear
scale and offset:

pW T
rec
•ĥ5aH pW T

ee
•ĥ1bH . ~4.1!

The parametersaH and bH are calculated using a least-
squares fit to the data in the regionpT

ee.5 GeV, resulting in
aH50.97260.0095 and bH5(21.2160.14) GeV. For
small values ofpT

ee, pT
ee,10 GeV, the relation between the

hadronic and electronic recoil is best described by a logarith-
mic function @19,28#:

pW T
rec
•ĥ5„gH ln~pW T

ee
•ĥ !1dH…pW T

ee
•ĥ. ~4.2!

The parametersgH anddH are derived using a least-squares
fit to the data in the regionpT

ee,10 GeV~see Fig. 4!, yield-
ing gH50.09960.019 anddH50.62060.047. In the inter-
mediate region, 5 GeV,pT

ee,10 GeV, the logarithmic and
the linear fit match.

2. Tuning the recoil resolution parameters

In the Monte Carlo calculation, we parametrize the calo-
rimeter resolution,s rec, for the hard component of the recoil
as

s rec5srecApT
rec ~4.3!

wheresrec is a tunable parameter, andpT
rec is the recoil mo-

mentum of the hard component.

FIG. 2. Definition of theh-j coordinate system in aZ boson

event.eW t
i denote the transverse momentum vectors of the two elec-

trons. Theh axis is the bisector of the electrons in the transverse
plane; thej axis is perpendicular toh @19#.

FIG. 3. For Z→ee events ~points! the average value of

pW T
rec
•(2ĥ) is shown versuspW T

ee
•ĥ. The line shown is obtained from

a linear least squares fit to the data abovepT
ee55 GeV as described

in the text. The dotted lines represent the statistical uncertainties
from the fit.

FIG. 4. For Z→ee events ~points! the average value of

pW T
rec
•(2ĥ) is shown versuspW T

ee
•ĥ. Shown is the linear fit valid at

pT
ee.10 GeV and a logarithmic fit valid forpT

ee,10 GeV. The
dotted lines represent the statistical uncertainties from the linear fit.
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The soft component of the recoil is modeled by the trans-
verse momentum imbalance from minimum bias events.1

This automatically models detector resolution and pile-up.
To account for any possible difference between the underly-
ing event inW boson events and minimum bias events, we
multiply the minimum biasE” T by a correction factoramb.
We tune the two parameterssrec andamb by comparing the
width of theh-balance,pW T

rec
•ĥ/Rrec1pW T

ee
•ĥ, measured from

the CC/CC1EC Z boson data sample to Monte Carlo calcu-
lation and adjusting the parameters in the Monte Carlo cal-
culation simultaneously until the widths agree. The width of
the h-balance is a measure of the recoil momentum resolu-
tion. The recoil response,Rrec, is defined as

Rrec5
upW T

rec
•q̂Tu

uqTu
, ~4.4!

where qT is the generated transverse momentum of theZ
boson. The contribution of the electron momentum resolu-
tion to the width of theh-balance is negligibly small. The
contribution of the recoil momentum resolution grows with
pW T

ee
•ĥ while the contribution from the minimum biasE” T is

independent ofpW T
ee
•ĥ. This allows us to determinesrec and

amb simultaneously and without sensitivity to the electron
resolution by comparing the width of theh-balance pre-
dicted by the Monte Carlo model with that observed in the
data in bins ofpW T

ee
•ĥ. We perform ax2 fit comparing Monte

Carlo calculation and collider data. The values that minimize
the x2 are found to besrec50.66560.062 GeV1/2 and amb
51.09560.020. The non-linear hadronic scale in the region
pT,10 GeV leads tosrec50.5060.06 GeV1/2, while amb is
unchanged.

B. Extraction of the lepton angle

Since only the transverse components of the neutrino mo-
mentum are measured, the transformation from the lab frame
to the W boson rest frame~Collins-Soper frame! is not di-
rectly calculable. Therefore the polar angle of the electron
from theW boson decay,u* , is not directly measurable. In
this analysis,u* is inferred from the correlation between the
transverse mass of theW boson and cosu* through the use of
Bayes’ theorem@29#.

Experimentally, the only information we have about the
W boson is that contained in the two kinematic variablesMT

W

and pT
W . But MT

W depends on the polar angle cosu* , the
azimuthal anglef* over which we have integrated, andpT

W .
Therefore, the two experimentally measured variablesMT

W

and pT
W give cosu* . An analytic expression exists for this

relation ~see Ref.@30#!, so in principle the equation is solv-

able for cosu* , but the experimental values of bothMT
W and

pT
W include detector resolution effects that have to be un-

folded to give the true cosu* distribution. Even with perfect
detector resolution, the equation would only be solvable if
the W boson mass was known on an event by event basis.
Therefore, we calculate the probability of measuringMT

W for
a given value cosu* in a given pT

W bin, p(MT
Wucosu* ,pT

W).
This probability function is inverted to give the probability
of measuring cosu* for a measuredMT

W , p(cosu* uMT
W,pT

W),
using Bayes’ theorem:

p~cosu* uMT
W ,pT

W!

5
p~MT

Wucosu* ,pT
W!p~cosu* !

E p~MT
Wucosu* ,pT

W!p~cosu* !d cosu*

~4.5!

wherep(cosu* ) is the prior probability function, which we
take asp(cosu* )5(11cos2 u* ), the charge-averaged expec-
tation fromV2A theory without QCD corrections.

To derive the probability functionp(MT
Wucosu* ,pT

W), we
use a Monte Carlo simulation of the DO” detector, which is
described in Sec. IV A. The correlation betweenMT

W and
cosu* for pT

W<10 GeV is shown in Fig. 5. After de-
termining p(MT

Wucosu* ,pT
W), it is inverted, yielding

p(cosu* uMT
W,pT

W). The angular distribution is calculated by
multiplying p(cosu* uMT

W,pT
W) with the measured transverse

mass distribution. This is done in fourpT
W bins covering

0–10 GeV, 10–20 GeV, 20–35 GeV, and 35–200 GeV.
With the unfolded angular distributions now calculated,

the value ofa2 in each of the fourpT
W bins can be deter-

mined. This is accomplished by generating a set of angular
distribution templates for different values ofa2. These tem-
plates are generated in a series of Monte Carlo experiments
using the Monte Carlo program described in Sec. IV A.

The cosu* templates are compared to the data through the
use of a maximum likelihood method. Figure 6 shows a se-

1Minimum bias events are taken with a special trigger requiring

only that app̄ interaction has taken place. The kinematic properties
of these events are independent of specific hard scattering processes
and model detector resolution effects and pile-up which lead to
finite E” T .

FIG. 5. SmearedW boson transverse mass versus true cosu* for
pT

W< 10 GeV from Monte Carlo simulation. Acceptance cuts have
been applied to events in this plot. This correlation plot is used to
infer the cosu* distribution from the measuredMT

W distribution.
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ries of angular distribution templates for different values of
a2 andpT

W,10 GeV.

The treatment ofa1

Since there is no magnetic field in the central charged
particle tracking detector, it is not possible to identify the
charge of the electron. Without charge identification, this
analysis can only be performed by summing over theW bo-
son charge and polarization. This implies that the linear term
in cosu* averages to zero in the limit of complete accep-
tance. However, after acceptance cuts have been applied,
even the charge averaged angular distribution does depend
on the linear term. The reason is that events generated with a
non-zeroa1 correspond to slightly more central electrons
after they are boosted into the lab frame compared to events
generated witha1 set to zero. After acceptance cuts have
been applied, fewer events are lost at large cosu* . However,
since this is only a second order effect, this measurement is
not sensitive toa1. For this analysis, we calculatea1 @14#
based on the measuredpT

Wof each event. Possible variations
of a1 are treated as a source of systematic uncertainty~see
Sec. IV E!.

C. Backgrounds

To extract the electron angular distribution from the trans-
verse mass distribution, the size of the backgrounds has to be
estimated. The backgrounds are estimated as functions of the
W boson transverse momentum and transverse mass, these
being the two variables used to extract the angular distribu-
tion. The following sections describe how the four dominant
backgrounds are calculated, and how they depend on trans-
verse mass and transverse momentum.

1. QCD

A large potential source of background is due to QCD
dijet events, where one jet is misidentified as an electron and
the energy in the event is mismeasured resulting in largeE” T .
This background is estimated using QCD multijet events

from our data following the procedure described in detail in
Ref. @24#. Briefly, the fraction of QCD background events in
the W boson sample is given by

f QCD
W 5

e j

Nt
S esNl2Nt

es2e j
D ~4.6!

with the following variables:Nl and Nt are the number of
events in theW sample satisfying loose and tight electron
criteria, respectively. The tight electron efficiency,es , is the
fraction of loose electrons passing tight cuts as found in a
sample ofZ boson events, where one electron is required to
pass tight electron identification cuts and the other serves as
an unbiased probe for determining relative efficiencies. The
jet efficiency,e j , is the fraction of loose ‘‘fake’’ electrons
that pass tight electron cuts in a sample of multijet events.
This sample is required to have lowE” T(,15 GeV) to mini-
mize the number ofW bosons in the sample. From this
analysis, the overall QCD background fraction is found to be
f QCD

W 5(0.7760.6)% with a transverse mass cut of 50
,MT

W,90 GeV imposed, this being the range used in the
Bayesian analysis. Forf QCD

W as a function ofpT
W , see Table

I.

2. Z\ee

Another source of background isZ boson events in which
one electron is lost in a region of the detector that is unin-
strumented or one that has a lower electron finding efficiency
such as that between the CC and the EC. This results in a
momentum imbalance, with the event now being indistin-
guishable from aW boson event. This background can only
be estimated using Monte CarloZ boson events. The number
of such Z boson events present in theW boson sample is
calculated by applying theW boson selection cuts toHERWIG

@31# Z→ee events that are processed through aGEANT @32#
based simulation of the DO” detector and then overlaid with
events from randompp̄ crossings. This is done to simulate
the underlying event, so that the effect of the luminosity can
be included. The overall background fraction is found to be
f Z

W5(0.5060.06)% averaged over allpT
W . For the back-

ground fraction in eachpT
W bin, see Table I.

3. t t̄ production

The top quark background is not expected to contribute
significantly, except in the highestpT

W bin. The background

FIG. 6. Templates of the angular distribution for variousa2

values forpT
W<10 GeV. These templates are obtained from Monte

Carlo simulation after acceptance cuts have been applied which
results in the drop-off at small angles. Each template is normalized
to unity.

TABLE I. Background fractions as a function ofpT
W for events

with a transverse mass cut of 50,MT
W,90 GeV imposed.

pT
W @GeV# f QCD

W @%# f Z
W @%# f t t̄

W
@%#

0–10 0.661.0 0.1660.02 0.002860.0009
10–20 1.061.0 1.160.1 0.02560.008
20–35 1.361.0 1.460.2 0.1560.05

35–200 2.061.1 1.760.2 2.060.6
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from these events comes fromt quarks decaying toW
bosons. If oneW boson decays electronically while the other
decays into two hadronic jets, the event can mimic a highpT
W boson event. This background, like theZ boson back-
ground, is calculated from Monte Carlo simulations using
HERWIG t t̄ events. The overall background fraction isf t t̄

W

5(0.08760.027)%. For the background fraction in eachpT
W

bin, see Table I.

4. W\tn

W→tn events in which thet decays into an electron and
two neutrinos are indistinguishable fromW→en events.
This background is estimated from Monte Carlo simulations
using theW boson mass Monte Carlo simulation described
above. A fraction of the events is generated asW→tn, de-
cayed electronically, with acceptance and fiducial cuts ap-
plied to the decay electron in the same manner as inW
→en events. The acceptance forW→tn→ennn is reduced
by the branching fractionB(t→enn)5(17.8160.07)%
@33#. The kinematic acceptance is further reduced by theET
cut on the electron since the three-body decay of thet leads
to a very soft electronET spectrum compared to that from
W→en events~see Fig. 7!. The fraction ofW→tn→ennn
events after these cuts are applied to the Monte Carlo simu-
lation is f t

W5(2.0360.19)% over allpT
W .

For this analysis, the angular (cosu* ) templates are gen-
erated using theW boson mass Monte Carlo simulator with
the branching ratioB(W→tn)5B(W→en), assuming lep-
ton universality, and the above value forB(t→enn). The
transverse mass ofW→tn events ~Fig. 8! is on average
lower than that ofW→en events, due to the three-body de-
cay of thet.

5. Summary of backgrounds

As we have shown in the previous sections, and as can be
clearly seen in Fig. 9, the background fractions in this mea-
surement are small~a few percent! over all MT

W and pT
W

ranges. The dominant backgrounds are due to QCD multijet
events andZ boson decays, except in the highestpT

W bin

where thet t̄ background is comparable in size.

D. The measurement ofa2

To obtain the angular distribution forW boson events
from data, the transverse mass distribution is inverted
through the use of Bayes’ theorem as described in Sec. IV B.
Since the probability distribution function used to invert the
MT

W distribution is generated from Monte Carlo simulation,
we compare the background-subtractedMT

W distribution
from data to that generated through our Monte Carlo simu-
lation to verify that it models the physics and detector cor-
rectly ~see Fig. 10!. Based on ax2 test, the agreement be-
tween data and Monte Carlo simulation is good; thex2

probabilities are 11.2%, 80.6%, 93.7%, and 53.7% in order
of increasingpT

W bins. Likewise, the experimental and Monte
Carlo pT

W distributions can be compared, with the two show-

FIG. 9. Transverse mass spectrum forW→en candidate events

~solid histogram! and QCD~dashed!, Z boson~dotted!, andt t̄ back-
grounds~dashed-dotted! in four pT

W bins.

FIG. 7. Electron ET spectrum for Monte CarloW→tn
→ennn events~dashed! andW→en events~solid histogram!. Both
spectra are normalized to unity for shape comparison.

FIG. 8. Transverse mass distribution forW→en events~solid!
andW→tn→ennn events~dashed! from Monte Carlo simulation.
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ing agreement with ax2 probability of 7.4%, where only
statistical errors are taken into account~see Fig. 11!.

After extracting the angular distribution, the parametera2

is computed using the method of maximum likelihood~see
Fig. 12!. The angular distribution is compared to a series of
Monte Carlo generated templates, each with a different value
of a2. The template that results in the maximum likelihood
gives the value ofa2 for eachpT

W bin ~Fig. 13!. The 1s
uncertainties ina2 are approximately given by the points
where the log-likelihood drops by 0.5 units. To estimate the
goodness of fit, the measured angular distributions are com-
pared to these templates using ax2 test. Thex2-probabilities
that we obtain are 8.4%, 59.1%, 87.7%, and 11.6% in order
of increasingpT

W bins.

E. Systematic errors

Systematic errors on our measurement ofa2 are due to
uncertainties in the backgrounds and the parameters used to
model the detector in the Monte Carlo. To estimate the errors
due to the background uncertainties, the parameters from fits

FIG. 11. Background subtracted transverse momentum distribu-
tion ~crosses! compared to Monte Carlo prediction~solid histo-
gram!. The error bars indicate statistical uncertainties only.

FIG. 13. Angular distributions for data compared to Monte
Carlo templates for four differentpT

W bins. Shown are the templates
that fit best ~solid! and the templates fora251 ~dashed! and
a250 ~dotted!.

FIG. 10. Background subtracted transverse mass distributions
~crosses! in four pT

W bins compared to Monte Carlo predictions
~solid histograms!.

FIG. 12. Log-likelihood functions for four differentpT
W bins.

The arrows denote the values of maximum likelihood and the 1s
errors. The vertical lines labeledV2A show a151, the value for
V2A theory without QCD corrections.
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of the transverse mass distributions of the background are
varied within their errors, and the analysis is repeated. For
the errors due to detector modeling, the corresponding Monte
Carlo parameters are varied within their errors and the analy-
sis is repeated with new angular templates. For this analysis,
we fixeda1 to the values given by the next-to-leading order
QCD prediction~see Fig. 1!. The error associated with this
choice is estimated by changinga1 to the value calculated in
the absence of QCD effects (a152.0).

Another potential source of systematic uncertainty is due
to the specific choice we made for the prior probability func-
tion, p(cosu* )5(11cos2 u* ). To estimate the effect this
choice has ona2, we repeated the Bayesian analysis with a
flat prior probability function. The differences ina2 were
found to be negligible compared to the other systematic un-
certainties.

The dominant systematic errors are due to uncertainties in
the electromagnetic energy scale and the QCD background.
All systematic errors are summarized in Table II. The sys-
tematic errors are combined in quadrature. The statistical un-
certainties are, except for the firstpT

W bin, larger by a factor
of three than the systematic uncertainties.

F. Results and sensitivity

To estimate the sensitivity of this experiment, thex2 of
thea2 distribution is calculated with respect to the prediction
of the V2A theory modified by next-to-leading order QCD
and that of theV2A theory in the absence of QCD correc-
tions. Thex2 with respect to the QCD prediction is 0.8 for 4
degrees of freedom, which corresponds to a probability of
94%. Thex2 with respect to pureV2A is 7.0 for 4 degrees
of freedom, which corresponds to 14% probability. To make
a more quantitative estimate of how much betterV2A modi-
fied by next-to-leading order QCD agrees over pureV2A,

we use the odds-ratio method,2 which prefers the former over
the latter theory by'2.3s. The results of our measurement
along with the theoretical prediction are given in Fig. 14 and
Table II.

V. CONCLUSIONS

Using data taken with the DO” detector during the 1994–
1995 Fermilab Tevatron collider run, we have presented a
measurement of the angular distribution of decay electrons
from W boson events. A next-to-leading order QCD calcula-
tion is preferred by'2.3s over a calculation where no QCD
effects are included.
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FIG. 14. Measureda2 as a function ofpT
W compared to the

next-to-leading order QCD calculation by Mirkes~curve! and cal-
culation in the absence of QCD~horizontal line!. The combined
systematic and statistical errors are shown as vertical bars, while the
statistical errors alone are marked by horizontal ticks.

TABLE II. Central values fora2 with statistical and systematic
errors.

pT
W @GeV# 0–10 10–20 20–35 35–200

a2, measured 1.09 0.84 0.52 0.13
stat. errors 60.13 60.25 60.36 60.38
a2, predicted 0.98 0.89 0.68 0.24
meanpT

W 5.3 13.3 25.7 52.9
QCD 60.04 60.05 60.09 60.07
Z→ee 60.01 60.02 60.02 60.04

t t̄ 60.00 60.00 60.00 60.02

EM scale 60.06 60.05 60.03 60.04
hadronic scale 60.03 60.01 60.04 60.04
hadronic resol. 60.02 60.02 60.05 60.06
fixed a1 60.01 60.05 60.03 60.03
combined syst. 60.08 60.09 60.12 60.12
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